Model Checking (SS 2024) Homework 7

Deadline: May 27, 2024, 9:00 am Submit your solution through TeachCenter

Task 1. [50 points] From LTL to Büchi Automata

Given an LTL formula $\varphi \coloneqq (a U (Xb))$.

Transform φ into a Generalized Büchi Automata A_{φ} such that A_{φ} accepts exactly all the computations that satisfy φ . Use the algorithm from Vardi and Wolper that we discussed in the lecture. You can also find the algorithm on page 98 of the Model Checking book.

Task 2. [50 points] Büchi Games

Consider the definition of games defined in the lecture slides.

The Büchi winning condition is defined over a set of accepting states $F \subseteq Q$. Player 0 wins a game, if during the play, states in F have been visited infinitely often. The winning region W_0 for Player P0 is the set of all states from which Player P0 can enforce to win.

- Give the Pseudo Code to compute winning region W_0 in a game graph $G = \langle Q, E \rangle$ with the Büchi Winning condition defined over the accepting states $F \subseteq Q$. Use the operate Force(X) as defined in the lecture.
- Compute the Winning region W_0 for the following Game Graph, using the set of accepting states $F = \{q_1, q_3, q_5\}$. Give the intermediate steps of your algorithms (sets of states computed per iteration).

