
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 10: Pipelining

The Need for Speed

2

Minimize the time
access time, i.e. the

between receiving an
address and providing

data

Maximize the number
of executed instructions

per time

MemoryCPU

• The speed of the CPU and the memory needs to be match

• We have learned in the previous chapter how to build a typical memory
system → we now look at the CPU

Goal

• The goal of processor design is maximizing the executed number of
instructions per time

• This is determined by two factors
• The needed clock cycles per instruction (CPI)

• The clock frequency, which determines the number of cycles per second

• The execution time for a program with N instructions is N * CPI * (1/f)
• f is the clock frequency (1/f is the clock period)

• CPI is the average number of cycles per instruction

www.iaik.tugraz.at

3

High-Level Overview (Single Cycle Datapath)
www.iaik.tugraz.at

4

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Performance of the Single-Cycle Design

• Each instruction takes exactly one cycle to execute

• The maximum clock frequency is defined by the slowest instruction of
the design
• Remember: the critical path is the longest combinational path in the design.

• The critical path of the slowest instruction therefore defines the clock
frequency of our processor

www.iaik.tugraz.at

5

Critical Path

www.iaik.tugraz.at

6

Critical Path

www.iaik.tugraz.at

7

Critical Path

www.iaik.tugraz.at

8

Critical Path

www.iaik.tugraz.at

9

Critical Path

www.iaik.tugraz.at

10

Critical Path

www.iaik.tugraz.at

11

Critical Path

www.iaik.tugraz.at

12

Critical Path

www.iaik.tugraz.at

13

How can we improve the
performance?

Note: making the building blocks (memories, logic gates, …) of the
processor faster, won’t make us significantly faster → we need a differ

design approach

Basic Idea of Multicycle Architectures

• Cut the operations that are needed for one instruction into more fine-
granular operations

• Each instruction is a multicycle instruction and takes as many cycles
as needed to perform the actions defined by the instruction

→Instructions lead to different numbers of operations (and therefore take
longer / shorter depending on their complexity)

→The operations that are done in a clock cycle are less complex and the clock
frequency can be increased

www.iaik.tugraz.at

15

High-Level Overview (Single Cycle Datapath)
www.iaik.tugraz.at

16

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

www.iaik.tugraz.at

17

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

www.iaik.tugraz.at

18

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

Given an
address, read
an instruction
from memory

www.iaik.tugraz.at

19

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

Given an
address, read
an instruction
from memory

Given an
instruction,

determine the
corresponding
control signals

for the data
path

www.iaik.tugraz.at

20

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

Given an
address, read
an instruction
from memory

Given an
instruction,

determine the
corresponding
control signals

for the data
path

Given the
control signals

and data
inputs, perform
necessary ALU

operations

www.iaik.tugraz.at

21

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

Given an
address, read
an instruction
from memory

Given an
instruction,

determine the
corresponding
control signals

for the data
path

Given the
control signals

and data
inputs, perform
necessary ALU

operations

If needed, send
an address to

memory to
receive data

www.iaik.tugraz.at

22

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

Given an
address, read
an instruction
from memory

Given an
instruction,

determine the
corresponding
control signals

for the data
path

Given the
control signals

and data
inputs, perform
necessary ALU

operations

If needed, send
an address to

memory to
receive data

Write the
result of

the
instruction

back to
the

register
file

Observations (Part 1)

Fetch → Decode → Execute →Memory →Write Back

• We now have the situation that the “memory part” and the “write
back” only needs to be done for those operations that need it
• An add instruction does not need a memory access
• A store instruction does not need a write back to register file

• We can also increase the clock frequency because we have smaller
operations in each cycle.

• BUT overall, this is not going to give us a significant speed up

www.iaik.tugraz.at

23

Observations (Part 2)

Fetch → Decode → Execute →Memory →Write Back

• At a given moment of time, most of the hardware is idle
• When we do a fetch, all the hardware for decode, execute, memory, write back is not

doing anything productive (its waiting for the next input)

• Goal / Idea:
• We want more concurrency (if all circuit parts “work” (not idle), more work is done

per clock cycle)
• Concretely

• While we decode the current instruction, we could already fetch the next instruction
• While we execute the current instruction, we could decode the next instruction and we could

fetch the instruction after the next
• …

www.iaik.tugraz.at

24

Pipelining

Pipelining – The Basic Idea

• Pipelining is something that is not only known in computers

www.iaik.tugraz.at

26

Assembly lines in car industry Food preparation pipeline in the kitchen

Pipelining – The Basic Idea

• Idea:
• Divide instruction processing into different stages

• Don’t complete the execution of one instruction before starting the execution of
the next instruction

• Process a different instruction in each stage (e.g. Stage 3 processes instruction i,
Stage 2 processes instruction i-1, …) → the consecutive instructions are executed
in consecutive stages

• Benefit:
• “We use all hardware resources in each clock cycle” → Increased instruction

throughput

www.iaik.tugraz.at

27

Illustration for four simple instructions
without memory access

www.iaik.tugraz.at

28

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

Execution time

without pipelining:

16 cycles
Instr. 2

Instr. 3

Instr. 4

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 1

Execution time with

pipelining:

7 cycles

(1 instruction per

cycle in steady state)

Figure by Onur Mutlu

The Laundry Analogy

• Speedup:
• 7 hours instead of 16 hours in case of

four loads

• One load of washing every hour in case
of non-stop washing

• Observe:
• The processing of the stages is

sequentially dependent (we can’t
change sequence)

• Each stage uses different resources (no
resource dependency between stages)

• The processing of the washing loads is
independent of each other (we can do
any sequence of the 4 washing loads)

www.iaik.tugraz.at

29Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Properties of an Ideal Pipeline

We are given the task to perform set of operations

Ideal setup for pipelining:
• The operations are identical: We need to repeat the same operations over

and over again (e.g. wash 10.000 loads of cloths)

• The operations are independent: We can perform the operations in any
sequence we want

• Uniform partitioning into suboperations is possible: Each operation is can be
divided into suboperations that take the same amount of time

www.iaik.tugraz.at

30

Ideal Pipelining for Processors

www.iaik.tugraz.at

31

combinational logic (F,D,E,M,W)

Critical path: T psec

Bandwidth (BW) =~(1/T)

BW =~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW =~(3/T)T/3
 ps (F,D)

T/3
 ps (E,M)

T/3
 ps (M,W)

Figure by Onur Mutlu

More Realistic Pipeline: Throughput
• Non-pipelined version with delay T

BW = 1/(T+S) where S = register delay

• k-stage pipelined version
BWk-stage = 1 / (T/k + S)
BWmax = 1 / (1 gate delay + S)

T ps

T/k
 ps

T/k
 ps

Register delay reduces throughput

(switching overhead between stages)

Figure by Onur Mutlu

More Realistic Pipeline: Cost
• Nonpipelined version with combinational cost G

Cost = G + L where L = register cost

• k-stage pipelined version

Costk-stage = G + L*k

G gates

G/k G/k

Registers increase hardware cost

Figure by Onur Mutlu

Pipelining Instruction
Processing

www.iaik.tugraz.at

35

Register File
Data

 Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

High-Level Datapath

www.iaik.tugraz.at

36

Register File
Data

 Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Redrawn for more space

www.iaik.tugraz.at

37

Register File
Data

 Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Redrawn for more space

T BW=~(1/T)

www.iaik.tugraz.at

38

Register File
Data

 Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Register
File

Write

IF: Instruction Fetch ID: Instruction decode/
register file read

EX: Execute/
Address calculation

MEM: Memory
access

WB: Write Back

200ps 100ps 120ps 200ps 60ps

The Instruction Processing

1. Instruction Fetch (IF)

2. Instruction Decode & register read (ID)

3. Execute or calculate address (EX)

4. Memory access (MEM)

5. Writeback of result (WB)

www.iaik.tugraz.at

39

Instruction Pipeline Throughput (non-ideal
example)

• 680ps without
pipelining

• With a 5-stage
pipeline, one
instruction every
200ps

• Speedup is 3,4
instead of 5 in the
ideal setup

www.iaik.tugraz.at

40

Time (ps)
Instr

1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 15001000

Instr

1

2

3

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Single-Cycle

Pipelined

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

200ps 100ps 120ps 200ps 60ps

www.iaik.tugraz.at

41

Register File
Data

 Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Register
File

Write

No resource is used
by more than 1 stage!

IR
D

P
C

F

P
C

D

P
C

E

n
P

C
M

A
E

B
E

Im
m

E

A
o

u
t M

B
M

M
D

R
W

A
o

u
t W

Enabling Pipelined Processing: Pipeline Registers

T/k
 ps

T/k
 ps

www.iaik.tugraz.at

42

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Operation

Control

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

43

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW
 Instruction Fetch

Instruction
Memory

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

44

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW
Instruction Decode

Instruction
Memory Register File

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

45

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

LW
Execute

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

46

Register File
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

LW
Memory

Data
 Memory

MEM/WBEX/MEMID/EXIF/ID

47

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

LW
Write Back

Register File

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

49

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW x1,100(x0)
 Instruction Fetch

Instruction
Memory

Cycle 1

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

50

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW x1,100(x0)
Instruction Decode

Instruction
Memory Register File

ADD x2, x3, x4
 Instruction Fetch

Instruction
Memory

Cycle 2

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

51

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

Cycle 3

LW x1,100(x0)
Execute

ADD x2, x3, x4
 Instruction Decode

Register File

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

52

Register File
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory Data

 Memory

Cycle 4

LW x1,100(x0)
Memory

ADD x2, x3, x4
 Instruction Execute

MEM/WBEX/MEMID/EXIF/ID

53

Register File
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory Register File

Cycle 5

LW x1,100(x0)
Write Back

ADD x2, x3, x4
Memory

MEM/WBEX/MEMID/EXIF/ID

Data
 Memory

54

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory Register File

Cycle 6

ADD x2, x3, x4
Write Back

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

55

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

IR
D

Pipelined Operation

MEM/WBEX/MEMID/EXIF/ID

Control

MEM

EX

ID

IFInst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EXIF ID

IF ID

Inst0 ID

IFInst1

EX

ID

IFInst2

MEM

EX

ID

IFInst3

WB

WBMEM

EX

WB

steady state

(full pipeline)

Illustrating Pipeline Operation: Operation View

Figure by Onur Mutlu

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

Illustrating Pipeline Operation: Resource View

Figure by Onur Mutlu

www.iaik.tugraz.at

58

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Note: There is the same number of control signals as in a single-cycle data path

Control

MEM/WBEX/MEMID/EXIF/ID

Timing is critical!

For each instruction the
control signals need to
be set correctly in each

pipeline stage

Control Signals in a Pipeline

• For every instruction we need to
provide the same control signals as in
the single-cycle version
BUT
they need to provided to the right
stage at the right time

• Two options:
1. Decode the control signals once using

the same decoder as in a single-cycle
system and buffer the signals (see
figure)

2. Carry relevant parts of the instruction
word through the pipeline and decode
locally within the different stages

www.iaik.tugraz.at

59Figure Copyright © 2019, Elsevier Inc. All rights Reserved

60

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

61

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

62

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

63

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

Does Pipelining Really Work so Nicely?

Remember the Properties of an Ideal Pipeline

Ideal setup for pipelining:
• The operations are identical: We need to repeat the same operations over

and over again (e.g. wash 10.000 loads of cloths)

• The operations are independent: We can perform the operations in any
sequence we want

• Uniform partitioning into suboperations is possible: Each operation is can be
divided into suboperations that take the same amount of time

www.iaik.tugraz.at

65

Reality

• The operations are identical → NO

We need to force different instruction through the pipeline architecture

• The operations are independent → NO

Instructions have dependencies (e.g. operand dependencies) and we need to resolve
dependencies and ensure that we compute the result correctly

• Uniform partitioning into suboperations is possible → NO

We need to handle different latencies on different pipeline stages (e.g. caused by
multi-cycle suboperations)

www.iaik.tugraz.at

66

The Challenge of Pipeline Design

• Goal: Keep the pipeline moving, full, and correct under all
circumstances

• Approach: Add logic (“intelligence”) around the data path to achieve
the goal. This logic copes with dependencies between instructions,
different latencies, exceptions, …

• What we want to prevent is a so-called pipeline stall

www.iaik.tugraz.at

67

Pipeline Stall

• Pipeline Stall: Any condition that prevents the pipeline from moving, i.e.
any condition that prevents that all instructions can move from the current
stage to the next stage in the next clock cycle

• A stall is necessary, if on any pipeline stage either a needed hardware
resource or data is not available (Think of a car assembly line – you have to
stall the line, if it happens that on a given pipeline stage, a machine is not
available, or if there is no car to work on)

• Resource not available: e.g. a multi-cycle operation blocks a needed resource

• Data not available: e.g. one instruction computes a result that is needed by the next
instruction

www.iaik.tugraz.at

68

Data Dependence Handling

Read-After-Write Dependency

r3  r1 op r2 Read-after-Write
r5  r3 op r4 (RAW)

When an instruction tries to access a registers that has not yet been
written back to the register file, this is called a “data hazard”.

RAW Dependence Handling

Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi r1 r- -

addi r- r1 -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- r1 -

addi r- r1 -

addi r- r1 -

addi r- r1 -

?

Figure by Onur Mutlu

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

WB

MEM

ALU

Figure by Onur Mutlu

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID

Figure by Onur Mutlu

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF IDIF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

Figure by Onur Mutlu

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx  _
bubble
bubble
j: _  rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall = make the dependent instruction
 wait until its source data value is available
 1. stop all up-stream stages
 2. drain all down-stream stages

Figure by Onur Mutlu

• Realizing a stall
• disable PC and IF/ID registers; ensure stalled instruction stays in its stage
• Insert “invalid” instructions/nops into the stage following the stalled one (called “bubbles”)

Register File
Data

 Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Control

E
X

M

W
B

M

W
B

W
B

Dependence Detection

• Example Technique: Scoreboarding

• Idea:

• Associate a Valid bit with each register of the register file

• When an instruction is decoded that is writing to a register, it resets the
corresponding Valid bit

• An instruction in Decode stage checks if all its source registers are Valid
• Yes: No need to stall… No dependence

• No: Stall the instruction

www.iaik.tugraz.at

77

Dependence Handling after Detection

• Option 1: Stall the pipeline

• Option 2: Stall the pipeline only when necessary → data
forwarding/bypassing

www.iaik.tugraz.at

78

Data Forwarding/Bypassing

• Challenge: An instruction (the consumer) must wait in decode stage
until the producer instruction writes its value in the register file

• Goal: We do not want to stall the pipeline unnecessarily

• Observation/Idea: The data value that is needed by the consumer is
already available in a later pipeline stage → we can get it from there
instead of the register file

• Benefit: The consumer can move in the pipeline until the point the
value can be supplied → less stalling

www.iaik.tugraz.at

79

RAW Data Dependence Example

• The first instructions writes a register (s8) and next instructions read
this register => read after write (RAW) dependence.
• add writes into s8 in cycle 5

• sub requires to read s8 on cycle 3

• or requires to read s8 on cycle 4

• and requires to read s8 in cycle 5

www.iaik.tugraz.at

80

Time (cycles)

add s8, s4, s5 RF s5

s4

RF
s8

+ DM

RF s3

s8

RF
s2

- DM

RF s8

t6

RF
s9

| DM

RF t2

s8

RF
s7

& DM

sub s2, s8, s3

or s9, t6, s8

and s7, s8, t2

1 2 3 4 5 6 7 8

sub

IM

IM

IM

IM
add

or

and

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Data Forwarding

Time (cycles)

RF s5

s4

RF
s8

+ DM

RF s3

s8

RF
s2

- DM

RF s8

t6

RF
s9

| DM

RF t2

s8

RF
s7

& DM

1 2 3 4 5 6 7 8

sub

IM

IM

IM

IM
add

or

and

add s8, s4, s5

sub s2, s8, s3

or s9, t6, s8

and s7, s8, t2

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

• Check if source register of the instruction transitioning to the execute
stage matches the destination register of an instruction in the Memory or
Writeback stage.

• If so, forward result → Data values are supplied to dependent instruction
as soon as it is available

Implementing Data
Forwarding

CLK

A RD

Instruction

Memory

+
4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE
PCF0

1

PCF' InstrD
19:15

24:20

31:7

SrcBE

19:15

11:7

Rs1E

RdE

ALUResultM ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCTargetE

PCPlus4F

ImmSrcD1:0

MemWriteD

ResultSrcD1:0

ALUControlD2:0

ALUSrcD

RegWriteD

Control

Unit

CLK CLK CLK

CLK CLK

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

ResultSrcE1:0 ResultSrcM1:0

MemWriteE MemWriteM

ALUSrcE

24:20 Rs2E

Rs1D

RdD

Rs2D

Hazard Unit

Extend

ResultSrcW1:0

RdM RdW

+

PCPlus4E PCPlus4M

PCPlus4W

ZeroE

BranchD

JumpD

PCSrcE

RD1E

RD2E

PCD PCE

ExtImmEExtImmD

BranchE

JumpE

F
o
rw

a
rd

A
E

F
o
rw

a
rd

B
E

00
01
10

10
01
00

00
01
10

ResultW

PCPlus4W

30

14:12
funct3

funct75

op
6:0

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Stalling Time (cycles)

lw s7, 40(s5) RF 40

s5

RF
s7

+ DM

RF t3

s7

RF
s8

& DM

RF s7

s6

RF
t2

| DM

RF s2

s7

RF
s3

- DM

and s8, s7, t3

or t2, s6, s7

sub s3, s7, s2

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Stalling Time (cycles)

lw s7, 40(s5) RF 40

s5

RF
s7

+ DM

RF t3

s7

RF
s8

& DM

RF s7

s6

RF
t2

| DM

RF s2

s7

RF
s3

- DM

and s8, s7, t3

or t2, s6, s7

sub s3, s7, s2

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

Trouble!

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

• Forwarding works to resolve some RAW data dependences
BUT
there are cases when a stall cannot be avoided

• Example:
• The lw instruction does not finish reading data until the end of the

memory stage → a stall is necessary until the memory read completes

Stalling

Time (cycles)

RF 40

s5

RF
s7

+ DM

RF t3

s7

RF
s8

& DM

RF s7

s6

RF
t2

| DM

RF s2

s7

RF
s3

- DM

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

9

RF t3

s7

IM
or

Stall

lw s7, 40(s5)

and s8, s7, t3

or t2, s6, s7

sub s3, s7, s2

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Watch the Operations of the Hardware while
executing your code - QTRVSIM

Visit https://comparch.edu.cvut.cz/qtrvsim/app/ or use qtrvsim in your
virtual machine

in order to visualize how a sequence
of instructions becomes executed

www.iaik.tugraz.at

86

Note: This simulation
performs incorrect

computations in case
of hazards!!!

This simulation has a
hazard unit and

implements data
forwarding

https://comparch.edu.cvut.cz/qtrvsim/app/

Data Forwarding Paths in QTRVSIM

www.iaik.tugraz.at

87

Examples

• Simulate the code examples in the directory

con10.01_QtRVSim_pipeline_examples

• Use the examples as starting point and change code to see stalling
and forwarding

88

Control Hazards

Control Hazards

• To keep our pipeline full, we need fetch a new instruction in every cycle →
we always need know what instruction needs to be fetched next.

• In linear code sequences, the next instruction to be fetched is simply the
one the is located at the next memory address

• In case, there occur control-flow instructions (e.g. beq, bne, …), there are
two possible execution paths (“branch taken” vs. “branch not taken”) and
this causes a so-called “control hazard”

• A control hazard occurs when the decision of what instruction to be fetch
next is not available by the time when the fetch takes place

www.iaik.tugraz.at

90

When Do We Know the Branch Decision?

www.iaik.tugraz.at

91

• To keep the pipeline full, we would need to fetch the next instruction in cycle 2

• We determine the branch target during the execution stage in clock cycle 3 (there
we add the branch offset to the program counter and determine the new PC) →
we can fetch the next instruction only in clock cycle 4

• This would mean for every branch, the pipleline would stall for 2 clock cycles

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Can We Take the Decision Earlier?

• Idea: We could try to do the comparison of the of the registers (branch
decision) and the calculation of the new branch target already during the
decode stage.

• “Early Branch Resolution” is in principle possible, BUT
• This would imply the need for additional forwarding paths (registers that determine

the branch decision my not yet be in the register file)
• There may still be stalls that are unavoidable: e.g.

• a branch that directly follows the computation of a register that determines the branch target
• a branch after a load instruction that determines the branch decision

→ “Early Branch Resolution” reduces the performance penalty of branches,
but we can do better

www.iaik.tugraz.at

92

Branch Prediction

• Idea:
• Instead of waiting for the decision, we simply try to correctly predict whether

a branch is taken or not.

• Properties:
• In case our prediction is correct, there is no performance penalty

• In case our prediction is incorrect, we need to flush the pipeline

www.iaik.tugraz.at

93

Example

• Let’s do the default assumption that branches are not taken → we simply
keep fetching the instructions following the branch

• Properties: Stall of 2 cycles if the assumption does not hold (called
“misprediction penalty”); No stall if the assumption holds

www.iaik.tugraz.at

94

Time (cycles)

 beq s1, s2, L1 RF RFDM

RF s3

t1

RFDM

RF RFDM

 sub s8, t1, s3

 or s9, t6, s5

1 2 3 4 5 6 7 8

sub

IM

IM

IM
beq

or

20

24

28

2C ...

... ...

9

Flush
these

instructions

58 L1: add s7, s3, s4 RF s4

s3

RFDMIM
add

10

s2

s1

-

+
s7

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Branch Prediction

• Observe:
• Making a static assumption, like “conditional branches will always be taken”

or “conditional branches will always be not taken” are bad predictors
• Consider a loop: there are two programming options

• A conditional branch can be at the end of the loop and keeps jumping back to the
beginning of the loop (“branch taken” occurs frequently)

• A conditional branch can be used to exit a while loop with an unconditional branch at the
end of the loop (“branch not taken” occurs frequently)

• Idea:
• Implement a “branch predictor” that makes a dynamic prediction for every

branch on whether it will be taken or not (Basic idea: “the hardware learns
the behavior of the software and predicts based on past behavior”)

www.iaik.tugraz.at

95

Branch Target Buffer

• Motivation:
• To be able to make predicts about a specific branch, we need to story information about its

history

• Implementation:
• We can’t keep a table to store the outcomes of all branches from all potential addresses

• Typically, a mapping function based on the lower bits of the address and additional context
information is used to index a table storing information about the branching history

• Size of the table, the indexing of the table, and the information that is stored vary for
different architectures. A trade-off needs to be made between prediction accuracy and
implementation costs

(Note: The deeper the pipeline, the higher is the cost of misprediction and the higher invests
are made into increasing the success rate of the prediction)

www.iaik.tugraz.at

96

The Simplest Branch Predictor

• The simplest branch predictor is to store for a given branch if it was
taken or not during the last execution (1 bit storage)

• Performance in example loop: misprediction during first and last loop

www.iaik.tugraz.at

97

addi s1, zero, 0 # s1 = sum

 addi s0, zero, 0 # s0 = i

 addi t0, zero, 10 # t0 = 10

For: # for (i=0; i<10; i=i+1)

 bge s0, t0, Done

 add s1, s1, s0 # sum = sum + i

 addi s0, s0, 1 # i = i + 1

 j For

Done:

Note on misprediction in first loop:

A loop in a function is typically not
only executed once (a function
containing a loop is typically called
several times.

Whenever the function is called, the
branch predictor remembers during
the last execution, the branch was
taken → this leads to a misprediction
during the first loop

2-Bit Branch Predictor

• 4 states encoded in 2 bit

• Only mispredicts the last branch of the loop (the branch exiting the loop)

• Solves the problem of the 1-bit branch predictor: In settings where the
loop is executed multiple times, the branch is predicted correctly during
the first loop

www.iaik.tugraz.at

98

Strongly
Taken

predict
taken taken taken taken

takentakentaken

taken

takenWeakly
Taken

predict
taken

Weakly
Not Taken

predict
not taken

Strongly
Not Taken

predict
not taken

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Additional Techniques in Current CPUs

We have now covered basic mechanisms for resolving data and control
hazards, but current CPUs implement many more techniques to
increase instruction throughput

We discuss two additional techniques

present in all large mainstream processors:

• Superscalar Designs

• Out-Of-Order Execution

www.iaik.tugraz.at

99

Basic Idea of Superscalar Designs

• Motivation:
• In order to speed up a pipelined design, we can introduce more and more

pipeline stages (More pipeline stages → shorter critical path per stage →
higher clock frequency)

• This can’t be done to an arbitrary level (remember: we need to balance the
pipeline stages), and typical CPUs have roughly 10 to 20 pipeline stages

• Idea:
• Instead of just processing one instruction on each stage, we could process

multiple instructions in each stage → implement multiple units for decoding,
execution, … and therefore

• We can issue multiple instructions per cycle (IPC)

www.iaik.tugraz.at

100

Multiple-Issue Processors

Multiple-Issue processors handle multiple instructions in each clock
cycle, e.g. A dual issue-processor can handle two instructions on each
stage

www.iaik.tugraz.at

101

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction

Memory

Register

File Data

Memory

A
LU

s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

One Instruction
Memory

Two ports for reading
two instructions at the

same time
Register file with
duplicated ports

Two ALUs

Duplicated ports
for doing two
simultaneous

memory acceses

Duplicated write-
back paths to

duplicated ports
if register file

Ideal Example

• In case there are no dependencies, it is possible to execute two
instructions per cycle

www.iaik.tugraz.at

102

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

s0

RF

s7
+

DM
IM

lw

add

lw s7, 40(s0)

add s8, t1, t2

sub s9, s1, s3

and s10, s3, t4

or s11, s1, t5

sw s5, 80(s2)

s8
t2

t1

+

RF
s3

s1

RF

s9
-

DM
IM

sub

and s10
t4

s3

&

RF
t5

s1

RF

s11
|

DM
IM

or

sw
80

s2

+ s5

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Example With Dependencies

www.iaik.tugraz.at

103Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Note: we can’t
fill this issuing
slot due to the

data dependence

Note: we need to
do stalling and
forwarding just

like in the single-
issue design

Multiple-Issue Processors

• The figure summarizes the pipeline stages in a dual-issue processor

• Note:
When scaling further up it might
not be useful to replicate the entire
ALU and all the ports for the memory stage

Not every instruction requires all functional
units of the execute stage or the option for
memory read/write

→Designs in practice have specific

compositions of functional units of the

different stages

www.iaik.tugraz.at

104Amit6, original version (File:Superscalarpipeline.png) by User:Poil [CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)]

Multi-Cycle Execution

• The execution stage may contain different functional units with
different execution times

• An execution stage may contain two units for add/sub, one unit for
multiplication, a unit for floating point (FP) operations, …

• Note: A simple add/sub takes less time than a multiplication and a FP
operation can take even more time

www.iaik.tugraz.at

105

E

E E E E E E E E

E E E E

Integer add

Integer mul

FP mul

Figure by Onur Mutlu

Challenge

• Situation
• Superscalar CPUs can fetch multiple instructions in each cycle

• The instructions will then then be executed by the corresponding execution units

• Challenge
• There will be data dependencies between the instructions that stall instructions

• There will be multi-cycle instructions that also delay subsequent instructions

→ Significant delays can occur because of instructions that take longer to
complete (e.g. a load from memory) and/or data dependencies

www.iaik.tugraz.at

106

Example

• Assume the following two instructions are executed on the same
issuing path

www.iaik.tugraz.at

107

F D E W

F D E WE E EMUL R3  R1, R2

ADD R7  R5, R6

We can do the fetch
because the fetch stage

is available in cycle 2 We can decode because
the decode stage is
available in cycle 3

We can execute the add
because the MUL

instruction occupies the
multiplier and not the

add/sub unit

The writeback stage is
available in this clock cycle.

Are we allowed to perform
the writeback of the ADD

instruction before the
writeback of the MUL

instruction?

The Hardware-Software Contract

• In case we would complete the writeback of the ADD before the MUL, we
would create an invalid state architectural state

• The ISA defines that instructions are executed one after the other

• Imagine that you as a programmer debug a program und you notice that
the registers of the register file are not written one after the other, but in
some “unpredictable sequence” → you would not be happy

→ The hardware needs to stick to the hardware-software contract. No
matter how the microarchitecture realizes the implementation of an ISA,
from a programmers view, there must not be a difference

www.iaik.tugraz.at

108

Out-Of-Order (OoO) Execution /
Dynamic Instruction Scheduling
• It is an architectural requirement that instructions need to be completed in order

• Note however that completing instruction in order does not mean that we need
to execute them in order

• Idea:
• Execute instructions out-of-order and store the results in temporary registers
• Perform the writeback from the temporary registers to the register file in order

• Motivation/Properties
• Higher throughput through better utilization of the hardware
• Shift the paradigm from “execute one instruction after the other” to “execute an instruction

whenever it is ready to execute”, where “ready” means that the input data is available and
the required execution unit is available

www.iaik.tugraz.at

109

High Level View of Out-of-Order Execution

Basic Idea:

• The Instructions are fetched and decoded

• Dependencies need to be resolved

• Instructions that are ready for execute
(input data available) wait for execution in
a reservation station → out-of-order
execution

• Results are provided to the commit unit
that forwards the results back to the
register file in order

www.iaik.tugraz.at

110Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Dependencies That We Need to be
Considered for OoO Execution

• True Data Dependence / Read-after-Write (RAW)
r3  r1 op r2
r5  r4 op r3 “The data we need as input is not available yet”

• Anti Dependence / Write-after-Read (WAR)
r3  r1 op r2
r1  r4 op r5 “The register that we write to is needed as an input for another instruction”

• Output Dependence / Write-after-Write (WAW)
r3  r1 op r2
r5  r3 op r4
r3  r6 op r7 “The register we write to is also written to by another instruction”

(Note: the first instruction needs to be executed in any case.
The state of the register file must be independent of the microarchitecture.
Otherwise, we would violate the ISA. Imagine debugging your program on a hardware
that would decide on its own which instruction is necessary to be executed and which not.
Optimizations of code take place at compiler level.)

www.iaik.tugraz.at

111

Example for a Dual-Issue Pipeline With OoO

www.iaik.tugraz.at

112

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

s0

RF

s8
+

DM
IM

lw
lw s8, 40(s0)

add s9, s8, t1

sub s8, t2, t3

and s10, s4, s8

sw s7, 80(s11)

or
|t6

t5
s11

RF
80

s11

RF

+

DM

sw s7

or s11, t5, t6

IM

RF
t1

s8

RF

s9
+

DM
IM

add

sub
-t3

t2
s8

two cycle latency

between load and

use of s8

RAW

WAR

RAW

RF
s8

s4

RF

&

DM

and

IM

s10

RAW

The Program Re-ordered Program

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Example for a Dual-Issue Pipeline With OoO

www.iaik.tugraz.at

113

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

s0

RF

s8
+

DM
IM

lw
lw s8, 40(s0)

add s9, s8, t1

sub s8, t2, t3

and s10, s4, s8

sw s7, 80(s11)

or
|t6

t5
s11

RF
80

s11

RF

+

DM

sw s7

or s11, t5, t6

IM

RF
t1

s8

RF

s9
+

DM
IM

add

sub
-t3

t2
s8

two cycle latency

between load and

use of s8

RAW

WAR

RAW

RF
s8

s4

RF

&

DM

and

IM

s10

RAW

The Program Re-ordered Program

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

• Observe:
• If the programmer used a different register than s8 in the sub instruction,

there would be no dependence
• Anti Dependence / Write-after-Read (WAR) and Output Dependence /

Write-after-Write (WAW) are not really dependencies
• These dependencies are only caused by the fact that we have a limited

number of registers

• Idea:
• We resolve WAR and WAW dependencies by adding more registers in the

microarchitecture
• The programmer doesn’t see these registers and can’t address these

registers
• The hardware simply has a larger pool of registers (larger than what is

architecturally visible) – the hardware needs to know which of its registers
of the pool corresponds to which register for which instruction of the
software (i.e. the hardware needs to know the renaming it does)

www.iaik.tugraz.at

114

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

s0

RF

s8
+

DM
IM

lw
lw s8, 40(s0)

add s9, s8, t1

sub s8, t2, t3

and s10, s4, s8

sw s7, 80(s11)

or
|t6

t5
s11

RF
80

s11

RF

+

DM

sw s7

or s11, t5, t6

IM

RF
t1

s8

RF

s9
+

DM
IM

add

sub
-t3

t2
s8

two cycle latency

between load and

use of s8

RAW

WAR

RAW

RF
s8

s4

RF

&

DM

and

IM

s10

RAW

Simple Example for Register Renaming

www.iaik.tugraz.at

115

The Program
Time (cycles)

1 2 3 4 5 6 7

RF
40

s0

RF

s8
+

DM
IM

lw
lw s8, 40(s0)

add s9, s8, t1

sub r0, t2, t3

and s10, s4, r0

sw s7, 80(s11)

sub
-t3

t2
r0

RF
r0

s4

RF

&

DM

and

s7

or s11, t5, t6

IM

RF
t1

s8

RF

s9
+

DM
IM

add

sw
+80

s11

RAW

t6

t5

|
or

2-cycle RAW

RAW

s10

s11

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

• Assume the CPU internally has additional registers r0 … r20

• We use r0 to resolve the WAR dependence of our example program

r0

r0

Simple Example for Register Renaming
• Assume the CPU internally has additional registers r0 … r20

• We use r0 to resolve the WAR dependence of our example program

www.iaik.tugraz.at

116

The Program
Time (cycles)

1 2 3 4 5 6 7

RF
40

s0

RF

s8
+

DM
IM

lw
lw s8, 40(s0)

add s9, s8, t1

sub r0, t2, t3

and s10, s4, r0

sw s7, 80(s11)

sub
-t3

t2
r0

RF
r0

s4

RF

&

DM

and

s7

or s11, t5, t6

IM

RF
t1

s8

RF

s9
+

DM
IM

add

sw
+80

s11

RAW

t6

t5

|
or

2-cycle RAW

RAW

s10

s11

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

r0

r0

Reorder Buffer (ROB)

• The reorder buffer is the hardware unit that stores the additional register
contents

• High-Level Working principle:
• When an instruction is decoded, it reserves an entry in the reorder buffer
• After completion of the instruction, the reorder buffer stores the result of an

instruction
• When the oldest instruction in the reorder buffer has completed, the result of the

instruction is moved to the register file

www.iaik.tugraz.at

117

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer
Instructions

Figure by Onur Mutlu

Not visible to the
software

Visible to the
software

Reorder Buffer (ROB)

• The ROB stores information about all instructions that are decoded
but not yet retired/committed

• It uses valid bits to keep track of which instructions have completed
executions (i.e. which results are already valid)

• It needs to store additional meta data to:
• correctly reorder instructions back into program order
• update the architectural state with the instruction’s result(s) upon retiring
• handle exceptions/interrupts

Reading Inputs from the Reorder Buffer

• Observe:
• Instructions my need registers as input that are still located in the re-order buffer (results that are

not committed to the register file yet)

• Idea:
• Read input registers for instructions from the register file or directly from the reorder buffer

• Example Implementation:
• Remember scoreboarding: We set the valid bit of the target register of an instruction as invalid

during the decode stage. It remains invalid until the result is written to the register file
• In addition to the valid bit, we store the ID of the register of reorder buffer in the register file that

will store the result of the instruction. This register stores the result until it is committed.

• Accessing the register inputs.
• First access the register file
• In case the register is not valid, use the ID stored in the register file to access the reorder buffer
• Read data from the reorder buffer; delay the instruction in case the result is not ready yet

www.iaik.tugraz.at

119

Summary

• Pipelining is the standard approach for building processors

• Large CPUs (servers, laptops, mobile phones, ...) all use
superscalar designs with out-of-order execution

• For further details, interested readers are referred to
“Computer Architecture - A quantitative Approach” by
Hennessy, Patterson

www.iaik.tugraz.at

120

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2: The Need for Speed
	Slide 3: Goal
	Slide 4: High-Level Overview (Single Cycle Datapath)
	Slide 5: Performance of the Single-Cycle Design
	Slide 6: Critical Path
	Slide 7: Critical Path
	Slide 8: Critical Path
	Slide 9: Critical Path
	Slide 10: Critical Path
	Slide 11: Critical Path
	Slide 12: Critical Path
	Slide 13: Critical Path
	Slide 14: How can we improve the performance?
	Slide 15: Basic Idea of Multicycle Architectures
	Slide 16: High-Level Overview (Single Cycle Datapath)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Observations (Part 1)
	Slide 24: Observations (Part 2)
	Slide 25: Pipelining
	Slide 26: Pipelining – The Basic Idea
	Slide 27: Pipelining – The Basic Idea
	Slide 28: Illustration for four simple instructions without memory access
	Slide 29: The Laundry Analogy
	Slide 30: Properties of an Ideal Pipeline
	Slide 31: Ideal Pipelining for Processors
	Slide 32: More Realistic Pipeline: Throughput
	Slide 33: More Realistic Pipeline: Cost
	Slide 34: Pipelining Instruction Processing
	Slide 35: High-Level Datapath
	Slide 36
	Slide 37
	Slide 38
	Slide 39: The Instruction Processing
	Slide 40: Instruction Pipeline Throughput (non-ideal example)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Control Signals in a Pipeline
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Does Pipelining Really Work so Nicely?
	Slide 65: Remember the Properties of an Ideal Pipeline
	Slide 66: Reality
	Slide 67: The Challenge of Pipeline Design
	Slide 68: Pipeline Stall
	Slide 69: Data Dependence Handling
	Slide 70: Read-After-Write Dependency
	Slide 71: RAW Dependence Handling
	Slide 72: Pipeline Stall: Resolving Data Dependence
	Slide 73: Pipeline Stall: Resolving Data Dependence
	Slide 74: Pipeline Stall: Resolving Data Dependence
	Slide 75: Pipeline Stall: Resolving Data Dependence
	Slide 76
	Slide 77: Dependence Detection
	Slide 78: Dependence Handling after Detection
	Slide 79: Data Forwarding/Bypassing
	Slide 80: RAW Data Dependence Example
	Slide 81: Data Forwarding
	Slide 82: Implementing Data Forwarding
	Slide 83: Stalling
	Slide 84: Stalling
	Slide 85: Stalling
	Slide 86: Watch the Operations of the Hardware while executing your code - QTRVSIM
	Slide 87: Data Forwarding Paths in QTRVSIM
	Slide 88: Examples
	Slide 89: Control Hazards
	Slide 90: Control Hazards
	Slide 91: When Do We Know the Branch Decision?
	Slide 92: Can We Take the Decision Earlier?
	Slide 93: Branch Prediction
	Slide 94: Example
	Slide 95: Dynamic Branch Prediction
	Slide 96: Branch Target Buffer
	Slide 97: The Simplest Branch Predictor
	Slide 98: 2-Bit Branch Predictor
	Slide 99: Additional Techniques in Current CPUs
	Slide 100: Basic Idea of Superscalar Designs
	Slide 101: Multiple-Issue Processors
	Slide 102: Ideal Example
	Slide 103: Example With Dependencies
	Slide 104: Multiple-Issue Processors
	Slide 105: Multi-Cycle Execution
	Slide 106: Challenge
	Slide 107: Example
	Slide 108: The Hardware-Software Contract
	Slide 109: Out-Of-Order (OoO) Execution / Dynamic Instruction Scheduling
	Slide 110: High Level View of Out-of-Order Execution
	Slide 111: Dependencies That We Need to be Considered for OoO Execution
	Slide 112: Example for a Dual-Issue Pipeline With OoO
	Slide 113: Example for a Dual-Issue Pipeline With OoO
	Slide 114: Register Renaming
	Slide 115: Simple Example for Register Renaming
	Slide 116: Simple Example for Register Renaming
	Slide 117: Reorder Buffer (ROB)
	Slide 118: Reorder Buffer (ROB)
	Slide 119: Reading Inputs from the Reorder Buffer
	Slide 120: Summary

