
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 11: Interrupts and Multitasking

Von Neumann Model

2

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

Example I/O

www.iaik.tugraz.at

3

• The I/O interface that we discussed at the
beginning of the lecture was idealized
debug interface (data was always valid)

• In practice there is the following challenge:

• The CPU executes one instruction after the
other.

• How should it know when the input is valid? Is
it valid always (in every clock cycle)?

Example

• Assume an input port of a computer is set to a value 1 in one clock
cycle

• It is still 1 in the next clock cycle

• Does this mean this is the “same” 1 or does this mean that there is a
“second” 1?

• How should the computer know?

www.iaik.tugraz.at

4

We Need to Add a Flag

www.iaik.tugraz.at

5
	

	

You've Got MailNo Mail for You

Synchronization with Control Signals

• On real communication channels, data is not always ready

• We need synchronization with control signals

• There exist different protocols and standards.
• Serial protocols: RS232, SPI, USB, SATA, . . .
• Parallel protocols: PATA/IDE, IEEE 1284 (Printer), . . .

• We use a simple interface with few control signals to illustrate this
• 8-bit data port
• Simple valid/ready flow-control
• Registers (memory mapped)

• 0x7D0 (control register)
• 0x7D4 (data register)

www.iaik.tugraz.at

6

Implementing an Interface With a Control
Register

www.iaik.tugraz.at

7

Receiver

(The Sofware)
The Sender

Implementing an Interface With a Control
Register

www.iaik.tugraz.at

8

Receiver

(The Sofware)
The Sender

(1) Sender waits until valid bit is cleared (set to 0)

(2) Sender sets the data value

(3) Sender sets the valid bit

Note:
Sender and Receiver

can operate at
different speeds

Example of a basic protocol:

(4) Receiver (the software) waits until valid bit is set

(5) Receiver reads the data

(6) Receiver clears the valid bit

Polling Using a Control Register by the sender

www.iaik.tugraz.at

9

Control Signals

• There is a wide range of options for implementing communication
between entities (FSMs, software, humans, …) of with different
speeds

• However, in all cases, there needs to be signals to ensure that
• The sender knows that the resource (bus, register, …) is available

• The receiver knows that there is valid input

• The sender knows that the receiver has received the signal (acknowledge)

www.iaik.tugraz.at

10

Polling Example in QtRVSim

• https://comparch.edu.cvut.cz/qtrvsim/app/

• See examples in directory con11.01_QtRVSim_IO:

• Basic I/O example:
• 01_playing_with_knobs.S

• Polling example:
• 02_polling.S

www.iaik.tugraz.at

11

https://comparch.edu.cvut.cz/qtrvsim/app/

Communication via a Slow Communication
Interface

• Polling is highly inefficient: the CPU is stuck in a loop until e.g.
• an I/O peripheral sets a ready signal
• a timer has reached a certain value
• the user has pressed a key
• ….

• Alternative
• CPU keeps executing some useful code in the first place
• We use concept of interrupts to react to “unexpected” events
• Basic idea: Instead of waiting for an event, we execute useful code and then let an

event trigger a redirection of the instruction stream

www.iaik.tugraz.at

12

How to handle unexpected external events?

• We add an input signal to the CPU called “interrupt”.
• An external source can activate this input signal “interrupt”.
• After executing an instruction, the CPU checks for the value of this input

signal “interrupt” before it fetches the next instruction.
• If the signal “interrupt” is active, the next instruction to be executed is the

first instruction of the “interrupt-service routine”.
• After “handling” the interrupt by executing the interrupt-service routine,

the CPU returns to the interrupted program.

• Interrupts are like doing a function call that is not triggered by a caller, but
by an external event

13

Interrupts in RISC-V

• Hardware Aspects
• External interrupt is an input signal to the processor core
• Control & Status registers (CSRs) for interrupt configuration (e.g. mie, mtvec, mip, …)
• Additional instructions for interrupt handling (mret)
• Dedicated interrupt controllers on bigger processors

• Software Aspects
• When an interrupt occurs, the program execution is interrupted
• Functions have to be provided to handle interrupts → Interrupt Service Routines

(ISR)
• Software needs to configure and enable interrupts
• Software has to preserve the interrupted context

→ Interrupt entry points are typically written in assembly

www.iaik.tugraz.at

14

Control & Status Registers (CSRs) in RISC-V

• We so far only considered memory-mapped peripherals whose
registers can be accessed via standard load and store instructions

• RISC-V also features dedicated so called “Control & Status Registers”
• The ISA allows addressing 4096 registers (32 bit each)

• Dedicated instructions allow to read and write these registers: CSRRW, CSRRS,
CSRRC, CSRRWI, CSRRSI, CSRRCI

www.iaik.tugraz.at

15

The Interrupt Service Routine (ISR)

• Entering the ISR
• Upon an interrupt, the processor

• jumps to a location in memory specified by the mtvec CSR.
• automatically stores the previous location into mepc CSR.

• Executing the ISR
• The ISR can execute arbitrary code; However, the processor context (program

counter, register) needs to have exactly the same values when returning to the
interrupted code → “From the view of the interrupted program, the execution after
the interrupt continues as if nothing had happened”

• Leaving the ISR
• Upon the execution of the mret instruction, the processor

• returns to the original location stored in the mepc CSR

www.iaik.tugraz.at

16

Finding the Interrupt Service Routine

• Two approaches are common:
• Single entrypoint for all interrupts.

• the ISR has to determine what caused the interrupt and then handles the corresponding interrupt

• Multiple entrypoints for different interrupts organized in a table (vectored interrupts)
• A table defines the entry point for different causes of interrupts
• E.g. each interrupt vector table entry has 4 bytes

• Interrupt cause 0 leads to a jump to mtvec
• Interrupt cause 1 leads to a jump to mtvec+4
• Interrupt cause 2 leads to a jump to mtvec+8
• …

→just enough space to place a single jal instruction to the actual ISR handler code at
each entry location

• RISC-V permits both approaches

www.iaik.tugraz.at

17

Connecting Interrupt Sources to Interrupt
Service Routines

www.iaik.tugraz.at

18

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

There are many options for connecting
interrupt sources to interrupt service routines

Code handling
source 0

Code handling
source 1

Code handling
source 2

Code handling
source …

Connecting Interrupt Sources to Interrupt
Service Routines (one Interrupt)

www.iaik.tugraz.at

19

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• The ISR at the entry point needs to check the
status of the interrupt sources in order to find
out which code shall be executed to handle the
interrupt

Code handling
source 0

Code handling
source 1

Code handling
source 2

Code handling
source …

Connecting Interrupt Sources to Interrupt
Service Routines (one entry point)

www.iaik.tugraz.at

20

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• The ISR at the entry
point based on the
interrupt number
determines the code
that shall be
executed to handle
the interrupt

Code handling
source 0

Code handling
source 1

Code handling
source 2

Code handling
source …

Interrupt 1

Interrupt 2

Interrupt 3

Connecting Interrupt Sources to Interrupt
Service Routines (vectored approach)

www.iaik.tugraz.at

21

Source 0
(e.g. keyboard)

Source 1
(e.g. timer)

Source 2
…

…
…

Interrupt 0 Entry point 0

• Vectored handling with different entry points for different interrupts

Code handling
source 0

Code handling
source 1

Code handling
source 2

Code handling
source …

Interrupt 1

Interrupt 2

Interrupt …

Entry point 1

Entry point 2

Entry point …

Connecting Interrupt Sources to Interrupt
Service Routines

• In practice all kinds of combinations are possible for interrupt
handling

• There is also the option for having interrupts with different priorities

• Dedicated interrupt controllers are available on larger systems to
handle priorities, entry points, nested interrupts, …

www.iaik.tugraz.at

22

Direct Memory Access

23

Direct Memory Access (DMA)

• Observe:
• I/O typically runs at lower speeds than the CPU
• With interrupts we a mechanisms that prevents the need for polling
• The CPU is directly notified when data is available at a peripheral

• Interrupts are useful for communication with devices like
• Network interfaces
• Harddrives
• USB
• …

This is nice, but let’s look at the job of the CPU upon receiving an interrupt.

www.iaik.tugraz.at

24

What Happens Upon an Interrupt?

• When a CPU receives data from a peripheral typically needs to do two
things:

1. The CPU first copies the data from the peripheral to the memory

2. The CPU then works with the data in the memory to perform specific tasks

Note:
• The first task is a very simple task that is just a sequence of load and store

operations;
• This might can a long sequence in case of larger blocks of data that need to

be moved → It’s a loop that continuously loads data from a peripheral and
that then stores to memory

www.iaik.tugraz.at

25

Von Neumann Model

26

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

This is is very simple – should the CPU do this or can’t something else do this?

Von Neumann Model

27

Processing Unit

Control Unit Bus
System Output

(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

DMA

• Idea: Add a DMA controller to the system that
interacts with peripherals and copies data from
peripherals to memory and vice versa

• Advantage: The CPU can do more useful stuff
while the data is copied

Von Neumann Model

28

Processing Unit

Control Unit Bus
System Output

(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

DMA

Note: Now the CPU is not the only one any more
controlling the bus

→ There is need for arbitration

Basic Idea of DMA

• Goal: Offload memory transfer tasks from the CPU to DMA controller

• Implementation
• CPU configures DMA control with the following basic paramters:

• Where to read from (source address)
• Where to write to (destination address)
• Amount of data to be transferred

• After completion of the transfer, the DMA triggers an interrupt

• Implementation variants:
• There are many variants of how to implement DMA (big differences between small

microcontrollers and server CPUs)
• DMA can be a dedicated peripheral or integrated directly into relevant peripherals
• There are different variants on how to avoid bus contentions: dedicated additional buses,

different types of arbitration

www.iaik.tugraz.at

29

Multitasking

30

Typical Software Stack

• We have powerful CPUs and typically not just have one program that we
would like to execute → we would like multiple programs

• We need a resource manager that takes care of
• Which program executed when using what resources
• Context switching (efficiently switching from one program to the other)
• Managing the sharing all kinds of resources (CPU, memory, hard drive, I/O, …)

between the program
• …

→ All this done by the operating system (from small embedded OS to
Linux/Windows)

www.iaik.tugraz.at

31

Privilege Levels Provided by the Hardware

• Clearly not every program should be able to do everything. The operating
system should have different rights

• Computers have typically at least two modes:
• User Mode: A mode for user applications providing only limited access rights to

hardware resources
• Supervisor Mode: A mode for the operating system providing full access

• RISC-V defines three modes: User mode (U), Supervisor Mode (S), and
Machine Mode (M)

• Switching between different privilege levels is done via “software
exceptions”

www.iaik.tugraz.at

32

Interrupts, Exceptions, Traps

• There are different wordings on different system for events that cause a
disruption of the execution flow of a CPU

• There are essentially the following reasons for a disruption:

• Hardware Exception (asynchronous – can occur any time)
• A device signals that it requires attention by the CPU (see beginning of slideset)

• Software Exception (synchronous – occurs based on an instruction)
• Caused by an error: An instruction causes some error (e.g. division by zero, page fault,

memory access violation, …)

• Caused by system call: There are instructions to trigger exceptions on purpose by the
software (e.g. ECALL on RISC V)

www.iaik.tugraz.at

33

Typical Exception Handling

Independent of the source and cause, the essential procedure for handling
exceptions is typically as follows:

• Exceptions are picked up by an exception handler (we called it interrupt service
routine (ISR) at the beginning of the slide set) typically running at a higher privilege
level (e.g. an exception handler by the operating system)

• The exception handler stacks registers, determines what caused the exception, reacts
to/handles the exception, and as quickly as possible returns to the program that was
interrupted

• Note: There is not always a return to the program the caused the execption. E.g.
when there is an access violation, a division by 0, or another error, the program is
terminated by the OS.

www.iaik.tugraz.at

34

Operating Systems

• There are many things to learn about operating systems and there is
tight interaction between the hardware and the operating systems

→ See course “Operating Systems” on how the operating system
manages the resources provided by the hardware

www.iaik.tugraz.at

35

Options for Executing Multiple Programs

• The hardware provides essentially three options to execute multiple
programs on a computer

1. Execution of multiple programs on a single CPU

2. Execution on Multiple CPUs

3. Simultaneous Multithreading

www.iaik.tugraz.at

36

Multiple Programs on a Single CPU

Two basic approaches

• Cooperative multitasking: The programs that execute on a CPU yield
control of the CPU to each other

• Preemptive multitasking (the common approach): The operating
system decides which tasks runs on the CPU. This approach requires a
timer interrupt

www.iaik.tugraz.at

37

Timer Interrupt

• Essentially all systems implement a peripheral called “Timer”, which allows
to receive an interrupt after a given time

• Example Design:
• The timer is clocked with a fixed clock frequency
• It contains a counter that counts from a starting value down to zero and triggers an

interrupt when reaching zero
• A memory-mapped interface allows the software to set the starting value and to

enable the timer interrupt

• Applications:
• Multitasking
• Measuring time

www.iaik.tugraz.at

38

High-Level View on Preemptive Multitasking

• The operating system maintains a list of tasks to be executed
• It schedules the first task and sets a timer interrupt
• The first task runs for a given time and is then interrupted
• In the exception handler, the OS implements a scheduler that essentially

saves the state of the current tasks and yields control to the next task
• The second task runs for a given time and is then interrupted
• The scheduler switches to the third task
• The scheduler switches to the fourth task
• …

→ This technique is also referred to as time-slicing (each task gets a slice of
execution time on the CPU before there is switch to the next task)

www.iaik.tugraz.at

39

Multiprocessor Systems

• During the last decades, the number of instructions per time have
• first increased by increasing the clock frequency
• then increased by using more and more transistors to build a single processor

• Since about 2005, there are so many transistors available on the silicon that
there has been a major shift to implementing multiprocessor systems

• Two types:
• Symmetric Multiprocessors:

The same core is simply instantiated multiple times
• Heterogeneous Multiprocessors:

The system has cores with different properties (e.g. energy efficiency, performance, …)

www.iaik.tugraz.at

40

Multiprocessor Systems

• Basic Designs
• Multiple CPU cores
• All are connected to a shared memory

• Warehouse-Scale Computers
• Datacenters like at AWS, Microsoft, etc. have

dedicated designs
• Clustering

• Important Topics
• Scheduling of processes on the different CPUs
• Handling of shared resources
• Security

41

CPU 1 CPU 2 CPU n

RAM

System Bus

….

I/O and other
peripherals

Hardware Multithreading

• Observation:
• In a superscalar CPU design, it is likely that a single thread will not need all

hardware resources on the different pipeline stages

• Idea:
• Instead of just executing one threads in a CPU, execute multiple threads in

parallel → there are no dependencies between the instructions of the
different threads and this should increase throughput

• Implementation aspects
• It is necessary to implement a CPU state (in particular register file) for every

thread

www.iaik.tugraz.at

42

Simultaneous Multithreading

There are essentially three options to switching
between threads

• Coarse Grained: Switch between threats upon major
stalls

• Fine Grained: Switch between threats in every clock
cycle

• Simultaneous Multithreading: Permanently Fetch,
decode, and execute instructions from different
threads

www.iaik.tugraz.at

43Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Security Examples

44

Cybersecurity Challenges Related to Processors
and Low-Level Software are Manifold

Birds Eye Perspective on Top-Level Challenges:

• There is a program running on the system
Can the user through interacting the program make this program do things it is not
supposed to do?

• We have different security contexts
E.g. Operating System vs. User Application, User Application vs. User Application,
Virtual Machine vs. Host, Sandbox vs. Host, Enclave vs Operating System, …

Can the attacker learn anything form outside his security context?
Can the attacker change anything outside his security context?

www.iaik.tugraz.at

45

Buffer Overflow

• A computer performs one instruction after the other

• If return addresses on the stack are overwritten by user input, the
computer will jump to a target defined by the user input

• Simple buffer overflows are detected on today’s computer systems.
However, there are many more options of how a user can attack a
computer system.

• See example 07_stack_buffer_overflow.asm

www.iaik.tugraz.at

46

Learn Things From Outside Your Security
Context
Isolation of program components is crucial

• You don’t want your favorite game to read your bank account

• You don’t want that browsing to a website with javascript gives the website full access to your
phone or labtop

• You don’t want that another tenant in the cloud can read your data from a cloud server

• You might also not want that the cloud provider can access all the data you process in the cloud

• …

Note: The security contexts that need to be isolated share the same hardware and also share
software → Attacker and Victim execute code on the same computer

www.iaik.tugraz.at

47

Protecting and Overcoming Isolation Bounds

Two classes for attacks:

• Software Attacks: The attacker exploits a vulnerability through a
software interface

• Side-Channel Attacks: The attacker learns information indirectly (not
through a classical software interface, but e.g. through timing
behavior, power consumption

www.iaik.tugraz.at

48

A Glimpse on Attacks

• Power Analysis

• Fault Analysis

• RowHammer

• Meltdown/Spectre

• …

• Interested in more?
• TU Graz: https://graz.elsevierpure.com/de/organisations/institute-of-applied-information-

processing-and-communications-70/publications/
• Conferences: USENIX Security, IEEE Security & Privacy, NDSS, ACM CCS, …

www.iaik.tugraz.at

49

https://graz.elsevierpure.com/de/organisations/institute-of-applied-information-processing-and-communications-70/publications/
https://graz.elsevierpure.com/de/organisations/institute-of-applied-information-processing-and-communications-70/publications/

Exam and Outlook

50

Exam

• 90 Minutes

• Next Dates
• Feb 1, 2024

• March 19, 20024

www.iaik.tugraz.at

51

Content Continues in the Following Courses

• Operating Systems (Bachelor)
Learn how to manage all the hardware resources that we have covered in this course

• Information Security (Bachelor)
Learn about cryptography and the security challenges in processors, software, and networks

• Digital System Design (Bachelor / Master)
Design your own chip in SystemVerilog and learn more about hardware design

• Digital System Integration and Programming (Master)
Build your own hardware, write a Linux driver, put it on an FPGA → boot your own system

• Secure Software Development (Master)
Learn how attacks are conducted and how to secure your applications

www.iaik.tugraz.at

52

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2: Von Neumann Model
	Slide 3: Example I/O
	Slide 4: Example
	Slide 5: We Need to Add a Flag
	Slide 6: Synchronization with Control Signals
	Slide 7: Implementing an Interface With a Control Register
	Slide 8: Implementing an Interface With a Control Register
	Slide 9: Polling Using a Control Register by the sender
	Slide 10: Control Signals
	Slide 11: Polling Example in QtRVSim
	Slide 12: Communication via a Slow Communication Interface
	Slide 13: How to handle unexpected external events?
	Slide 14: Interrupts in RISC-V
	Slide 15: Control & Status Registers (CSRs) in RISC-V
	Slide 16: The Interrupt Service Routine (ISR)
	Slide 17: Finding the Interrupt Service Routine
	Slide 18: Connecting Interrupt Sources to Interrupt Service Routines
	Slide 19: Connecting Interrupt Sources to Interrupt Service Routines (one Interrupt)
	Slide 20: Connecting Interrupt Sources to Interrupt Service Routines (one entry point)
	Slide 21: Connecting Interrupt Sources to Interrupt Service Routines (vectored approach)
	Slide 22: Connecting Interrupt Sources to Interrupt Service Routines
	Slide 23: Direct Memory Access
	Slide 24: Direct Memory Access (DMA)
	Slide 25: What Happens Upon an Interrupt?
	Slide 26: Von Neumann Model
	Slide 27: Von Neumann Model
	Slide 28: Von Neumann Model
	Slide 29: Basic Idea of DMA
	Slide 30: Multitasking
	Slide 31: Typical Software Stack
	Slide 32: Privilege Levels Provided by the Hardware
	Slide 33: Interrupts, Exceptions, Traps
	Slide 34: Typical Exception Handling
	Slide 35: Operating Systems
	Slide 36: Options for Executing Multiple Programs
	Slide 37: Multiple Programs on a Single CPU
	Slide 38: Timer Interrupt
	Slide 39: High-Level View on Preemptive Multitasking
	Slide 40: Multiprocessor Systems
	Slide 41: Multiprocessor Systems
	Slide 42: Hardware Multithreading
	Slide 43: Simultaneous Multithreading
	Slide 44: Security Examples
	Slide 45: Cybersecurity Challenges Related to Processors and Low-Level Software are Manifold
	Slide 46: Buffer Overflow
	Slide 47: Learn Things From Outside Your Security Context
	Slide 48: Protecting and Overcoming Isolation Bounds
	Slide 49: A Glimpse on Attacks
	Slide 50: Exam and Outlook
	Slide 51: Exam
	Slide 52: Content Continues in the Following Courses

