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The Need for Speed

2

Minimize the time  
access time, i.e. the 

between receiving an 
address and providing 

data 

Maximize the number 
of executed instructions 

per time

MemoryCPU

• The speed of the CPU and the memory needs to be match

• We have learned in the previous chapter how to build a typical memory 
system → we now look at the CPU



Goal

• The goal of processor design is maximizing the executed number of 
instructions per time

• This is determined by two factors
• The needed clock cycles per instruction (CPI) 

• The clock frequency, which determines the number of cycles per second

• The execution time for a program with N instructions is N * CPI * (1/f)
• f is the clock frequency (1/f is the clock period)

• CPI is the average number of cycles per instruction
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High-Level Overview (Single Cycle Datapath)
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Performance of the Single-Cycle Design

• Each instruction takes exactly one cycle to execute

• The maximum clock frequency is defined by the slowest instruction of 
the design 
• Remember: the critical path is the longest combinational path in the design. 

• The critical path of the slowest instruction therefore defines the clock 
frequency of our processor
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Critical Path
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Critical Path
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Critical Path
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How can we improve the 
performance?

Note: making the building blocks (memories, logic gates, …) of the 
processor faster, won’t make us significantly faster → we need a differ 

design approach



Basic Idea of Multicycle Architectures

• Cut the operations that are needed for one instruction into more fine-
granular operations

• Each instruction is a multicycle instruction and takes as many cycles 
as needed to perform the actions defined by the instruction

→Instructions lead to different numbers of operations (and therefore take 
longer / shorter depending on their complexity)

→The operations that are done in a clock cycle are less complex and the clock 
frequency can be increased
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High-Level Overview (Single Cycle Datapath)
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Observations (Part 1)

Fetch → Decode → Execute →Memory →Write Back

• We now have the situation that the “memory part” and the “write 
back” only needs to be done for those operations that need it
• An add instruction does not need a memory access
• A store instruction does not need a write back to register file 

• We can also increase the clock frequency because we have smaller 
operations in each cycle.

• BUT overall, this is not going to give us a significant speed up
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Observations (Part 2)

Fetch → Decode → Execute →Memory →Write Back

• At a given moment of time, most of the hardware is idle 
• When we do a fetch, all the hardware for decode, execute, memory, write back is not 

doing anything productive (its waiting for the next input)

• Goal / Idea: 
• We want more concurrency (if all circuit parts “work” (not idle), more work is done 

per clock cycle)
• Concretely

• While we decode the current instruction, we could already fetch the next instruction 
• While we execute the current instruction, we could decode the next instruction and we could 

fetch the instruction after the next
• …
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Pipelining



Pipelining – The Basic Idea

• Pipelining is something that is not only known in computers 
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Assembly lines in car industry Food preparation pipeline in the kitchen



Pipelining – The Basic Idea

• Idea:
• Divide instruction processing into different stages

• Don’t complete the execution of one instruction before starting the execution of 
the next instruction

• Process a different instruction in each stage (e.g. Stage 3 processes instruction i, 
Stage 2 processes instruction i-1, …) → the consecutive instructions are executed 
in consecutive stages

• Benefit: 
• “We use all hardware resources in each clock cycle”  → Increased instruction 

throughput 
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Illustration for four simple instructions 
without memory access
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The Laundry Analogy 

• Speedup: 
• 7 hours instead of 16 hours in case of 

four loads

• One load of washing every hour in case 
of non-stop washing 

• Observe:
• The processing of the stages is 

sequentially dependent (we can’t 
change sequence)

• Each stage uses different resources (no 
resource dependency between stages)

• The processing of the washing loads is 
independent of each other (we can do 
any sequence of the 4 washing loads)
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Properties of an Ideal Pipeline

We are given the task to perform set of operations

Ideal setup for pipelining:
• The operations are identical: We need to repeat the same operations over 

and over again (e.g. wash 10.000 loads of cloths)

• The operations are independent: We can perform the operations in any 
sequence we want

• Uniform partitioning into suboperations is possible: Each operation is can be 
divided into suboperations that take the same amount of time 
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Ideal Pipelining for Processors
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combinational logic (F,D,E,M,W)

Critical path: T psec
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Figure by Onur Mutlu



More Realistic Pipeline: Throughput
• Non-pipelined version with delay T 

BW = 1/(T+S) where S = register delay

• k-stage pipelined version
BWk-stage = 1 / (T/k + S )
BWmax = 1 / (1 gate delay + S )

T ps

T/k
 ps

T/k
 ps

 

Register delay reduces throughput

(switching overhead between stages)

Figure by Onur Mutlu



More Realistic Pipeline: Cost
• Nonpipelined version with combinational cost G 

Cost = G + L where L = register cost

• k-stage pipelined version

Costk-stage = G + L*k 

G gates

G/k G/k

Registers increase hardware cost

Figure by Onur Mutlu



Pipelining Instruction 
Processing
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The Instruction Processing

1. Instruction Fetch (IF)

2. Instruction Decode & register read (ID)

3. Execute or calculate address (EX)

4. Memory access (MEM)

5. Writeback of result (WB)
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Instruction Pipeline Throughput (non-ideal 
example)

• 680ps without 
pipelining

• With a 5-stage 
pipeline, one 
instruction every 
200ps

• Speedup is 3,4 
instead of 5 in the 
ideal setup
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Control Signals in a Pipeline

• For every instruction we need to 
provide the same control signals as in 
the single-cycle version
BUT
they need to provided to the right 
stage at the right time

• Two options:
1. Decode the control signals once using 

the same decoder as in a single-cycle 
system and buffer the signals (see 
figure)

2. Carry relevant parts of the instruction 
word through the pipeline and decode 
locally within the different stages
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Does Pipelining Really Work so Nicely?



Remember the Properties of an Ideal Pipeline

Ideal setup for pipelining:
• The operations are identical: We need to repeat the same operations over 

and over again (e.g. wash 10.000 loads of cloths)

• The operations are independent: We can perform the operations in any 
sequence we want

• Uniform partitioning into suboperations is possible: Each operation is can be 
divided into suboperations that take the same amount of time 
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Reality

• The operations are identical → NO

We need to force different instruction through the pipeline architecture

• The operations are independent → NO 

Instructions have dependencies (e.g. operand dependencies) and we need to resolve 
dependencies and ensure that we compute the result correctly

• Uniform partitioning into suboperations is possible → NO

We need to handle different latencies on different pipeline stages (e.g. caused by 
multi-cycle suboperations)

www.iaik.tugraz.at

66



The Challenge of Pipeline Design

• Goal: Keep the pipeline moving, full, and correct under all 
circumstances

• Approach: Add logic (“intelligence”) around the data path to achieve 
the goal. This logic copes with dependencies between instructions, 
different latencies, exceptions, …

• What we want to prevent is a so-called pipeline stall
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Pipeline Stall

• Pipeline Stall: Any condition that prevents the pipeline from moving, i.e. 
any condition that prevents that all instructions can move from the current 
stage to the next stage in the next clock cycle

• A stall is necessary, if on any pipeline stage either a needed hardware 
resource or data is not available (Think of a car assembly line – you have to 
stall the line, if it happens that on a given pipeline stage, a machine is not 
available, or if there is no car to work on)

• Resource not available: e.g. a multi-cycle operation blocks a needed resource

• Data not available: e.g. one instruction computes a result that is needed by the next 
instruction
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Data Dependence Handling



Read-After-Write Dependency

r3          r1  op  r2            Read-after-Write  
r5   r3  op  r4  (RAW)

When an instruction tries to access a registers that has not yet been 
written back to the register file, this is called a “data hazard”.



RAW Dependence Handling

Which one of the following flow dependences lead to 
conflicts in the 5-stage pipeline?
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Figure by Onur Mutlu



Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence
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• Realizing a stall
• disable PC and IF/ID registers; ensure stalled instruction stays in its stage
• Insert “invalid” instructions/nops into the stage following the stalled one (called “bubbles”)
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Dependence Detection

• Example Technique: Scoreboarding

• Idea:

• Associate a Valid bit with each register of the register file

• When an instruction is decoded that is writing to a register, it resets the 
corresponding Valid bit

• An instruction in Decode stage checks if all its source registers are Valid
• Yes: No need to stall… No dependence

• No: Stall the instruction
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Dependence Handling after Detection

• Option 1: Stall the pipeline

• Option 2: Stall the pipeline only when necessary → data 
forwarding/bypassing
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Data Forwarding/Bypassing

• Challenge: An instruction (the consumer) must wait in decode stage 
until the producer instruction writes its value in the register file

• Goal: We do not want to stall the pipeline unnecessarily

• Observation/Idea: The data value that is needed by the consumer is 
already available in a later pipeline stage → we can get it from there 
instead of the register file

• Benefit: The consumer can move in the pipeline until the point the 
value can be supplied → less stalling
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RAW Data Dependence Example

• The first instructions writes a register (s8) and next instructions read 
this register => read after write (RAW) dependence. 
• add writes into s8 in cycle 5

• sub requires to read s8 on cycle 3

• or requires to read s8 on cycle 4

• and requires to read s8 in cycle 5
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Data Forwarding
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• Check if source register of the instruction transitioning to the execute 
stage matches the destination register of an instruction in the Memory or 
Writeback stage. 

• If so, forward result → Data values are supplied to dependent instruction 
as soon as it is available



Implementing Data
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• Forwarding works to resolve some RAW data dependences
BUT
there are cases when a stall cannot be avoided

• Example:
• The lw instruction does not finish reading data until the end of the 

memory stage → a stall is necessary until the memory read completes
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Watch the Operations of the Hardware while 
executing your code - QTRVSIM

Visit https://comparch.edu.cvut.cz/qtrvsim/app/ or use qtrvsim in your 
virtual machine

in order to visualize how a sequence 
of instructions becomes executed
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Note: This simulation 
performs incorrect 

computations in case 
of hazards!!!  

This simulation has a 
hazard unit and 

implements data 
forwarding

https://comparch.edu.cvut.cz/qtrvsim/app/


Data Forwarding Paths in QTRVSIM 
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Examples

• Simulate the code examples in the directory

con10.01_QtRVSim_pipeline_examples

• Use the examples as starting point and change code to see stalling 
and forwarding
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Control Hazards



Control Hazards

• To keep our pipeline full, we need fetch a new instruction in every cycle →
we always need know what instruction needs to be fetched next.

• In linear code sequences, the next instruction to be fetched is simply the 
one the is located at the next memory address

• In case, there occur control-flow instructions (e.g. beq, bne, …), there are 
two possible execution paths (“branch taken” vs. “branch not taken”) and 
this causes a so-called “control hazard”

• A control hazard occurs when the decision of what instruction to be fetch 
next is not available by the time when the fetch takes place

www.iaik.tugraz.at

90



When Do We Know the Branch Decision?
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• To keep the pipeline full, we would need to fetch the next instruction in cycle 2

• We determine the branch target during the execution stage in clock cycle 3 (there 
we add the branch offset to the program counter and determine the new PC) → 
we can fetch the next instruction only in clock cycle 4

• This would mean for every branch, the pipleline would stall for 2 clock cycles
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Can We Take the Decision Earlier?

• Idea: We could try to do the comparison of the of the registers (branch 
decision) and the calculation of the new branch target already during the 
decode stage. 

• “Early Branch Resolution” is in principle possible, BUT
• This would imply the need for additional forwarding paths (registers that determine 

the branch decision my not yet be in the register file)
• There may still be stalls that are unavoidable: e.g. 

• a branch that directly follows the computation of a register that determines the branch target
• a branch after a load instruction that determines the branch decision

→ “Early Branch Resolution” reduces the performance penalty of branches, 
but we can do better
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Branch Prediction

• Idea: 
• Instead of waiting for the decision, we simply try to correctly predict whether 

a branch is taken or not.

• Properties:
• In case our prediction is correct, there is no performance penalty

• In case our prediction is incorrect, we need to flush the pipeline
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Example

• Let’s do the default assumption that branches are not taken → we simply 
keep fetching the instructions following the branch

• Properties: Stall of 2 cycles if the assumption does not hold (called 
“misprediction penalty”); No stall if the assumption holds
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Dynamic Branch Prediction

• Observe:
• Making a static assumption, like “conditional branches will always be taken” 

or “conditional branches will always be not taken” are bad predictors
• Consider a loop: there are two programming options 

• A conditional branch can be at the end of the loop and keeps jumping back to the 
beginning of the loop (“branch taken” occurs frequently)

• A conditional branch can be used to exit a while loop with an unconditional branch at the 
end of the loop (“branch not taken” occurs frequently)

• Idea: 
• Implement a “branch predictor” that makes a dynamic prediction for every 

branch on whether it will be taken or not (Basic idea: “the hardware learns 
the behavior of the software and predicts based on past behavior”)
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Branch Target Buffer

• Motivation:
• To be able to make predicts about a specific branch, we need to story information about its 

history

• Implementation:
• We can’t keep a table to store the outcomes of all branches from all potential addresses

• Typically, a mapping function based on the lower bits of the address and additional context 
information is used to index a table storing information about the branching history 

• Size of the table, the indexing of the table, and the information that is stored vary for 
different architectures. A trade-off needs to be made between prediction accuracy and 
implementation costs 

(Note: The deeper the pipeline, the higher is the cost of misprediction and the higher invests 
are made into increasing the success rate of the prediction)
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The Simplest Branch Predictor

• The simplest branch predictor is to store for a given branch if it was 
taken or not during the last execution (1 bit storage)

• Performance in example loop: misprediction during first and last loop
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addi s1, zero, 0     # s1 = sum

  addi s0, zero, 0     # s0 = i

  addi t0, zero, 10    # t0 = 10

For:                   # for (i=0; i<10; i=i+1)

  bge  s0, t0, Done

  add  s1, s1, s0      # sum = sum + i

  addi s0, s0, 1       # i = i + 1

  j    For

Done:

Note on misprediction in first loop:

A loop in a function is typically not 
only executed once (a function 
containing a loop is typically called 
several times. 

Whenever the function is called, the 
branch predictor remembers during 
the last execution, the branch was 
taken → this leads to a misprediction 
during the first loop



2-Bit Branch Predictor

• 4 states encoded in 2 bit

• Only mispredicts the last branch of the loop (the branch exiting the loop)

• Solves the problem of the 1-bit branch predictor: In settings where the 
loop is executed multiple times, the branch is predicted correctly during 
the first loop
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Additional Techniques in Current CPUs

We have now covered basic mechanisms for resolving data and control 
hazards, but current CPUs implement many more techniques to 
increase instruction throughput

We discuss two additional techniques

present in all large mainstream processors:

• Superscalar Designs

• Out-Of-Order Execution
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Basic Idea of Superscalar Designs

• Motivation:
• In order to speed up a pipelined design, we can introduce more and more 

pipeline stages (More pipeline stages → shorter critical path per stage →
higher clock frequency)

• This can’t be done to an arbitrary level (remember: we need to balance the 
pipeline stages), and typical CPUs have roughly 10 to 20 pipeline stages  

• Idea:
• Instead of just processing one instruction on each stage, we could process 

multiple instructions in each stage → implement multiple units for decoding, 
execution, … and therefore

• We can issue multiple instructions per cycle (IPC)
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Multiple-Issue Processors

Multiple-Issue processors handle multiple instructions in each clock 
cycle, e.g. A dual issue-processor can handle two instructions on each 
stage
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Ideal Example

• In case there are no dependencies, it is possible to execute two 
instructions per cycle
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Example With Dependencies 
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Note: we can’t 
fill this issuing 
slot due to the 

data dependence

Note: we need to 
do stalling and 
forwarding just 

like in the single-
issue design



Multiple-Issue Processors

• The figure summarizes the pipeline stages in a dual-issue processor

• Note:
When scaling further up it might 
not be useful to replicate the entire
ALU and all the ports for the memory stage

Not every instruction requires all functional
units of the execute stage or the option for 
memory read/write 

→Designs in practice have specific 

compositions of functional units of the 

different stages
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Multi-Cycle Execution

• The execution stage may contain different functional units with 
different execution times 

• An execution stage may contain two units for add/sub, one unit for 
multiplication, a unit for floating point (FP) operations, … 

• Note: A simple add/sub takes less time than a multiplication and a FP 
operation can take even more time
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Challenge

• Situation
• Superscalar CPUs can fetch multiple instructions in each cycle 

• The instructions will then then be executed by the corresponding execution units

• Challenge
• There will be data dependencies between the instructions that stall instructions

• There will be multi-cycle instructions that also delay subsequent instructions 

→ Significant delays can occur because of instructions that take longer to 
complete (e.g. a load from memory) and/or data dependencies
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Example

• Assume the following two instructions are executed on the same 
issuing path
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F D E W

F D E WE E EMUL   R3  R1, R2

ADD   R7  R5, R6

We can do the fetch 
because the fetch stage 

is available in cycle 2 We can decode because 
the decode stage is 
available in cycle 3 

We can execute the add 
because the MUL 

instruction occupies the 
multiplier and not the 

add/sub unit

The writeback stage is 
available in this clock cycle. 

Are we allowed to perform 
the writeback of the ADD 

instruction before the 
writeback of the MUL 

instruction?



The Hardware-Software Contract

• In case we would complete the writeback of the ADD before the MUL, we 
would create an invalid state architectural state

• The ISA defines that instructions are executed one after the other

• Imagine that you as a programmer debug a program und you notice that 
the registers of the register file are not written one after the other, but in 
some “unpredictable sequence” → you would not be happy

→ The hardware needs to stick to the hardware-software contract. No 
matter how the microarchitecture realizes the implementation of an ISA, 
from a programmers view, there must not be a difference
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Out-Of-Order (OoO) Execution / 
Dynamic Instruction Scheduling 
• It is an architectural requirement that instructions need to be completed in order 

• Note however that completing instruction in order does not mean that we need 
to execute them in order

• Idea:
• Execute instructions out-of-order and store the results in temporary registers
• Perform the writeback from the temporary registers to the register file in order 

• Motivation/Properties
• Higher throughput through better utilization of the hardware 
• Shift the paradigm from “execute one instruction after the other” to “execute an instruction 

whenever it is ready to execute”, where “ready” means that the input data is available and 
the required execution unit is available
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High Level View of Out-of-Order Execution

Basic Idea:

• The Instructions are fetched and decoded 

• Dependencies need to be resolved

• Instructions that are ready for execute 
(input data available) wait for execution in 
a reservation station → out-of-order 
execution

• Results are provided to the commit unit 
that forwards the results back to the 
register file in order
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Dependencies That We Need to be 
Considered for OoO Execution 

• True Data Dependence / Read-after-Write (RAW)
r3  r1 op r2 
r5  r4 op r3      “The data we need as input is not available yet” 

• Anti Dependence / Write-after-Read (WAR) 
r3  r1 op r2 
r1  r4 op r5      “The register that we write to is needed as an input for another instruction” 

• Output Dependence / Write-after-Write (WAW)
r3  r1 op r2 
r5  r3 op r4
r3  r6 op r7        “The register we write to is also written to by another instruction”

(Note: the first instruction needs to be executed in any case.
The state of the register file must be independent of the microarchitecture. 
Otherwise, we would violate the ISA. Imagine debugging your program on a hardware 
that would decide on its own which instruction is necessary to be executed and which not. 
Optimizations of code take place at compiler level.)
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Example for a Dual-Issue Pipeline With OoO
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Example for a Dual-Issue Pipeline With OoO
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Register Renaming

• Observe:
• If the programmer used a different register than s8 in the sub instruction, 

there would be no dependence
• Anti Dependence / Write-after-Read (WAR) and Output Dependence / 

Write-after-Write (WAW) are not really dependencies 
• These dependencies are only caused by the fact that we have a limited 

number of registers

• Idea:
• We resolve WAR and WAW dependencies by adding more registers in the 

microarchitecture
• The programmer doesn’t see these registers and can’t address these 

registers 
• The hardware simply has a larger pool of registers (larger than what is 

architecturally visible) – the hardware needs to know which of its registers 
of the pool corresponds to which register for which instruction of the 
software (i.e. the hardware needs to know the renaming it does)
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Simple Example for Register Renaming
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Simple Example for Register Renaming
• Assume the CPU internally has additional registers r0 … r20 

• We use r0 to resolve the WAR dependence of our example program
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Reorder Buffer (ROB)

• The reorder buffer is the hardware unit that stores the additional register 
contents

• High-Level Working principle:
• When an instruction is decoded, it reserves an entry in the reorder buffer
• After completion of the instruction, the reorder buffer stores the result of an 

instruction
• When the oldest instruction in the reorder buffer has completed, the result of the 

instruction is moved to the register file
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Reorder Buffer (ROB)

• The ROB stores information about all instructions that are decoded 
but not yet retired/committed

• It uses valid bits to keep track of which instructions have completed 
executions (i.e. which results are already valid)

• It needs to store additional meta data to:
• correctly reorder instructions back into program order
• update the architectural state with the instruction’s result(s) upon retiring
• handle exceptions/interrupts



Reading Inputs from the Reorder Buffer

• Observe: 
• Instructions my need registers as input that are still located in the re-order buffer (results that are 

not committed to the register file yet)

• Idea:
• Read input registers for instructions from the register file or directly from the reorder buffer

• Example Implementation:
• Remember scoreboarding: We set the valid bit of the target register of an instruction as invalid 

during the decode stage. It remains invalid until the result is written to the register file
• In addition to the valid bit, we store the ID of the register of reorder buffer in the register file that 

will store the result of the instruction. This register stores the result until it is committed. 

• Accessing the register inputs. 
• First access the register file
• In case the register is not valid, use the ID stored in the register file to access the reorder buffer
• Read data from the reorder buffer; delay the instruction in case the result is not ready yet 
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Summary

• Pipelining is the standard approach for building processors

• Large CPUs (servers, laptops, mobile phones, ...) all use 
superscalar designs with out-of-order execution

• For further details, interested readers are referred to 
“Computer Architecture - A quantitative Approach” by 
Hennessy, Patterson
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