
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 9: Memory Systems

Note

• These slides use figures from the book “Digital Design and Computer Architecture
RISC-V Edition” by Sarah L. Harris and David Harris. These figures are kindly
provided by Elsevier and the Authors for educational purposes.

• The figures from the book have the caption “HH, F8.x” in the slides, where x
stands for the figure number in chapter 8 of the book

• For all figures with this caption, it holds: “Figure Copyright © 2022, Elsevier Inc.
All rights Reserved”

2

Von Neumann Model

3

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

The Interface Between CPU and Memory

4

Memory CPU

Address

Data Input

Read/Write Select

Data Output

The Interface Between CPU and Memory

5

Addresses for Reading Data/Instructions

Memory CPU

Addresses and Data for Writing Data

Data

Instructions

We want Speed –
Design Goals of CPU and Memory

6

Minimize the time
access time, i.e. the

between receiving an
address and providing

data

Maximize the number
of executed instructions

per time

MemoryCPU

• The speed of the CPU and the memory needs to be match

• If the CPU is faster than the memory, the CPU needs to wait for the memory to deliver instructions/data

• If the memory is faster than the CPU, the full speed of the memory is not used and limited by the speed of
the CPU

Who is Faster?

• In 1980, we had the situation that it in one clock cycle of the CPU, it
was possible to do one memory access

• CPU speed and memory speed developed differently since then

7

Performance gain on
the CPU side is not
through increased

clock frequency, but
due to architecture

(e.g. parallelism)

Figure Copyright © 2019, Elsevier Inc. All rights Reserved

How can we provide a memory system that matches the performance
requirements of today’s CPUs?

8

Desired Memory Properties

• Fast (maximum speed):
• The time between sending the address and receiving/writing data (the

latency) should be as short as possible

• The amount of data that can be read/written per time (the bandwith) should
be as high as possible

• Large (maximum size)
• There should be as many data words as possible stored in memory

• Cheap (minimal cost)
• The costs to build the memory should be as small as possible

9

The Reality on “Fast-Large-Cheap”

• We can only get two of the desired properties
at the same time

• The requirements contradict each other
• Larger is slower

• Faster is more expensive

• …

10Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Properties of Different Memory Technologies

11

Cache

Main Memory

Virtual Memory

Capacity

Sp
e

ed

Technology Price / GB Access Time (ns)

SRAM $100 0.2 - 3

DRAM $3 10 - 50

SSD $0.10 20,000

Bandwidth (GB/s)

100+

30

0.05 - 3

0.001 - 0.1HDD $0.03 5,000,000

Typical Characteristics of memories as of 2021
(based on HH, F8.4)

Properties of Memory Accesses

• Temporal Locality
• Memory accesses have locality in time
• If data used recently, likely to use it again soon
• Example:

• When performing computations, there is a set of input and intermediate variables and that are typically
accessed several times during a computation

• Instructions in a loop are accessed multiple times
• …

• Spatial Locality
• Memory accesses have locality in space
• If data used recently, likely to use nearby data soon
• Examples:

• Instructions are read from memory one after the other in case of a linear code sequence
• Data words are read one after the other when copying data or when reading/writing arrays
• …

12

Hierarchical Memory Design

The properties

• of the different memory
technologies(speed, size, cost) and

• the temporal/special locality of
memory access

lead to the idea of a hierarchical
memory design

13

Instead of building one single memory to
 serve the requests of the CPU …

Hierarchical Memory Design

14

Fast,
Small

big and slow

… we combine all available types of
memory in order to “create the illusion”

that the CPU is connected to memory
that is

FAST & LARGE & CHEAP

Hierarchical Memory Design

15

Fast,
Small

large and slow

The goal is to build a memory system
that appears to the CPU to be at the
same time

• as a fast as small memory

• as large as the biggest memory

Memory Hierarchy – Basic Idea

16

Fast,
Small

big and slow

fa
st

er
 p

er
 d

at
a

w
o

rd

ch
ea

p
er

 p
er

 d
at

a
w

o
rd

Store all your data here

Copy data here that is most likely to be used next

Basic idea:
“Use the properties of temporal and
special locality to predict what is going
to be used next and based on this copy
data to the faster memories”

Analogy – From the Library to your Desk

Three storage locations for books (different size, different access times)

• On your desk

• In your bookshelf

• In the library

You can continuously study at your desk, if you have friends that do the following for you:

• Friend 1: Brings all books that are relevant for all courses that you enroll in a semester to your
bookshelf at home

• Friend 2: Every day puts the books that you need for the courses of the day on our desk

As long as you follow predictable patterns it will hold:

• Your desk (that is immediately accessible) appear as large as the library

• Only if your friends did not predict correctly what you need, you will need to wait

17

Disclaimer:
This example is for

illustration only.
This would not be healthy.

Caches – Realizing a Memory Hierarchy

• Cache:
• Generic term referring to any structure that memorizes frequently used data

• Idea: Instead of performing slow operations repeatedly again, store the result
of these operations

• Example: Cache of a browser

• Caches for processor designs
• Idea: Build small SRAM memories next to the CPU as a cache for data in main

memory

• Modern CPUs typically have
multiple layers of caches

18

CPU Cache

Main
Memory

Processor Chip
CLK

Hard
Disk

HH, F8.3

How to Manage Caches

• Manual: The Programmer explicitly decides when which data is
moved between the different memory levels

• Automatically in Software: A piece of software (e.g. the operating
system) implements an algorithm for an automated caching strategy

• Automatically in Hardware: The Hardware transparently for the
software moves data between different levels of memory

19

Typical Memory Hierarchy

20

Register File
32 data words, below 1ns

SSD
GB/TB range, ~20 µs

Manual split between
register file and memory by
compiler/programmer

register spilling

swapping

Automatic management
in software (operating system)

Memory

Typical Memory Hierarchy

21

Register File
32 data words, below 1ns

L1 cache
KB range, ~1+ ns

L2 cache
low MB range, few ns

L3 cache
MB range, ns range

Main memory (DRAM),
GB range, ns range

SSD
GB/TB range, ~20 µs

Manual split between
register file and memory by
compiler/programmer

Automatic management
in hardware

register spilling

swapping

Automatic management
in software (operating system)

Memory Performance

• Result of a memory access at a particular level can be
• Hit: data found in that level of memory hierarchy

• Miss: data not found (must go to next level)

• For each level there is a hit and a miss rate
• Hit Rate = # hits / # memory accesses

= 1 – Miss Rate

• Miss Rate = # misses / # memory accesses

= 1 – Hit Rate

22

Memory Performance

• Result of a memory access at a particular level can be
• Hit: data found in that level of memory hierarchy
• Miss: data not found (must go to next level)

• For each memory level i there is a hit and a miss rate
• Hit Rate (hi) = # hits / # memory accesses
• Miss Rate (mi) = # misses / # memory accesses
• It holds hi + mi = 1

• For each memory level i there is a
• Memory access time ti

• Average memory access time (AMAT) / Perceived access time Ti

• Calculating the perceived access time (Ti)
• Ti = hi·ti + mi·(ti + Ti+1)
• Ti = ti + mi ·Ti+1

23

Goal and Design Considerations

On each memory level it holds Ti = ti + mi ·Ti+1

• Goal:
• Minimize T1 (This is the average memory access time observed by the CPU); Ideally T1

should not increase much over t1

• Considerations to reach the goal
• Keep mi low:

• Increase the size of the cache (potentially increasing production cost or increasing the access
time ti)

• Lower mi through smart cache management (better predict what is needed next)

• Keep Ti+1 low:
• At each level look for the best tradeoff of size, access time, and cost
• Introduce additional cache hierarchies

24

Designing Caches

25

Cache Setting for Read Operations

26

Memory System

Address

Data

Cache Setting for Read Operations

27

Memory System

Address

Data

Cache
Next Level
of Cache

• Cache
• Receives an address

• Checks if data for this memory location is stored

• If yes, data is delivered

• If not, data is requested from the next cache level and stored in the cache (to
have it in the cache for future accesses – motivated by temporal locality)

…

Metadata Stored in a Cache

A cache not only needs to store data, but also metadata

• Information on the address of the stored data blocks: Upon receiving
an address, the cache needs to be able to determine if the block
containing that address is in the cache or not

• Bookkeeping data: Additional metadata is necessary e.g. to keep
information on valid blocks and to implement cache replacement
policies

28

Naïve Approach

Assume
• a 32-bit CPU sending a 32-bit address
• a cache is able to store 8 data words
• a cache storing the triple of (a valid bit, the address of the data word in main memory, the cached data word)

Behavior
• The cache is empty at the beginning (the valid bits for all entries are 0)
• When the cache receives an address, the cache searches all 8 storage locations to determine if data for this

address is stored or not (valid bit needs to be set and address needs to match)
• If there is match, data is delivered
• If there is a miss, data is looked up in the next level of the memory hierarchy and stored in the cache on an

empty slot. In case the cache is full (8 valid entries) a cache entry needs to evicted

Observations
• It is expensive to have data transfers between caches at the data word level (many transfers)
• It is expensive to search through the entire cache for every access (assume a cache state that stores

megabytes of data)
• We need some replacement policy to determine which data word to evict, in case we need to add an entry to

a cache that is already full (8 valid entries)
29

Cached Data WordAddressValid

Address

Let’s make this more efficient!

Basics Design Principles of Caches

• Store larger blocks and transfer larger blocks of memory between
different levels of the memory hierarchy instead of single words (this
is motivated by spatial locality)
• Capacity (C): The number of data words that can be stored in the cache
• Block Size(b): The size of the blocks; A cache can store B=C/b blocks
• Block or Cache Line: This refers to the content of the data block

• Avoid that the entire cache needs to be searched upon access
• Cache sets (S): Split the cache into cache sets such that each address of the

main memory maps to exactly one set of the cache
• In the simplest case S = B. In this case each storage location for a block in the

cache corresponds to a different cache set. This is called a “directly mapped
cache”.

30

Directly Mapped Cache

• The mapping of addresses to
cache sets needs to be efficient
→ we use bits of the address as
index for the cache set

• Example:
• 1 block = 1 word

• Cache with 8 blocks

• The 32-bit address is therefore
interpreted as follows

31HH, F8.6

2327

Tag Byte OffsetSet

Directly Mapped Cache

32HH, F8.5

2327

Tag Byte OffsetSet

Example mapping for address

0xFFFFFFE4:

This address maps to set 001

HH, F8.6

Implementation of Directly Mapped Caches

33

HH, F8.7

• The cache stores the triplet (valid bit,
tag, data) for each entry

• Read operation:
• The 3 bits of the set field of the address are

used as index to read (valid bit, tag, data)
from the cache memory

• In case of a hit, the data is delivered to the
CPU.

Performance of a Directly Mapped Cache

• During the first loop execution, all loads lead to a miss

• During the four subsequent executions, the data is in the cache

• Statistics: 15 loads in total, 3 miss, 12 hit → 12/15 = 80% hit ratio
34

HH, F8.8

Performance of a Directly Mapped Cache

• During the first loop execution, all loads lead to a miss

• Also during subsequent executions, there is no hit

• Statistics: 10 loads in total, 10 miss, 0 hit → 0% hit ratio
35

Note: Address 0x4 and 0x24 both map to cache set 1:

0x4: 000 001 00
0x24: 001 001 00

2327

Tag Set Byte Offset

Drawback of Directly Mapped Caches

• There is only one storage location in the cache for all memory
elements that map to the same cache set
→ two blocks that map to the same set cannot be in the cache at the
same time.

• This can lead to low hit rates (even 0% in case of alternating accesses
to addresses mapping to the same cache set)

→We introduce “Set Associative Caches”, which provide multiple
storage locations per set

36

We “Reshape” the Cache to
“Two Caches With Half the Size”

37

HH, F8.7 HH, F8.9

Set Associative Caches

• An N-Way set associative cache, provides N
storage locations for each set.

• Each storage location is called “way”

• Upon access, the hardware searches in all ways for the cached data

• Example cache:
• Number of blocks (B): B = 8
• Ways (N): N = 2
• Sets (S): S = 4
• Each block stores one word

38

HH, F8.9

2327

Tag Set Byte Offset

2228

Note the difference to the direct mapping: We now have only 4 sets
→ 2 instead of 3 bits for set indexing; tag size 28 instead of 27

1-Way (direct mapping)

2-Way

Performance – Repetition of Example

39

Address 0x4 and 0x24 still map to cache set 1:

0x4: 0000 01 00
0x24: 0010 01 00

However, we now have two ways for storage:

2228

Tag Set Byte Offset

After the first loop
iteration, all loads lead
to a cache hit HH, F8.10

A Fully Associative Cache

• If a cache consists of a single set with B ways, this is called an “fully
associative cache”. It holds N = B, where B is the number of blocks in the
cache

• In a fully associated cache every address can be cached at every location

• Fully associative caches are typically only done for small cache sizes (higher
number of ways → higher number of comparators → higher power
consumption and higher latency)

40HH, F8.11

Changing the Block Size (b)

• Motivated by spatial locality, increasing
the block size is another parameter
to improve the hit ratio

• Example cache:
• Block size (b): b = 4 words

• Total number of blocks (B): B = 8 words

• Ways (N): N = 1

• Sets (S): S = 2

41

HH, F8.12

HH, F8.7

Increased Block Size – Performance Example

42
HH, F8.14

Address 0x4, 0x8, and 0xC map to cache set 0:

0x4: 000 0 01 00
0x8: 000 0 10 00
0xC: 001 0 11 00

However, there is no eviction as the three words are in the same
block:

27

Tag Set Byte Offset

After the first loop
iteration, all loads lead
to a cache hit

221

Block Offset

Summary of Parameters for Different Cache
Organizations

Cache Organization Number of Ways (N) Number of Sets (S)

Direct Mapping 1 B

Set Associative 1 < N < B B/N

Fully Associative B 1
43

• The number of blocks (B) in in
a cache is given by
B = (C / b)

• The parameters are selected
such that the number of sets
(S=B/N) is a power of two

We define a cache through
• Capacity (C)

• Block size (b) – also called length of a
cache line

• Number of ways (N)

Examples of Caches Sizes and the
Corresponding Address Mapping
• Example 1 (1024 byte Capacity)

• Block size (b): 16 byte

• Ways (N): 2 ways

• Example 2 (1024 byte Capacity)
• Block size (b): 64 byte

• Ways (N): 4 ways

• Example 3 (1024 byte Capacity)
• Block size (b): 32 byte

• Ways (N): 1 way

44

2523 2

4 bytes / word

4 words / block

B= 64 blocks in
total split in 2 ways
→ 32 sets

Tag size (the rest of
the address)

2224 4

B= 16 blocks in
total split in 4 ways
→ 4 sets

16 words / block

2522 3

B= 32 blocks in
total; only one way
→ 32 sets

8 words / block

Options When “Doubling the Cache Size”

• Assume you have the simple cache we had at the
beginning

• Assume we can afford the cost to double the size of
data storage

• Design Options:
• Double the number of sets (Cache stays a 1-way cache

with same block size) → +1 bit in set selection

• Double the block size (Cache stays a one 1-way cache
with same number of sets) → +1 bit for Block offset

• Double the number of ways (Number of sets and block
size stays) → no change in the address decoding

45

HH, F8.7

Replacement Policies

46

Which Block to Replace?

• In case of a cache miss, a new block needs to be stored in the cache

• In case, there are invalid blocks, use these blocks first

• In case all are valid, one block needs to be evicted. There are several
possible replacement policies:
• Random
• FIFO
• Least recently used
• Not most recently used
• Least frequently used?
• …

47

Implementing an LRU (Least Recently Used)
Policy
• Goal

• Evict the block that was least recently accessed

• 2-way set associative cache
• Add one bit of metadata to indicate which way has been access least recently

• N-way set associative cache
• Implementing LRU perfectly is typically too expensive to be implemented for

caches with 4+ ways

• Note: LRU is an approximation to predict locality and not necessarily the best
possible replacement policy anyway

48

Alternatives Policies

• Random
• Just replace a block randomly

• Pseudo-LRU
• Split the ways of a cache into two groups and track which of the two groups has been

used most recently
• Upon eviction select a random block from the group that was least recently used

• Note
• The hit rate in practice strongly depends on the executed code
• Random replacement policies also lead to good hit rates as other replacement

strategies are also not perfect (e.g. when the program is working on more memory
that fits into the cache, there is continuous eviction)

49

Handling Write Opertions

Two Options for Write Handling

• Write-Back Cache
• Idea

• When data is written to memory, update only the cache and do not update further up in the memory hierarchy
• Write to the next cache level when the cache line is evicted

• Pros
• In case of multiple writes to the same block, this is more efficient

• Cons
• Needs a “dirty bit” in the cache to indicate whether block has been written to or not
• More complex design

• Write-Through Cache
• Idea

• Update the value in the cache and update the next level of the memory hierarchy

• Pros
• Simpler design

• Cons
• No combination of writes
• More transfers between the memory

51

Two Options for Allocation

• Allocate On Miss
• Idea

• Transfer a memory block into the cache, if there is a write on the block

• Pros
• Can combine writes
• Simpler design (read and write have the same behavior)

• Cons
• Can lead to more memory transfers

• No Allocation on Miss
• Idea

• Don’t transfer a block into main memory upon write
• Pros

• Uses less cache space

• Cons
• No combination of writes

52

Which Cache to Use Where?

Which Type of Cache to Use Where in the the
Memory Hierarchy?
• Options for Cache Organization

• Cache Size
• Associativity
• Block Size

• Additional Options for Implementation
• Replacement policy
• Write Handling (write back vs. write through)
• Separate cache for instructions and data vs. unified cache
• Exclusive vs. inclusive caches (in case of exclusive caches, data is not duplicated

across cache layers – implies more complex cache management)
• Separate implementation of tags and data in a tag memory and a data memory
• …

54

Goal

The goal of the overall memory system is to minimize the average
memory access time (AMAT)

→minimize cache latency and minimize the number of cache misses at
each level

55

Cache Misses

Reasons for Cache Misses
• Compulsory Misses: Cache misses that occur independent of the cache design

• Capacity Miss: Cache misses that occur because the cache can’t store all needed
data concurrently

• Conflict Misses: Cache misses that occur because different addresses map to the
same set and that then evict blocks that are still needed by a program

Effect of Parameters
• Increasing the block size can reduce compulsory misses (spatial locality), but can

increase the conflict misses

• Increasing the capacity can decrease capacity and conflict misses, but not
compulsory misses

• …
56

Effect of Associativity

57
HH, F8.17

The different gray parts show
the conflict misses for the
different levels of associativity

Effect of Block Size

58

HH, F8.18

General Considerations

• L1 Cache
• This is the point where latency matters the most

latency overrules all other properties

• Latency needs to be aligned with clock rate of CPU

• On most systems, there is a separate data and
instruction cache (avoiding mutual eviction of data and instructions)

• L2 and higher levels
• Typically unified caches (data and code in the same cache)

• Latency less and less dominant with each level (allows larger size, allows doing
tag access and data access sequentially, …)

59

HH, F8.16

Product Examples

• Intel (13th Generation)
• L1 (P cores): 12-way 48KB for data; 8-way 32KB for instructions
• L1 (E cores): 8-way cache; 32KB for data; 64KB for instructions
• L2 (P cores): 10-way non-inclusive cache; 1.25MB
• L2 (E cores): 16-way non-inclusive cache; 2MB
• L3: 12-way non-inclusive cache ; up to 3MB per core (shared between all cores)
• Lenth of cache line: 64 bytes

• Apple M2
• L1 (P cores): 192KB instruction and 128 KB data cache
• L1 (E cores): 128KB instruction and 64 KB data cache
• L2: 16MB (shared)
• L3: 8 MB – 96 MB (shared)

60Notation - P cores: optimized for performance; E cores: optimized for energy efficiency

Cache Coherency

• In multiprocessor systems, at least the first-level cache is not shared between
cores → This can lead to coherence problems: processor 1 reads value A;
processor 2 reads value A; processor 1 writes value A; processor 2 reads value A
(from its L1 cache)

• It is necessary to ensure cache coherence
• A read by a processor A from a location X that follows a write by a processor A to location X

returns the value that was written by processor A in case there was no write on location X by
another processor

• A read by a processor A from a location X that follows a write to location X by processor B
(with no writes made by any other processor), must return the value written by processor B
(given that there has been sufficient time between the write and the read).

• Writes to the same memory location are seen in the same order by all processors
(Serialization)

61

Examples of Cache Access Patterns

62

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

63

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

64

Addresses for memory accesses:
Hex Binary
0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

65

Addresses for memory accesses:
Hex Binary
0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Offset

Block indexTag

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

66

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Cache Miss.
The block is
copied from
memory into

the data
cache. The tag

memory
stores 00 at
index 110.

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

67

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

We access
the same
block as

before →
Cache Hit

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

68

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000 M
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Access to a
new block →

cache miss

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

69

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000 M
0x39 00 111 001 H

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

70

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000 M
0x39 00 111 001 H

0x36 00 110 110 H
0x37 00 110 111 H
0x38 00 111 000 H
0x39 00 111 001 H

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at
memory location 0x70; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];

71

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at
memory location 0x70; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];

72

Addresses for memory accesses:
Hex Binary
0x36 00 110 110
0x70 01 110 000
0x37 00 110 111
0x71 01 110 001
0x38 00 111 000
0x72 01 110 010
0x39 00 111 001
0x73 01 110 011

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at
memory location 0x70; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];

73

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x70 01 110 000 M
0x37 00 110 111 M
0x71 01 110 001 M
0x38 00 111 000 M
0x72 01 110 010 H
0x39 00 111 001 H
0x73 01 110 011 H

Virtual Memory

74

Systems Directly Accessing Physical Memory

75

CPU

Memory

(Hierarchical
Memory System

consisting of
Caches and the
Main Memory)

Physical address

Data

Programmer’s View

• The CPU sends a physical
address

• The address “runs” through
the memory system and
finally a data value is
returned from the address
(location) requested by the
CPU

76

0

N -1

CPU

Physical address

Data

Observations from a Programmer’s Perspective
Observe

• The programmer needs to manage the memory layout (i.e. what is where in the memory)
• The memory addresses are a part of the program → changing an address means changing the program

Difficulties

• Difficult to cope with devices with different memory sizes
• If you extend memory on a device, this may impact the programming
• If you execute the same program on two different machines with different amounts of memory, this is likely

the code will not be located at the same physical location

• Difficult to support code and data relocation

• Difficult to support data/code sharing across different programs

• Difficult to support multiple processes

→ Direct physical memory access is mainly used on small embedded devices
77

Virtual Memory

• Idea
• Make the programmer’s view of memory independent of the memory that is

physically available and independent of physical locations of storage

• Make memory appear as an almost “infinite resource” to the programmer

• Basic Concept
• Introduce an additional level of abstraction – Virtual Memory

78

CPU
Virtual address

Physical address
Memory

Memory
Management Unit

(MMU)

(Mapping of Virtual to
Physical Addresses)

HDD (or SSD)

Properties and Benefits

• Properties
• The programmer does not work with physical addresses any more

• Each process has its own mapping of virtual to physical addresses

• The HDD is added as an additional memory to the memory hierarchy
(slowest, but largest)

• Benefits
• Relocation

• Sharing of memory
between processes

• Isolation of processes

79

HH, F8.20

Basics On the Address Translation

• Address translation is done at the level of pages
• Virtual memory is divided into virtual pages

• Virtual pages are mapped to physical pages (also called frames) via the page table

• Main memory acts as fully associative cache for the HDD (managed by OS)
• Every virtual page can map to every physical page

• Note: The approach of using a page table is different than the approach we used in the HW-managed
caches → we do not need to search through all physical memory locations

• A memory access to a virtual page that is not mapped to a physical page, leads to a page
fault
• In case the page is located on the HDD, the OS brings the page into main memory – the OS defines

the replacement strategy for pages in main memory

• In case of an access is outside the address space of the process, this leads to a segmentation fault 80

HH, F8.20

Analogies for Caches and Virtual Memory

81

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

High-Level View on Address Translation

82

Virtual Page Number

Physical Page Number

HH, F8.22

Address Translation - Example

• System
• Virtual Memory Size: 2 GB = 231 bytes

• Physical Memory Size: 128 MB = 227 bytes

• Page Size: 4KB = 212 bytes

• Number of Pages
• Virtual address: 31 bits

• Physical address: 27 bits

• Page offset: 12 bits

• # Virtual pages = 231/212 = 219 (VPN = 19 bits)

• # Physical pages = 227/212 = 215 (PPN = 15 bits)

83HH, F8.22

Example Mapping VPN → PPN

• VPN 00002→ PPN 7FFF

• VPN 00005→ PPN 0001

• VPN 7FFFC→ PPN 7FFE

• VPN 7FFFD→ PPN 0000

84

HH, F8.21

The Page Table

The page table maps virtual to physical addresses

• Page Table
• Is indexed via the virtual page number
• Contains a valid bit and the physical address for every

page table entry (PTE)
• Contains also additional metadata (replacement, dirty, …)
• Typical page table entry size on 32-bit systems (PTE_SIZE):

1 word (4 bytes)

• Storing the page table
• Page table is large
• Page table is stored in physical memory
• The Page Table Base Register specifies location of the

page table in physical memory
(satp on RISC V, CR3 on Intel)

85

Page Table Base
Register

HH, F8.24

Page Table Translation Example

• What is the physical address of the virtual
address 0x5F20?

• We first need to find the VPN

• The page size is 4KB (12 bit offset)

→ VPN = 0x5 F20

86

Page Table Base
Register

Page Table Translation Example

• VPN = 5

• Calculation of the address in the page
table: PTBR + VPN*PTE_SIZE

87

Page Table Base
Register

Page Table Translation Example

88

Page Table Base
Register

• What is the physical address of the virtual
address 0x61FF?

• This entry is not valid and leads to a
page fault. It needs to be swapped from
the disk into memory

Doing a Memory Access (Load/Store)

1. The CPU sends a virtual address to the memory management unit (MMU)

2. MMU determines the PPN by performing a load from (PTBR + VPN*PTE_SIZE)

3. If the entry is not valid, swap the page from the HDD to main memory

4. If the entry is valid, concatenate the offset of the virtual address to the PPN to
receive the physical address of the data

5. Perform a load/store based on the physical address

→Note: Each memory access now requires two memory accesses:
1x load from page table
1x the actual load/store operation

(+potentially swapping)

89

Translation Lookaside Buffer (TLB)

• If it was necessary to do two memory operations for every load/store, this would have a
huge performance impact

• The Translation Lookaside Buffer (TLB) is a Cache for page-table entries

• Highly/Fully associative

• Typically 16 – 512 entries

• TLBs achieve very high hit rates (95% - 99%) → only one memory operation for a
load/store and no additional load. Only in case of a TLB miss, the page table entry needs
to be fetched from memory.

• TLBs achieve very high hit rates because of high spatial/temporal locality

90

TLB Structure

91
HH, F8.25

The Size of a Page Table

• How large is a page table?

• Consider a 64-bit system with 4KB pages

→252 page table entries; each entry has 4 bytes → 254 bytes for storing
the page table for one process

→ Keeping this large table in memory is not practical, and we need to
optimize

92

Offset
(12 bit)

VPN (52 bit)

Multi-Level Page Tables

• Motivation
• The virtual memory space is typically used only sparsely (a process typically

does not use all its virtual memory space)

• A hierarchical page-table scheme (tree-like structure) only requires to keep a
smaller first-level page table in physical memory

• On 32-bit systems we typically use 2-level page tables (it is up to 5
levels on 64-bit systems)

93

Example of 2-Level Paging
• Assume a virtual address space of 2GB

(31 bit):
• 9 bit page table number (first level)

• 10 bit page table offset (second level)

• 12 bit page offset

• Note: Typical Programs will not need all
entries in the first-level page table

→ page tables on the second level only
need to be allocated for those memory
parts that are actually needed

94

Example Lookup

What is the physical address of virtual
address 0x03FEFB0?

• We determine the page table number
and use this to index the first-level page
table

• This leads to 0x2375000 as physical
address for the second-level page table.

• We access the second-level page-table at
index 0x3FE and receive the physical page
number 0x23F1

• The physical address is 0x23F1FB0

95

Example from the RISC-V Manual (32 bit)

• Pointer Layout for sv32 mode:

• This mode supports 4KB pages and 4MB megapages
• For 4KB pages, we have two levels of paging (VPN[1] and VPN[0])

• For 4MB megapages, the second level is skipped and the first table directly
translates the virtual address to a physical address (Note: 22 bit correspond to
4MB)

96

Example from the RISC-V Manual (32 bit)

• Sv32 allows to translate a 20-bit virtual page number (VPN) to a a 22-
bit physical page number (PPN)

• Virtual address:

• Physical address:

• Page Table Entry:

97

Metainformation on page (valid bit, access rights, …)

Summary on Virtual Memory

• Virtual memory
• provides a “fresh empty memory” for each process
• increases memory capacity by adding the HDD as an additional level of the memory

hierarchy; The operating system manages swapping

• Mechanisms
• The memory management unit maps virtual addresses to physical address via page

tables (implemented in a hierarchical manner to save space in memory)

• The page table entries contain metadata defining e.g. access rights

• The TLB acts as cache for page table entries (doing the mapping of virtual to physical
page number)

98

Combining Virtual Memory and Caches

99

Virtual Memory and Caches

• In this chapter, we have built an abstraction for physical memory that
consists of a memory hierarchy with different levels of caches

• We have then added another layer of abstraction by introducing virtual
memory that is mapped to physical memory via an MMU

→All the memory lookups for page tables that don’t lead to a TLB hit, will
run through the memory system with its caches

Note: On large systems with multi-level paging, multiple levels of TLB caches,
and multiple levels of caches for the physical memory this creates quite
some interactions …

100

Example System with 1-level Paging, 1 TLB
Cache and 1 Cache for Physical Memory

• A memory access can encounter
• A TLB miss → the MMU need to read

the page table from memory to get
the physical address

• A Page Fault → the operating system
needs to swap the page from HDD to
physical memory

• A Cache Miss→ data needs to loaded
from main memory into the cache

• In best case, there is a hit on all
types of accesses

• In the worst case, there is a miss on
all types of accesses

101Figure Copyright © 2019, Elsevier Inc. All rights Reserved

Optimizing Speed – Positioning of the Cache

102

• Misses on TLB and cache accesses lead to significant overheads

• Is it possible to do other arrangements of TLB and caches for better
speed?

• The example shown corresponds to what is called a “Physically
indexed and Physically Tagged” (PIPT) Cache → The cache only works
with physical addresses

VA PA

VA PA

TLB

Optimizing Speed – Positioning of the Cache

103

CPU Cache Next Caches /Memory

CPU Cache TLB Next Caches /Memory

CPU TLB

Cache

Next Caches /Memory

Virtual
Address
(VA)

Physical
Address
(PA)

“Physically
indexed
Physically
Tagged” (PIPT)

“Virtually
indexed
Virtually
Tagged” (VIVT)

“Virtually
indexed
Physically
Tagged” (VIPT)

Physically indexed Physically Tagged Cache
(PIPT)
• Cache works as the caches we have discussed at the beginning of this

slide set

• Drawback:

We need to wait with the cache access until the TLB delivers the
physical address before we can access the cache

104

TLBCPU Cache Next Caches /Memory

VA PA

Virtually Indexed Virtually Tagged Cache
(VIVT)

• Cache works on virtual addresses only – no need to wait for TLB

• TLB access is only needed in case of a cache miss

• Drawback:
Different processes have different mappings (virtual tag is not unique) →
shared memory can be in cache multiple times. This aliasing needs to be
handled.

105

CPU Cache TLB Next Caches /Memory

VA PA

Virtually indexed Physically Tagged Cache
(VIPT)
• The virtual address is used to index the cache, but the physical address is used for the tagging of the cache

• Advantage: Lookups of TLB and Cache can be started in parallel.

• Disadvantage: Aliasing may occur if a process accesses the same physical memory via two different virtual addresses

• Typical compromise:
• Keep the size of the cache so low that the tagging is just done using address bits of the page offset (which is the same for virtual and physical

addresses)
• Example: 4KB Page size (12 bit used for offset) → Build caches that are not larger than 4KB * (Number of Ways)

106

CPU TLB

Cache

Next Caches /Memory

VA PA

Simulating Caches with QtRVSim

107

QtRVSim

• QtRVSim allows configuring different caches for the basic CPU (non-
pipelined) that we have designed earlier in the lecture

108

Configure Your Instruction
and Data Caches here

QtRVSim

109

Configuration

Watch activity and content
during the simulation

QtRVSim

110

L1 Data
Cache

L1
Instruction

Cache

Examples

• Look at the examples repo and simulate the code examples in the
directory

con09.01_QtRVSim_cache_examples

• Use the following files as starting point – change the files, the cache
configuration, add more load operations, add store operations, … to
see effects on the hit ratio of the cache:
• cache_example_1.S

• cache_example_2.S

111

Errata

This errata slide lists typos that have been fixed after the recording of
the lecture during winter term 2023/2024

• 29.01.2024:
• Slide 44: 25 → 24

• Slides 103 – 106: PT → PA

112

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2: Note
	Slide 3: Von Neumann Model
	Slide 4: The Interface Between CPU and Memory
	Slide 5: The Interface Between CPU and Memory
	Slide 6: We want Speed – Design Goals of CPU and Memory
	Slide 7: Who is Faster?
	Slide 8
	Slide 9: Desired Memory Properties
	Slide 10: The Reality on “Fast-Large-Cheap”
	Slide 11: Properties of Different Memory Technologies
	Slide 12: Properties of Memory Accesses
	Slide 13: Hierarchical Memory Design
	Slide 14: Hierarchical Memory Design
	Slide 15: Hierarchical Memory Design
	Slide 16: Memory Hierarchy – Basic Idea
	Slide 17: Analogy – From the Library to your Desk
	Slide 18: Caches – Realizing a Memory Hierarchy
	Slide 19: How to Manage Caches
	Slide 20: Typical Memory Hierarchy
	Slide 21: Typical Memory Hierarchy
	Slide 22: Memory Performance
	Slide 23: Memory Performance
	Slide 24: Goal and Design Considerations
	Slide 25: Designing Caches
	Slide 26: Cache Setting for Read Operations
	Slide 27: Cache Setting for Read Operations
	Slide 28: Metadata Stored in a Cache
	Slide 29: Naïve Approach
	Slide 30: Basics Design Principles of Caches
	Slide 31: Directly Mapped Cache
	Slide 32: Directly Mapped Cache
	Slide 33: Implementation of Directly Mapped Caches
	Slide 34: Performance of a Directly Mapped Cache
	Slide 35: Performance of a Directly Mapped Cache
	Slide 36: Drawback of Directly Mapped Caches
	Slide 37: We “Reshape” the Cache to “Two Caches With Half the Size”
	Slide 38: Set Associative Caches
	Slide 39: Performance – Repetition of Example
	Slide 40: A Fully Associative Cache
	Slide 41: Changing the Block Size (b)
	Slide 42: Increased Block Size – Performance Example
	Slide 43: Summary of Parameters for Different Cache Organizations
	Slide 44: Examples of Caches Sizes and the Corresponding Address Mapping
	Slide 45: Options When “Doubling the Cache Size”
	Slide 46: Replacement Policies
	Slide 47: Which Block to Replace?
	Slide 48: Implementing an LRU (Least Recently Used) Policy
	Slide 49: Alternatives Policies
	Slide 50: Handling Write Opertions
	Slide 51: Two Options for Write Handling
	Slide 52: Two Options for Allocation
	Slide 53: Which Cache to Use Where?
	Slide 54: Which Type of Cache to Use Where in the the Memory Hierarchy?
	Slide 55: Goal
	Slide 56: Cache Misses
	Slide 57: Effect of Associativity
	Slide 58: Effect of Block Size
	Slide 59: General Considerations
	Slide 60: Product Examples
	Slide 61: Cache Coherency
	Slide 62: Examples of Cache Access Patterns
	Slide 63: Example: Cache Access Patterns of C Code
	Slide 64: Example: Cache Access Patterns of C Code
	Slide 65: Example: Cache Access Patterns of C Code
	Slide 66: Example: Cache Access Patterns of C Code
	Slide 67: Example: Cache Access Patterns of C Code
	Slide 68: Example: Cache Access Patterns of C Code
	Slide 69: Example: Cache Access Patterns of C Code
	Slide 70: Example: Cache Access Patterns of C Code
	Slide 71: Example: Cache Access Patterns of C Code
	Slide 72: Example: Cache Access Patterns of C Code
	Slide 73: Example: Cache Access Patterns of C Code
	Slide 74: Virtual Memory
	Slide 75: Systems Directly Accessing Physical Memory
	Slide 76: Programmer’s View
	Slide 77: Observations from a Programmer’s Perspective
	Slide 78: Virtual Memory
	Slide 79: Properties and Benefits
	Slide 80: Basics On the Address Translation
	Slide 81: Analogies for Caches and Virtual Memory
	Slide 82: High-Level View on Address Translation
	Slide 83: Address Translation - Example
	Slide 84: Example Mapping VPN  PPN
	Slide 85: The Page Table
	Slide 86: Page Table Translation Example
	Slide 87: Page Table Translation Example
	Slide 88: Page Table Translation Example
	Slide 89: Doing a Memory Access (Load/Store)
	Slide 90: Translation Lookaside Buffer (TLB)
	Slide 91: TLB Structure
	Slide 92: The Size of a Page Table
	Slide 93: Multi-Level Page Tables
	Slide 94: Example of 2-Level Paging
	Slide 95: Example Lookup
	Slide 96: Example from the RISC-V Manual (32 bit)
	Slide 97: Example from the RISC-V Manual (32 bit)
	Slide 98: Summary on Virtual Memory
	Slide 99: Combining Virtual Memory and Caches
	Slide 100: Virtual Memory and Caches
	Slide 101: Example System with 1-level Paging, 1 TLB Cache and 1 Cache for Physical Memory
	Slide 102: Optimizing Speed – Positioning of the Cache
	Slide 103: Optimizing Speed – Positioning of the Cache
	Slide 104: Physically indexed Physically Tagged Cache (PIPT)
	Slide 105: Virtually Indexed Virtually Tagged Cache (VIVT)
	Slide 106: Virtually indexed Physically Tagged Cache (VIPT)
	Slide 107: Simulating Caches with QtRVSim
	Slide 108: QtRVSim
	Slide 109: QtRVSim
	Slide 110: QtRVSim
	Slide 111: Examples
	Slide 112: Errata

