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Example I/O

www.iaik.tugraz.at

3

• The I/O interface that we discussed at the 
beginning of the lecture was idealized 
debug interface (data was always valid)

• In practice there is the following challenge: 

• The CPU executes one instruction after the 
other.

• How should it know when the input is valid? Is 
it valid always (in every clock cycle)? 



Example

• Assume an input port of a computer is set to a value 1 in one clock 
cycle

• It is still 1 in the next clock cycle

• Does this mean this is the “same” 1 or does this mean that there is a 
“second” 1? 

• How should the computer know?
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We Need to Add a Flag 
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You've Got MailNo Mail for You



Synchronization with Control Signals

• On real communication channels, data is not always ready

• We need synchronization with control signals

• There exist different protocols and standards.
• Serial protocols: RS232, SPI, USB, SATA, . . .
• Parallel protocols: PATA/IDE, IEEE 1284 (Printer), . . .

• We use a simple interface with few control signals to illustrate this
• 8-bit data port
• Simple valid/ready flow-control
• Registers (memory mapped)

• 0x7D0 (control register)
• 0x7D4 (data register)
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Implementing an Interface With a Control 
Register
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Implementing an Interface With a Control 
Register
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Receiver 

(The Sofware)
The Sender

(1) Sender waits until valid bit is cleared (set to 0)

(2) Sender sets the data value

(3) Sender sets the valid bit

Note:
Sender and Receiver 

can operate at 
different speeds

Example of a basic protocol:

(4) Receiver (the software) waits until valid bit is set

(5) Receiver reads the data

(6) Receiver clears the valid bit



Polling Using a Control Register by the sender
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Control Signals

• There is a wide range of options for implementing communication 
between entities (FSMs, software, humans, …) of with different 
speeds

• However, in all cases, there needs to be signals to ensure that
• The sender knows that the resource (bus, register, …) is available

• The receiver knows that there is valid input

• The sender knows that the receiver has received the signal (acknowledge) 
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Polling Example in QtRVSim

• https://comparch.edu.cvut.cz/qtrvsim/app/

• See examples in directory con11.01_QtRVSim_IO: 

• Basic I/O example: 
• 01_playing_with_knobs.S  

• Polling example:
• 02_polling.S
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Communication via a Slow Communication 
Interface

• Polling is highly inefficient: the CPU is stuck in a loop until e.g. 
• an I/O peripheral sets a ready signal
• a timer has reached a certain value
• the user has pressed a key
• ….

• Alternative
• CPU keeps executing some useful code in the first place
• We use concept of interrupts to react to “unexpected” events
• Basic idea: Instead of waiting for an event, we execute useful code and then let an 

event trigger a redirection of the instruction stream 
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How to handle unexpected external events?

• We add an input signal to the CPU called “interrupt”.
• An external source can activate this input signal “interrupt”.
• After executing an instruction, the CPU checks for the value of this input 

signal “interrupt” before it fetches the next instruction.
• If the signal “interrupt” is active, the next instruction to be executed is the 

first instruction of the “interrupt-service routine”.
• After “handling” the interrupt by executing the interrupt-service routine, 

the CPU returns to the interrupted program. 

• Interrupts are like doing a function call that is not triggered by a caller, but 
by an external event
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Interrupts in RISC-V

• Hardware Aspects
• External interrupt is an input signal to the processor core
• Control & Status registers (CSRs) for interrupt configuration (e.g. mie, mtvec, mip, …)
• Additional instructions for interrupt handling (mret)
• Dedicated interrupt controllers on bigger processors

• Software Aspects
• When an interrupt occurs, the program execution is interrupted
• Functions have to be provided to handle interrupts → Interrupt Service Routines 

(ISR)
• Software needs to configure and enable interrupts
• Software has to preserve the interrupted context

→ Interrupt entry points are typically written in assembly

www.iaik.tugraz.at

14



Control & Status Registers (CSRs) in RISC-V

• We so far only considered memory-mapped peripherals whose 
registers can be accessed via standard load and store instructions 

• RISC-V also features dedicated so called “Control & Status Registers”
• The ISA allows addressing 4096 registers (32 bit each)

• Dedicated instructions allow to read and write these registers: CSRRW, CSRRS, 
CSRRC, CSRRWI, CSRRSI, CSRRCI
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The Interrupt Service Routine (ISR)

• Entering the ISR
• Upon an interrupt, the processor 

• jumps to a location in memory specified by the mtvec CSR.
• automatically stores the previous location into mepc CSR.

• Executing the ISR
• The ISR can execute arbitrary code; However, the processor context (program 

counter, register) needs to have exactly the same values when returning to the 
interrupted code → “From the view of the interrupted program, the execution after 
the interrupt continues as if nothing had happened” 

• Leaving the ISR
• Upon the execution of the mret instruction, the processor

• returns to the original location stored in the mepc CSR
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Finding the Interrupt Service Routine

• Two approaches are common:
• Single entrypoint for all interrupts.

• the ISR has to determine what caused the interrupt and then handles the corresponding interrupt

• Multiple entrypoints for different interrupts organized in a table (vectored interrupts)
• A table defines the entry point for different causes of interrupts
• E.g. each interrupt vector table entry has 4 bytes

• Interrupt cause 0 leads to a jump to mtvec
• Interrupt cause 1 leads to a jump to mtvec+4 
• Interrupt cause 2 leads to a jump to mtvec+8
• …

→just enough space to place a single jal instruction to the actual ISR handler code at 
each entry location

• RISC-V permits both approaches
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Connecting Interrupt Sources to Interrupt 
Service Routines
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Connecting Interrupt Sources to Interrupt 
Service Routines (one Interrupt)
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Connecting Interrupt Sources to Interrupt 
Service Routines (one entry point)
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Connecting Interrupt Sources to Interrupt 
Service Routines (vectored approach)
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Connecting Interrupt Sources to Interrupt 
Service Routines

• In practice all kinds of combinations are possible for interrupt 
handling

• There is also the option for having interrupts with different priorities

• Dedicated interrupt controllers are available on larger systems to 
handle priorities, entry points, nested interrupts, …
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Direct Memory Access 
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Direct Memory Access (DMA)

• Observe: 
• I/O typically runs at lower speeds than the CPU 
• With interrupts we a mechanisms that prevents the need for polling
• The CPU is directly notified when data is available at a peripheral

• Interrupts are useful for communication with devices like
• Network interfaces
• Harddrives
• USB
• … 

This is nice, but let’s look at the job of the CPU upon receiving an interrupt.
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What Happens Upon an Interrupt?

• When a CPU receives data from a peripheral typically needs to do two 
things:

1. The CPU first copies the data from the peripheral to the memory

2. The CPU then works with the data in the memory to perform specific tasks

Note:
• The first task is a very simple task that is just a sequence of load and store 

operations;
• This might can a long sequence in case of larger blocks of data that need to 

be moved → It’s a loop that continuously loads data from a peripheral and 
that then stores to memory
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Von Neumann Model
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This is is very simple – should the CPU do this or can’t something else do this?



Von Neumann Model
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• Idea: Add a DMA controller to the system that 
interacts with peripherals and copies data from 
peripherals to memory and vice versa

• Advantage: The CPU can do more useful stuff 
while the data is copied



Von Neumann Model
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Note: Now the CPU is not the only one any more 
controlling the bus

→ There is need for arbitration



Basic Idea of DMA

• Goal: Offload memory transfer tasks from the CPU to DMA controller

• Implementation
• CPU configures DMA control with the following basic paramters:

• Where to read from (source address)
• Where to write to (destination address)
• Amount of data to be transferred

• After completion of the transfer, the DMA triggers an interrupt

• Implementation variants:
• There are many variants of how to implement DMA (big differences between small 

microcontrollers and server CPUs)
• DMA can be a dedicated peripheral or integrated directly into relevant peripherals 
• There are different variants on how to avoid bus contentions: dedicated additional buses, 

different types of arbitration
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Multitasking
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Typical Software Stack

• We have powerful CPUs and typically not just have one program that we 
would like to execute → we would like multiple programs

• We need a resource manager that takes care of
• Which program executed when using what resources
• Context switching (efficiently switching from one program to the other)
• Managing the sharing all kinds of resources (CPU, memory, hard drive, I/O, …) 

between the program
• …

→ All this done by the operating system (from small embedded OS to 
Linux/Windows)
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Privilege Levels Provided by the Hardware

• Clearly not every program should be able to do everything. The operating 
system should have different rights

• Computers have typically at least two modes:
• User Mode: A mode for user applications providing only limited access rights to 

hardware resources
• Supervisor Mode: A mode for the operating system providing full access

• RISC-V defines three modes: User mode (U), Supervisor Mode (S), and 
Machine Mode (M)

• Switching between different privilege levels is done via “software 
exceptions”
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Interrupts, Exceptions, Traps

• There are different wordings on different system for events that cause a 
disruption of the execution flow of a CPU

• There are essentially the following reasons for a disruption:

• Hardware Exception (asynchronous – can occur any time)
• A device signals that it requires attention by the CPU (see beginning of slideset)

• Software Exception (synchronous – occurs based on an instruction)
• Caused by an error: An instruction causes some error (e.g. division by zero, page fault, 

memory access violation, …)

• Caused by system call: There are instructions to trigger exceptions on purpose by the 
software (e.g. ECALL on RISC V)
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Typical Exception Handling

Independent of the source and cause, the essential procedure for handling 
exceptions is typically as follows:

• Exceptions are picked up by an exception handler (we called it interrupt service 
routine (ISR) at the beginning of the slide set) typically running at a higher privilege 
level (e.g. an exception handler by the operating system)

• The exception handler stacks registers, determines what caused the exception, reacts 
to/handles the exception, and as quickly as possible returns to the program that was 
interrupted

• Note: There is not always a return to the program the caused the execption. E.g.
when there is an access violation, a division by 0, or another error, the program is 
terminated by the OS. 
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Operating Systems

• There are many things to learn about operating systems and there is 
tight interaction between the hardware and the operating systems

→ See course “Operating Systems” on how the operating system 
manages the resources provided by the hardware
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Options for Executing Multiple Programs

• The hardware provides essentially three options to execute multiple 
programs on a computer

1. Execution of multiple programs on a single CPU

2. Execution on Multiple CPUs

3. Simultaneous Multithreading

www.iaik.tugraz.at

36



Multiple Programs on a Single CPU

Two basic approaches

• Cooperative multitasking: The programs that execute on a CPU yield 
control of the CPU to each other

• Preemptive multitasking (the common approach): The operating 
system decides which tasks runs on the CPU. This approach requires a 
timer interrupt

www.iaik.tugraz.at

37



Timer Interrupt

• Essentially all systems implement a peripheral called “Timer”, which allows 
to receive an interrupt after a given time

• Example Design:
• The timer is clocked with a fixed clock frequency
• It contains a counter that counts from a starting value down to zero and triggers an 

interrupt when reaching zero
• A memory-mapped interface allows the software to set the starting value and to 

enable the timer interrupt

• Applications:
• Multitasking
• Measuring time 
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High-Level View on Preemptive Multitasking

• The operating system maintains a list of tasks to be executed
• It schedules the first task and sets a timer interrupt
• The first task runs for a given time and is then interrupted
• In the exception handler, the OS implements a scheduler that essentially 

saves the state of the current tasks and yields control to the next task
• The second task runs for a given time and is then interrupted 
• The scheduler switches to the third task
• The scheduler switches to the fourth task
• …

→ This technique is also referred to as time-slicing (each task gets a slice of 
execution time on the CPU before there is switch to the next task)
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Multiprocessor Systems 

• During the last decades, the number of instructions per time have 
• first increased by increasing the clock frequency
• then increased by using more and more transistors to build a single processor 

• Since about 2005, there are so many transistors available on the silicon that 
there has been a major shift to implementing multiprocessor systems

• Two types:
• Symmetric Multiprocessors: 

The same core is simply instantiated multiple times
• Heterogeneous Multiprocessors: 

The system has cores with different properties (e.g. energy efficiency, performance, …)
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Multiprocessor Systems

• Basic Designs
• Multiple CPU cores
• All are connected to a shared memory

• Warehouse-Scale Computers
• Datacenters like at AWS, Microsoft, etc. have 

dedicated designs 
• Clustering 

• Important Topics
• Scheduling of processes on the different CPUs
• Handling of shared resources
• Security

41

CPU 1 CPU 2 CPU n

RAM

System Bus

….

I/O and other 
peripherals



Hardware Multithreading

• Observation:
• In a superscalar CPU design, it is likely that a single thread will not need all 

hardware resources on the different pipeline stages

• Idea:
• Instead of just executing one threads in a CPU, execute multiple threads in 

parallel → there are no dependencies between the instructions of the 
different threads and this should increase throughput

• Implementation aspects
• It is necessary to implement a CPU state (in particular register file) for every 

thread
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Simultaneous Multithreading 

There are essentially three options to switching  
between threads 

• Coarse Grained: Switch between threats upon major
stalls

• Fine Grained: Switch between threats in every clock 
cycle

• Simultaneous Multithreading: Permanently Fetch, 
decode, and execute instructions from different 
threads 
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Security Examples
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Cybersecurity Challenges Related to Processors 
and Low-Level Software are Manifold

Birds Eye Perspective on Top-Level Challenges:

• There is a program running on the system
Can the user through interacting the program make this program do things it is not 
supposed to do?

• We have different security contexts
E.g. Operating System vs. User Application, User Application vs. User Application, 
Virtual Machine vs. Host, Sandbox vs. Host, Enclave vs Operating System, … 

Can the attacker learn anything form outside his security context?
Can the attacker change anything outside his security context? 

www.iaik.tugraz.at

45



Buffer Overflow

• A computer performs one instruction after the other

• If return addresses on the stack are overwritten by user input, the 
computer will jump to a target defined by the user input

• Simple buffer overflows are detected on today’s computer systems. 
However, there are many more options of how a user can attack a 
computer system. 

• See example 07_stack_buffer_overflow.asm
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Learn Things From Outside Your Security 
Context
Isolation of program components is crucial

• You don’t want your favorite game to read your bank account

• You don’t want that browsing to a website with javascript gives the website full access to your 
phone or labtop

• You don’t want that another tenant in the cloud can read your data from a cloud server

• You might also not want that the cloud provider can access all the data you process in the cloud

• …

Note: The security contexts that need to be isolated share the same hardware and also share 
software → Attacker and Victim execute code on the same computer
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Protecting and Overcoming Isolation Bounds

Two classes for attacks:

• Software Attacks: The attacker exploits a vulnerability through a 
software interface

• Side-Channel Attacks: The attacker learns information indirectly (not 
through a classical software interface, but e.g. through timing 
behavior, power consumption 
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A Glimpse on Attacks

• Power Analysis

• Fault Analysis 

• RowHammer

• Meltdown/Spectre

• …

• Interested in more?
• TU Graz: https://graz.elsevierpure.com/de/organisations/institute-of-applied-information-

processing-and-communications-70/publications/
• Conferences: USENIX Security, IEEE Security & Privacy, NDSS, ACM CCS, …  
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Exam and Outlook
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Exam

• 90 Minutes

• Next Dates
• Feb 1, 2024

• March 19, 20024
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Content Continues in the Following Courses

• Operating Systems (Bachelor) 
Learn how to manage all the hardware resources that we have covered in this course

• Information Security (Bachelor)
Learn about cryptography and the security challenges in processors, software, and networks

• Digital System Design (Bachelor / Master)
Design your own chip in SystemVerilog and learn more about hardware design 

• Digital System Integration and Programming (Master)
Build your own hardware, write a Linux driver, put it on an FPGA → boot your own system 

• Secure Software Development (Master)
Learn how attacks are conducted and how to secure your applications

www.iaik.tugraz.at

52


	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2: Von Neumann Model
	Slide 3: Example I/O
	Slide 4: Example
	Slide 5: We Need to Add a Flag 
	Slide 6: Synchronization with Control Signals
	Slide 7: Implementing an Interface With a Control Register
	Slide 8: Implementing an Interface With a Control Register
	Slide 9: Polling Using a Control Register by the sender
	Slide 10: Control Signals
	Slide 11: Polling Example in QtRVSim
	Slide 12: Communication via a Slow Communication Interface
	Slide 13: How to handle unexpected external events?
	Slide 14: Interrupts in RISC-V
	Slide 15: Control & Status Registers (CSRs) in RISC-V
	Slide 16: The Interrupt Service Routine (ISR)
	Slide 17: Finding the Interrupt Service Routine
	Slide 18: Connecting Interrupt Sources to Interrupt Service Routines
	Slide 19: Connecting Interrupt Sources to Interrupt Service Routines (one Interrupt)
	Slide 20: Connecting Interrupt Sources to Interrupt Service Routines (one entry point)
	Slide 21: Connecting Interrupt Sources to Interrupt Service Routines (vectored approach)
	Slide 22: Connecting Interrupt Sources to Interrupt Service Routines
	Slide 23: Direct Memory Access 
	Slide 24: Direct Memory Access (DMA)
	Slide 25: What Happens Upon an Interrupt?
	Slide 26: Von Neumann Model
	Slide 27: Von Neumann Model
	Slide 28: Von Neumann Model
	Slide 29: Basic Idea of DMA
	Slide 30: Multitasking
	Slide 31: Typical Software Stack
	Slide 32: Privilege Levels Provided by the Hardware
	Slide 33: Interrupts, Exceptions, Traps
	Slide 34: Typical Exception Handling
	Slide 35: Operating Systems
	Slide 36: Options for Executing Multiple Programs
	Slide 37: Multiple Programs on a Single CPU
	Slide 38: Timer Interrupt
	Slide 39: High-Level View on Preemptive Multitasking
	Slide 40: Multiprocessor Systems 
	Slide 41: Multiprocessor Systems
	Slide 42: Hardware Multithreading
	Slide 43: Simultaneous Multithreading 
	Slide 44: Security Examples
	Slide 45: Cybersecurity Challenges Related to Processors and Low-Level Software are Manifold
	Slide 46: Buffer Overflow
	Slide 47: Learn Things From Outside Your Security Context
	Slide 48: Protecting and Overcoming Isolation Bounds
	Slide 49: A Glimpse on Attacks
	Slide 50: Exam and Outlook
	Slide 51: Exam
	Slide 52: Content Continues in the Following Courses

