Booting Linux

Alexander Ulmer
January 24, 2024



How to boot Linux?
e Solution: Well, you use a bootloader

Thank you for your attention!



Chicken and egg problem: How to load the bootloader in the first place?

e Hardware: reset circuit and boot ROM
e Firmware: BIOS, Xilinx BOOT.BIN, etc.
e Bootloaders and boot protocols

e Linux platform initialisation



Power-up procedure.



System power-up

Asserted reset line on power-up will cause CPU to reset its state and start executing at
a predefined address. There must be some kind of boot ROM mapped to it:

e x86-PC: BIOS ROM at Oxffff fffO.

e ARM Cortex A9: Starts executing at 0x0000_0000 or 0xffff 0000 depending
on VINITHI input pin sampled on reset [1]



Boot ROM

Read-only memory that contains firmware code. It must be able to load the code for
the first-stage bootloader.

e Can be external or embedded into the
(SoC-)package.

e On x86-PCs, it is usually attached to
the Low Pin Count (LPC) bus and
contains the BIOS.

Figure 1: LPC flash chip on an AMD Geode
based network router circuit board (PC Engines
ALIX series).



Example: PC BIOS

The basic input output system (BIOS) is stored on the boot ROM (BIOS ROM).

Starts executing code using the processor's cache (no RAM yet!)

Performs power-on-self-test (POST)

Initialises chipset and memory controller

Performs enumeration of the PCI bus

Loads the bootloader from the boot device's master boot record (512 bytes) to
address 0x7C00.

Details: BIOS BOOT Specification (1996) [2]



Example: PC BIOS

Detailed BIOS boot example [2]:

1. BIOS loads 1st stage bootloader (512 bytes) from master boot record into RAM.

2. 1st stage bootloader uses BIOS interrupt calls to load 2nd stage bootloader from
disk sectors before filesystem starts.

3. 2nd stage bootloader knows filesystems and loads actual bootloader (e.g. GRUB)
from a file.

4. Now the bootloader can continue loading the operating system (Linux).



Example: Unified Extensible Firmware Interface (UEFI)

UEFI is an improved interface between firmware and operating systems published by
Intel in 1998. [3]

e Lets you write your own firmware plug-ins easily (EFI Applications).

e Booting works by loading an EFI application from the boot device, which contains
the bootloader (e.g. GRUB).

e Usually, systems have UEFI and legacy-BIOS coexist on the same device.
However, vendors recently started to drop legacy-BIOS support [4].



Example: Zybo Z7

e Cold reset: latch boot mode
jumper state into register.

e Warm reset: mode register
left unchanged.

Then execute code on boot ROM
that loads the next-stage

bootloader.

Figure 2: Boot mode jumpers on a Zybo Z7
development board [5].



Example: Zybo Z7: First stage bootloader (FSBL)

Code on boot ROM will load first stage bootloader (BOOT.BIN) from selected
boot-source into on-chip static RAM (SRAM). Next steps:

e set up the DDRAM controller and map RAM to 0x4000_0000.
o if bitstream is available, configure FPGA.

e |oad bare metal program or next-stage bootloader (e.g. U-Boot) into DDRAM.

Details: Zybo Zynq Z7 Reference Manual [5]

10



Bootloaders and boot protocols




What is a bootloader?

Bootloaders do all the setup crap operating system developers don't want to deal with:

72 /%
73 Kernel startup entry point.

74

75

[...]
76 We're trying to keep crap to a minimum; DO NOT add any machine
77 specific crap here — that's what the boot loader (or in
78

79 */

80

extreme, well justified circumstances, zlmage) is for.

(From linux source code, /arch/arm/kernel/head.S)

11



What is a boot protocol?

Bootloaders implement one or more boot protocols.

Boot protocols specify:

e Machine state after jump to kernel
e What information to pass along

e How to pass this information

Examples: Multiboot, Multiboot2, the linux boot protocol

12



Device Tree

Configuration information needs to be provided to the kernel. One way to do this is a
device tree. It includes:

e Machine type

Memory layout

Kernel command line

Initramdisk address in memory
e hardware devices and their MMIO addresses

Configuration can also be hardcoded, but usage of a device tree is "highly
recommended” [6].

13



Tagged lists

Historically, configuration was provided via a tagged list. For example, on ARM:

e ri1: Machine type (1inux/arch/arm/tools/mach-types)
e 1r2: Physical address of tagged list

Again, this got completely replaced by the device tree.

14



Example: E820 memory map

Linux version 6.1.69-1-MANJARO (builduser@fv-az1244-991) (gcc (GCC) 13.2.1 20230801, GNU 1d (G
Binutils) 2.41.@) #1 SMP PREEMPT_DYNAMIC Thu Dec 21 12:29:38 UTC 2023
BOOT_IMAGE=/boot/vmlinuz-6.1-x86_64 root=UUID=fh84d@86-57d5-4bdd-aaa2-49414edfad3
Iw quiet cryptdevice=UUID=95861e3d-c102-4df5-a321-@66aaal357dd: luks-95861e3d-c102-4df5-a321-066aaal357dd roo
=/dev/mapper/luks-9586le3d-c1@2-4df5-a321-066aaal357dd splash udev.log_priority=3
BIOS-provided physical RAM map:
[mem @x0000000000000000-0x0000000000057FTT] usable
[mem @x0000000000058000-0x0000000000058FTf] reserved
[mem @x000V000000A59000-0x000000000008bTfT] usable
[mem @x000000000003cP00-0x00000000000F ] reserved
[mem @x0000000000100000-0x0000000@3TFffTff] usable
[mem @x0000000040000000-0x00000000403fffff] reserved
[mem @x0000000040400000-0x000000009056affT] usable

Figure 3: Screenshot showing the early kernel log of a Thinkpad T480. The E820 memory
map is being displayed in the top. It was retrieved by calling the GetMemoryMap () function of
the UEFI boot services [7]

15



Linux boot protocol

The Linux Boot Protocol [8] is different for every architecture. Things all architectures
have in common:

e Location of the kernel image (zImage), stack and heap
e Layout of kernel image header structure layout:

e Location of the initial RAM disk (initrd)
e Kernel command line

e Lots of other details...

16



zlmage and initial RAM disk

e To save space, the linux kernel image can be compressed. In this case it contains
code to decompress itself. This is then called a zImage or bzImage.

e Since the root filesystem cannot always be mounted directly, the kernel image can
be accompanied by an initial RAM disk or initramfs containing...

e ... /etc/fstab: Mount points
e ... /init: The init program
e ... /1ib: Shared libraries and kernel modules

17



Linux platform initialisation




Linux entry point (ARM) [9]

Entry point in arch/arm/kernel/head.S (only 600 lines):

e __lookup processor_type(), __lookup machine type()

e __create_page_tables(), __enable mmu()
e __enable mmu():

e set TTB register (ARM's cr3), enable MMU
e _mmap _switched():

e clear BSS
e jump to start_kernel () (architecture-independent)

18



Generic initialisation: start _kernel()

Initialize console and debug output

Start handling interrupts

Bring up the other CPU cores

Setup virtual file system
Mount initial RAM disk

Spawn the init process: rest_init ()

19



Spawning the init process

e rest_init():

e Spawning the init process:

605 pid = user_mode_thread (kernel_init, NULL, CLONE.FS)}
696

e Set the system state to scheduling and switch to the idle task:
720 system_state = SYSTEM_SCHEDULING;

721 [-.]
722 cpu-startup_-entry (CPUHP_ONLINE) ;
723}

724

Now the init program is responsible for bringing up userspace and shell.

20



Bonus: Symmetric multiprocessing (SMP) initialisation

Symmetric multiprocessing initialisation brings up all the other processor cores, if they

are present.

e On ARM, when linux takes over, all cores execute the same code: Bad
e Solution: Boot one core, then wake up the others

e Non-boot cores are looping on WFI instruction (like HLT) until they get an IPI

[10]:

1 while (pen_release != read_core_id()) {
2 _casm__ ("wfi”);

3 }

4 boot () ;

21



References i

[1]
2]

(3]

[4]

References

ARM, Cortex-A9 Technical Reference Manual. 2008-2011, p. 174.

Intel-Compag-Phoenix, Bios boot specification version 1.01, (1996), [Online].
Available: https://www.scs.stanford.edu/nyu/04fa/lab/specsbbs101.pdf
(visited on 01/23/2024).

T. Leemhuis, Was firmware, bios, uefi alles meinen konnen. in: Heise online,
(2019), [Online]. Available: https://heise.de/-4405251 (visited on 01/23/2024).

C. Windeck, Intel: Uefi-bios verliert 2020 die bios-kompatibilitat. in: Heise
online, (2017), [Online]. Available: https://heise.de/-3890747 (visited on
01/23/2024).

22


https://www.scs.stanford.edu/nyu/04fa/lab/specsbbs101.pdf
https://heise.de/-4405251
https://heise.de/-3890747

References ii

[5]

[6]

[7]

(8]

W. Deacon, Digilent zynq z7 reference manual, (2018), [Online|. Available:
https://digilent.com/reference/_media/reference/programmable-
logic/zybo-z7/zybo-z7_rm.pdf (visited on 01/21/2024).

R. King, Linux kernel documentation: Booting arm, (2002), [Online]. Available:
https://docs.kernel.org/arch/arm/booting.html (visited on 01/21/2024).

Uefi specification: Boot services, (Version 2.9A), [Online]. Available:
https://uefi.org/specs/UEF1/2.9_A/07_Services_Boot_Services.html (visited
on 01/24/2024).

Linux kernel documentation: The linux boot protocol (x86), (Version 2.15),
[Online]. Available: https://www.kernel.org/doc/html/v5.6/x86/boot .html
(visited on 01/23/2024).

23


https://digilent.com/reference/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/zybo-z7/zybo-z7_rm.pdf
https://docs.kernel.org/arch/arm/booting.html
https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html
https://www.kernel.org/doc/html/v5.6/x86/boot.html

References iii

[9]

[10]

[11]

[12]

J. Sevy, Arm linux boot sequence, (2007), [Online|. Available:
https://jsevy.com/linux/ARM_Linux_boot_sequence.html (visited on
01/21/2024).

ARM, Arm developer documentation: Smp boot in linux, (Version 4.0),
[Online]. Available:

https://developer.arm.com/documentation/den0013/d/Multi-core-
processors/Booting-SMP-systems/SMP-boot-in-Linux (visited on 01/21/2024).

W. Deacon, Linux kernel documentation: Booting aarch64, (2012), [Online].
Available: https://www.kernel.org/doc/Documentation/arm64/booting.txt
(visited on 01/21/2024).

TheRasteri, Add an isa slot to modern motherboards! (2023), [Online].
Available: https://www.youtube.com/watch?v=putHMSzub5og (visited on
01/21/2024).

24


https://jsevy.com/linux/ARM_Linux_boot_sequence.html
https://developer.arm.com/documentation/den0013/d/Multi-core-processors/Booting-SMP-systems/SMP-boot-in-Linux
https://developer.arm.com/documentation/den0013/d/Multi-core-processors/Booting-SMP-systems/SMP-boot-in-Linux
https://www.kernel.org/doc/Documentation/arm64/booting.txt
https://www.youtube.com/watch?v=putHMSzu5og

	Power-up procedure.
	Bootloaders and boot protocols
	Linux platform initialisation
	References

