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Note

• These slides use figures from the book “Digital Design and Computer Architecture 
RISC-V Edition” by Sarah L. Harris and David Harris. These figures are kindly 
provided by Elsevier and the Authors for educational purposes.

• The figures from the book have the caption “HH, F8.x” in the slides, where x 
stands for the figure number in chapter 8 of the book

• For all figures with this caption, it holds: “Figure Copyright © 2022, Elsevier Inc. 
All rights Reserved”
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Von Neumann Model
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The Interface Between CPU and Memory
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The Interface Between CPU and Memory
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We want Speed –
Design Goals of CPU and Memory
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Minimize the time  
access time, i.e. the 

between receiving an 
address and providing 

data 

Maximize the number 
of executed instructions 

per time

MemoryCPU

• The speed of the CPU and the memory needs to be match

• If the CPU is faster than the memory, the CPU needs to wait for the memory to deliver instructions/data

• If the memory is faster than the CPU, the full speed of the memory is not used and limited by the speed of 
the CPU



Who is Faster?

• In 1980, we had the situation that it in one clock cycle of the CPU, it 
was possible to do one memory access

• CPU speed and memory speed developed differently since then
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Performance gain on 
the CPU side is not 
through increased 

clock frequency, but 
due to architecture 

(e.g. parallelism)

Figure Copyright © 2019, Elsevier Inc. All rights Reserved



How can we provide a memory system that matches the performance 
requirements of today’s CPUs?
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Desired Memory Properties

• Fast (maximum speed):
• The time between sending the address and receiving/writing data (the 

latency) should be as short as possible

• The amount of data that can be read/written per time (the bandwith) should 
be as high as possible

• Large (maximum size)
• There should be as many data words as possible stored in memory

• Cheap (minimal cost)
• The costs to build the memory should be as small as possible

9



The Reality on “Fast-Large-Cheap”

• We can only get two of the desired properties 
at the same time

• The requirements contradict each other
• Larger is slower

• Faster is more expensive

• …

10Figure Copyright © 2019, Elsevier Inc. All rights Reserved



Properties of Different Memory Technologies
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Technology Price / GB Access Time (ns)

SRAM $100 0.2 - 3

DRAM $3 10 - 50

SSD $0.10 20,000

Bandwidth (GB/s)

100+

30

0.05 - 3

0.001 - 0.1HDD $0.03 5,000,000

Typical Characteristics of memories as of 2021 
(based on HH, F8.4)



Properties of Memory Accesses

• Temporal Locality
• Memory accesses have locality in time
• If data used recently, likely to use it again soon
• Example:

• When performing computations, there is a set of input and intermediate variables and that are typically 
accessed several times during a computation

• Instructions in a loop are accessed multiple times
• …

• Spatial Locality
• Memory accesses have locality in space
• If data used recently, likely to use nearby data soon
• Examples:

• Instructions are read from memory one after the other in case of a linear code sequence
• Data words are read one after the other when copying data or when reading/writing arrays
• …
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Hierarchical Memory Design

The properties 

• of the different memory 
technologies(speed, size, cost)  and 

• the temporal/special locality of 
memory access 

lead to the idea of a hierarchical 
memory design
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Instead of building one single memory to
 serve the requests of the CPU …



Hierarchical Memory Design
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… we combine all available types of 
memory in order to “create the illusion” 

that the CPU is connected to memory 
that is

FAST & LARGE & CHEAP



Hierarchical Memory Design
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Fast,
Small

large and slow

The goal is to build a memory system 
that appears to the CPU to be at the 
same time 

• as a fast as small memory

• as large as the biggest memory



Memory Hierarchy – Basic Idea
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Store all your data here

Copy data here that is most likely to be used next

Basic idea:
“Use the properties of temporal and 
special locality to predict what is going 
to be used next and based on this copy 
data to the faster memories”



Analogy – From the Library to your Desk

Three storage locations for books (different size, different access times)

• On your desk

• In your bookshelf

• In the library 

You can continuously study at your desk, if you have friends that do the following for you:

• Friend 1: Brings all books that are relevant for all courses that you enroll in a semester to your 
bookshelf at home 

• Friend 2: Every day puts the books that you need for the courses of the day on our desk

As long as you follow predictable patterns it will hold:

• Your desk (that is immediately accessible) appear as large as the library 

• Only if your friends did not predict correctly what you need, you will need to wait

17

Disclaimer: 
This example is for 

illustration only. 
This would not be healthy.



Caches – Realizing a Memory Hierarchy

• Cache:
• Generic term referring to any structure that memorizes frequently used data

• Idea: Instead of performing slow operations repeatedly again, store the result 
of these operations

• Example: Cache of a browser

• Caches for processor designs
• Idea: Build small SRAM memories next to the CPU as a cache for data in main 

memory

• Modern CPUs typically have 
multiple layers of caches

18

CPU Cache

Main
Memory

Processor Chip
CLK

Hard 
Disk

HH, F8.3



How to Manage Caches

• Manual: The Programmer explicitly decides when which data is 
moved between the different memory levels 

• Automatically in Software: A piece of software (e.g. the operating 
system) implements an algorithm for an automated caching strategy

• Automatically in Hardware: The Hardware transparently for the 
software moves data between different levels of memory
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Typical Memory Hierarchy
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Register File
32 data words, below 1ns

  

SSD
GB/TB range, ~20 µs
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Typical Memory Hierarchy
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Register File
32 data words, below 1ns

L1 cache
KB range, ~1+ ns

L2 cache
low MB range, few ns

L3 cache 
MB range, ns range

Main memory (DRAM), 
GB range, ns range

SSD
GB/TB range, ~20 µs

Manual split between 
register file and memory by 
compiler/programmer

Automatic management
in hardware

register spilling

swapping

Automatic management
in software (operating system)



Memory Performance

• Result of a memory access at a particular level can be
• Hit: data found in that level of memory hierarchy

• Miss: data not found (must go to next level)

• For each level there is a hit and a miss rate 
• Hit Rate = # hits / # memory accesses

= 1 – Miss Rate

• Miss Rate = # misses / # memory accesses

= 1 – Hit Rate
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Memory Performance

• Result of a memory access at a particular level can be
• Hit: data found in that level of memory hierarchy
• Miss: data not found (must go to next level)

• For each memory level i there is a hit and a miss rate 
• Hit Rate (hi) = # hits / # memory accesses
• Miss Rate (mi)  = # misses / # memory accesses
• It holds hi + mi = 1

• For each memory level i there is a 
• Memory access time ti

• Average memory access time (AMAT) / Perceived access time Ti

• Calculating the perceived access time (Ti)
• Ti = hi·ti + mi·(ti + Ti+1)
• Ti = ti + mi ·Ti+1

23



Goal and Design Considerations

On each memory level it holds Ti = ti + mi ·Ti+1

• Goal: 
• Minimize T1 (This is the average memory access time observed by the CPU); Ideally T1

should not increase much over t1

• Considerations to reach the goal
• Keep mi low: 

• Increase the size of the cache (potentially increasing production cost or increasing the access 
time ti)

• Lower mi through smart cache management (better predict what is needed next)

• Keep Ti+1 low: 
• At each level look for the best tradeoff of size, access time, and cost
• Introduce additional cache hierarchies
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Designing Caches 
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Cache Setting for Read Operations
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Cache Setting for Read Operations
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Memory System

Address

Data

Cache
Next Level 
of Cache

• Cache 
• Receives an address

• Checks if data for this memory location is stored

• If yes, data is delivered

• If not, data is requested from the next cache level and stored in the cache (to 
have it in the cache for future accesses – motivated by temporal locality)

…



Metadata Stored in a Cache

A cache not only needs to store data, but also metadata

• Information on the address of the stored data blocks: Upon receiving 
an address, the cache needs to be able to determine if the block 
containing that address is in the cache or not

• Bookkeeping data: Additional metadata is necessary e.g. to keep 
information on valid blocks and to implement cache replacement 
policies 

28



Naïve Approach

Assume 
• a 32-bit CPU sending a 32-bit address
• a cache is able to store 8 data words
• a cache storing the triple of (a valid bit,  the address of the data word in main memory, the cached data word)

Behavior
• The cache is empty at the beginning (the valid bits for all entries are 0)
• When the cache receives an address, the cache searches all 8 storage locations to determine if data for this 

address is stored or not (valid bit needs to be set and address needs to match)
• If there is match, data is delivered
• If there is a miss, data is looked up in the next level of the memory hierarchy and stored in the cache on an 

empty slot. In case the cache is full (8 valid entries) a cache entry needs to evicted

Observations
• It is expensive to have data transfers between caches at the data word level (many transfers)
• It is expensive to search through the entire cache for every access (assume a cache state that stores 

megabytes of data)
• We need some replacement policy to determine which data word to evict, in case we need to add an entry to 

a cache that is already full (8 valid entries)
29

Cached Data WordAddressValid

Address

Let’s make this more efficient!



Basics Design Principles of Caches

• Store larger blocks and transfer larger blocks of memory between 
different levels of the memory hierarchy instead of single words (this 
is motivated by spatial locality) 
• Capacity (C): The number of data words that can be stored in the cache
• Block Size(b): The size of the blocks; A cache can store B=C/b blocks
• Block or Cache Line: This refers to the content of the data block

• Avoid that the entire cache needs to be searched upon access
• Cache sets (S): Split the cache into cache sets such that each address of the 

main memory maps to exactly one set of the cache 
• In the simplest case S = B. In this case each storage location for a block in the 

cache corresponds to a different cache set. This is called a “directly mapped 
cache”.
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Directly Mapped Cache

• The mapping of addresses to 
cache sets needs to be efficient
→ we use bits of the address as 
index for the cache set

• Example:
• 1 block = 1 word

• Cache with 8 blocks

• The 32-bit address is therefore 
interpreted as follows

31HH, F8.6

2327

Tag Byte OffsetSet



Directly Mapped Cache

32HH, F8.5

2327

Tag Byte OffsetSet

Example mapping for address

0xFFFFFFE4:

This address maps to set 001

HH, F8.6



Implementation of Directly Mapped Caches
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HH, F8.7

• The cache stores the triplet (valid bit, 
tag, data) for each entry

• Read operation:
• The 3 bits of the set field of the address are 

used as index to read (valid bit, tag, data) 
from the cache memory

• In case of a hit, the data is delivered to the 
CPU.



Performance of a Directly Mapped Cache 

• During the first loop execution, all loads lead to a miss

• During the four subsequent executions, the data is in the cache

• Statistics: 15 loads in total, 3 miss, 12 hit → 12/15 = 80% hit ratio
34
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Performance of a Directly Mapped Cache 

• During the first loop execution, all loads lead to a miss

• Also during subsequent executions, there is no hit

• Statistics: 10 loads in total, 10 miss, 0 hit → 0% hit ratio
35

Note: Address 0x4 and 0x24 both map to cache set 1:

0x4:    000 001 00 
0x24:  001 001 00

2327

Tag Set Byte Offset



Drawback of Directly Mapped Caches

• There is only one storage location in the cache for all memory 
elements that map to the same cache set 
→ two blocks that map to the same set cannot be in the cache at the 
same time.

• This can lead to low hit rates (even 0% in case of alternating accesses 
to addresses mapping to the same cache set)

→We introduce “Set Associative Caches”, which provide multiple 
storage locations per set 

36



We “Reshape” the Cache to 
“Two Caches With Half the Size”

37

HH, F8.7 HH, F8.9



Set Associative Caches

• An N-Way set associative cache, provides N 
storage locations for each set. 

• Each storage location is called “way”

• Upon access, the hardware searches in all ways for the cached data

• Example cache:
• Number of blocks (B): B = 8      
• Ways (N): N = 2
• Sets (S): S = 4
• Each block stores one word

38

HH, F8.9

2327

Tag Set Byte Offset

2228

Note the difference to the direct mapping: We now have only 4 sets 
→ 2 instead of 3 bits for set indexing; tag size 28 instead of 27

1-Way (direct mapping)

2-Way



Performance – Repetition of Example

39

Address 0x4 and 0x24 still map to cache set 1:

0x4:    0000 01 00 
0x24:  0010 01 00

However, we now have two ways for storage:

2228

Tag Set Byte Offset

After the first loop 
iteration, all loads lead 
to a cache hit HH, F8.10



A Fully Associative Cache

• If a cache consists of a single set with B ways, this is called an “fully 
associative cache”. It holds N = B, where B is the number of blocks in the 
cache

• In a fully associated cache every address can be cached at every location

• Fully associative caches are typically only done for small cache sizes (higher 
number of ways → higher number of comparators → higher power 
consumption and higher latency)

40HH, F8.11



Changing the Block Size (b)

• Motivated by spatial locality, increasing
the block size is another parameter
to improve the hit ratio

• Example cache:
• Block size (b): b = 4 words

• Total number of blocks (B): B = 8 words

• Ways (N): N = 1

• Sets (S): S = 2

41

HH, F8.12

HH, F8.7



Increased Block Size – Performance Example

42
HH, F8.14

Address 0x4, 0x8, and 0xC map to cache set 0:

0x4:    000 0 01 00 
0x8:    000 0 10 00 
0xC:    001 0 11 00

However, there is no eviction as the three words are in the same 
block:

27

Tag Set Byte Offset

After the first loop 
iteration, all loads lead 
to a cache hit 

221

Block Offset



Summary of Parameters for Different Cache 
Organizations

Cache Organization Number of Ways (N) Number of Sets (S)

Direct Mapping 1 B

Set Associative 1 < N < B B/N

Fully Associative B 1
43

• The number of blocks (B) in in 
a cache is given by 
B = (C / b)

• The parameters are selected 
such that the number of sets 
(S=B/N) is a power of two

We define a cache through
• Capacity (C)

• Block size (b) – also called length of a 
cache line

• Number of ways (N)



Examples of Caches Sizes and the 
Corresponding Address Mapping
• Example 1 (1024 byte Capacity)

• Block size (b): 16 byte

• Ways (N): 2 ways

• Example 2 (1024 byte Capacity)
• Block size (b): 64 byte

• Ways (N): 4 ways

• Example 3 (1024 byte Capacity)
• Block size (b): 32 byte

• Ways (N): 1 way

44

2523 2

4 bytes / word

4 words / block

B= 64 blocks in 
total split in 2 ways 
→ 32 sets 

Tag size (the rest of 
the address)

2224 4

B= 16 blocks in 
total split in 4 ways
→ 4 sets

16 words / block

2522 3

B= 32 blocks in 
total; only one way
→ 32 sets

8 words / block



Options When “Doubling the Cache Size”

• Assume you have the simple cache we had at the 
beginning

• Assume we can afford the cost to double the size of 
data storage

• Design Options:
• Double the number of sets (Cache stays a 1-way cache 

with same block size) → +1 bit in set selection

• Double the block size (Cache stays a one 1-way cache 
with same number of sets) → +1 bit for Block offset

• Double the number of ways (Number of sets and block 
size stays) → no change in the address decoding

45

HH, F8.7



Replacement Policies

46



Which Block to Replace?

• In case of a cache miss, a new block needs to be stored in the cache

• In case, there are invalid blocks, use these blocks first

• In case all are valid, one block needs to be evicted. There are several 
possible replacement policies:
• Random
• FIFO
• Least recently used 
• Not most recently used
• Least frequently used?
• …

47



Implementing an LRU (Least Recently Used) 
Policy
• Goal 

• Evict the block that was least recently accessed

• 2-way set associative cache
• Add one bit of metadata to indicate which way has been access least recently

• N-way set associative cache
• Implementing LRU perfectly is typically too expensive to be implemented for 

caches with 4+ ways

• Note: LRU is an approximation to predict locality and not necessarily the best 
possible replacement policy anyway

48



Alternatives Policies

• Random
• Just replace a block randomly

• Pseudo-LRU
• Split the ways of a cache into two groups and track which of the two groups has been 

used most recently
• Upon eviction select a random block from the group that was least recently used

• Note
• The hit rate in practice strongly depends on the executed code
• Random replacement policies also lead to good hit rates as other replacement 

strategies are also not perfect (e.g. when the program is working on more memory 
that fits into the cache, there is continuous eviction)

49



Handling Write Opertions



Two Options for Write Handling

• Write-Back Cache 
• Idea

• When data is written to memory, update only the cache and do not update further up in the memory hierarchy
• Write to the next cache level when the cache line is evicted

• Pros
• In case of multiple writes to the same block, this is more efficient

• Cons
• Needs a “dirty bit” in the cache to indicate whether block has been written to or not
• More complex design

• Write-Through Cache 
• Idea

• Update the value in the cache and update the next level of the memory hierarchy

• Pros
• Simpler design

• Cons
• No combination of writes 
• More transfers between the memory 

51



Two Options for Allocation

• Allocate On Miss 
• Idea

• Transfer a memory block into the cache, if there is a write on the block

• Pros
• Can combine writes
• Simpler design (read and write have the same behavior) 

• Cons
• Can lead to more memory transfers

• No Allocation on Miss
• Idea

• Don’t transfer a block into main memory upon write
• Pros

• Uses less cache space

• Cons
• No combination of writes 

52



Which Cache to Use Where?



Which Type of Cache to Use Where in the the
Memory Hierarchy?
• Options for Cache Organization

• Cache Size
• Associativity
• Block Size 

• Additional Options for Implementation
• Replacement policy
• Write Handling (write back vs. write through)
• Separate cache for instructions and data vs. unified cache
• Exclusive vs. inclusive caches (in case of exclusive caches, data is not duplicated 

across cache layers – implies more complex cache management)
• Separate implementation of tags and data in a tag memory and a data memory
• …
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Goal

The goal of the overall memory system is to minimize the average 
memory access time (AMAT) 

→minimize cache latency and minimize the number of cache misses at 
each level
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Cache Misses

Reasons for Cache Misses
• Compulsory Misses: Cache misses that occur independent of the cache design

• Capacity Miss: Cache misses that occur because the cache can’t store all needed 
data concurrently

• Conflict Misses: Cache misses that occur because different addresses map to the 
same set and that then evict blocks that are still needed by a program

Effect of Parameters
• Increasing the block size can reduce compulsory misses (spatial locality), but can 

increase the conflict misses

• Increasing the capacity can decrease capacity and conflict misses, but not 
compulsory misses

• …
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Effect of Associativity

57
HH, F8.17

The different gray parts show 
the conflict misses for the 
different levels of associativity



Effect of Block Size
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HH, F8.18



General Considerations

• L1 Cache
• This is the point where latency matters the most 

latency overrules all other properties

• Latency needs to be aligned with clock rate of CPU

• On most systems, there is a separate data and 
instruction cache (avoiding mutual eviction of data and instructions)

• L2 and higher levels
• Typically unified caches (data and code in the same cache)

• Latency less and less dominant with each level (allows larger size, allows doing 
tag access and data access sequentially, …)

59

HH, F8.16



Product Examples

• Intel (13th Generation)
• L1 (P cores): 12-way 48KB for data; 8-way 32KB for instructions
• L1 (E cores): 8-way cache; 32KB for data; 64KB for instructions
• L2 (P cores): 10-way non-inclusive cache; 1.25MB
• L2 (E cores): 16-way non-inclusive cache; 2MB
• L3: 12-way non-inclusive cache ; up to 3MB per core (shared between all cores) 
• Lenth of cache line: 64 bytes

• Apple M2
• L1 (P cores): 192KB instruction and 128 KB data cache
• L1 (E cores): 128KB instruction and 64 KB data cache
• L2: 16MB (shared)
• L3: 8 MB – 96 MB (shared)

60Notation - P cores: optimized for performance; E cores: optimized for energy efficiency 



Cache Coherency

• In multiprocessor systems, at least the first-level cache is not shared between 
cores → This can lead to coherence problems: processor 1 reads value A; 
processor 2 reads value A; processor 1 writes value A; processor 2 reads value A 
(from its L1 cache)

• It is necessary to ensure cache coherence
• A read by a processor A from a location X that follows a write by a processor A to location X 

returns the value that was written by processor A in case there was no write on location X by 
another processor

• A read by a processor A from a location X that follows a write to location X by processor B 
(with no writes made by any other processor), must return the value written by processor B 
(given that there has been sufficient time between the write and the read).

• Writes to the same memory location are seen in the same order by all processors 
(Serialization)
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Examples of Cache Access Patterns

62



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

63



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

64

Addresses for memory accesses:
Hex Binary
0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

65

Addresses for memory accesses:
Hex Binary
0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

Offset

Block indexTag



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

66

Addresses for memory accesses:
Hex Binary
0x36 00  110 110   M
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

Cache Miss. 
The block is
copied from
memory into

the data
cache. The tag 

memory
stores 00 at 
index 110.



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

67

Addresses for memory accesses:
Hex Binary
0x36 00  110 110   M
0x37 00  110 111 H
0x38 00  111 000
0x39 00  111 001

0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

We access
the same 
block as

before →
Cache Hit



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

68

Addresses for memory accesses:
Hex Binary
0x36 00  110 110   M
0x37 00  110 111 H
0x38 00  111 000 M
0x39 00  111 001

0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001

Access to a 
new block →

cache miss



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];
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Addresses for memory accesses:
Hex Binary
0x36 00  110 110   M
0x37 00  110 111 H
0x38 00  111 000 M
0x39 00  111 001 H

0x36 00  110 110
0x37 00  110 111
0x38 00  111 000
0x39 00  111 001



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block 
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution of the loop

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];
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Addresses for memory accesses:
Hex Binary
0x36 00  110 110   M
0x37 00  110 111 H
0x38 00  111 000 M
0x39 00  111 001 H

0x36 00  110 110 H
0x37 00  110 111 H
0x38 00  111 000 H
0x39 00  111 001 H



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at 
memory location 0x70; all other variables are in registers; 

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];
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Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at 
memory location 0x70; all other variables are in registers; 

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];
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Addresses for memory accesses:
Hex Binary
0x36 00  110 110   
0x70 01  110 000
0x37 00  110 111 
0x71 01  110 001 
0x38 00  111 000
0x72 01  110 010 
0x39 00  111 001
0x73 01  110 011 



Example: Cache Access Patterns of C Code 

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at 
memory location 0x70; all other variables are in registers; 

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];
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Addresses for memory accesses:
Hex Binary
0x36 00  110 110   M
0x70 01  110 000 M
0x37 00  110 111 M
0x71 01  110 001 M
0x38 00  111 000 M
0x72 01  110 010 H
0x39 00  111 001 H
0x73 01  110 011 H



Virtual Memory
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Systems Directly Accessing Physical Memory
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CPU 

Memory 

(Hierarchical 
Memory System 

consisting of 
Caches and the 
Main Memory)

Physical address

Data



Programmer’s View

• The CPU sends a physical 
address

• The address “runs” through 
the memory system and 
finally a data value is 
returned from the address 
(location) requested by the 
CPU
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Observations from a Programmer’s Perspective 
Observe

• The programmer needs to manage the memory layout (i.e. what is where in the memory)
• The memory addresses are a part of the program → changing an address means changing the program

Difficulties

• Difficult to cope with devices with different memory sizes
• If you extend memory on a device, this may impact the programming 
• If you execute the same program on two different machines with different amounts of memory, this is likely 

the code will not be located at the same physical location

• Difficult to support code and data relocation

• Difficult to support data/code sharing across different programs

• Difficult to support multiple processes

→ Direct physical memory access is mainly used on small embedded devices 
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Virtual Memory 

• Idea
• Make the programmer’s view of memory independent of the memory that is 

physically available and independent of physical locations of storage

• Make memory appear as an almost “infinite resource” to the programmer

• Basic Concept
• Introduce an additional level of abstraction – Virtual Memory
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Properties and Benefits

• Properties
• The programmer does not work with physical addresses any more

• Each process has its own mapping of virtual to physical addresses

• The HDD is added as an additional memory to the memory hierarchy 
(slowest, but largest)

• Benefits
• Relocation

• Sharing of memory
between processes

• Isolation of processes

79

HH, F8.20



Basics On the Address Translation 

• Address translation is done at the level of pages
• Virtual memory is divided into virtual pages

• Virtual pages are mapped to physical pages (also called frames) via the page table 

• Main memory acts as fully associative cache for the HDD (managed by OS)
• Every virtual page can map to every physical page

• Note: The approach of using a page table is different than the approach we used in the HW-managed 
caches → we do not need to search through all physical memory locations

• A memory access to a virtual page that is not mapped to a physical page, leads to a page 
fault
• In case the page is located on the HDD, the OS brings the page into main memory – the OS defines 

the replacement strategy for pages in main memory

• In case of an access is outside the address space of the process, this leads to a segmentation fault 80
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Analogies for Caches and Virtual Memory 
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Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number



High-Level View on Address Translation
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Virtual Page Number

Physical Page Number
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Address Translation - Example

• System
• Virtual Memory Size: 2 GB = 231 bytes

• Physical Memory Size: 128 MB = 227 bytes

• Page Size: 4KB = 212 bytes

• Number of Pages
• Virtual address: 31 bits

• Physical address: 27 bits

• Page offset: 12 bits

• # Virtual pages = 231/212 = 219 (VPN = 19 bits)

• # Physical pages = 227/212 = 215 (PPN = 15 bits)

83HH, F8.22



Example Mapping VPN → PPN

• VPN 00002→ PPN 7FFF

• VPN 00005→ PPN 0001

• VPN 7FFFC→ PPN 7FFE

• VPN 7FFFD→ PPN 0000
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The Page Table

The page table maps virtual to physical addresses 

• Page Table 
• Is indexed via the virtual page number
• Contains a valid bit and the physical address for every 

page table entry (PTE)
• Contains also additional metadata (replacement, dirty, …) 
• Typical page table entry size on 32-bit systems (PTE_SIZE): 

1 word (4 bytes)

• Storing the page table
• Page table is large
• Page table is stored in physical memory
• The Page Table Base Register specifies location of the 

page table in physical memory
(satp on RISC V, CR3 on Intel)
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Page Table Base 
Register 
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Page Table Translation Example 

• What is the physical address of the virtual 
address 0x5F20?

• We first need to find the VPN

• The page size is 4KB (12 bit offset)

→ VPN = 0x5 F20
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Page Table Translation Example 

• VPN = 5

• Calculation of the address in the page 
table: PTBR + VPN*PTE_SIZE
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Page Table Translation Example 

88

Page Table Base 
Register 

• What is the physical address of the virtual 
address 0x61FF?

• This entry is not valid and leads to a
page fault. It needs to be swapped from 
the disk into memory

 



Doing a Memory Access (Load/Store)

1. The CPU sends a virtual address to the memory management unit (MMU)

2. MMU determines the PPN by performing a load from (PTBR + VPN*PTE_SIZE)

3. If the entry is not valid, swap the page from the HDD to main memory 

4. If the entry is valid, concatenate the offset of the virtual address to the PPN to 
receive the physical address of the data

5. Perform a load/store based on the physical address

→Note: Each memory access now requires two memory accesses: 
1x load from page table
1x the actual load/store operation 

(+potentially swapping)
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Translation Lookaside Buffer (TLB)

• If it was necessary to do two memory operations for every load/store, this would have a 
huge performance impact

• The Translation Lookaside Buffer (TLB) is a Cache for page-table entries

• Highly/Fully associative

• Typically 16 – 512 entries

• TLBs achieve very high hit rates (95% - 99%) → only one memory operation for a 
load/store and no additional load. Only in case of a TLB miss, the page table entry needs 
to be fetched from memory.

• TLBs achieve very high hit rates because of high spatial/temporal locality
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TLB Structure

91
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The Size of a Page Table

• How large is a page table?

• Consider a 64-bit system with 4KB pages

→252 page table entries; each entry has 4 bytes → 254 bytes for storing 
the page table for one process

→ Keeping this large table in memory is not practical, and we need to 
optimize
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Multi-Level Page Tables

• Motivation
• The virtual memory space is typically used only sparsely (a process typically 

does not use all its virtual memory space)

• A hierarchical page-table scheme (tree-like structure) only requires to keep a 
smaller first-level page table in physical memory 

• On 32-bit systems we typically use 2-level page tables (it is up to 5 
levels on 64-bit systems)
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Example of 2-Level Paging
• Assume a virtual address space of 2GB 

(31 bit):
• 9 bit page table number (first level)

• 10 bit page table offset (second level)

• 12 bit page offset

• Note: Typical Programs will not need all 
entries in the first-level page table 

→ page tables on the second level only 
need to be allocated for those memory 
parts that are actually needed
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Example Lookup

What is the physical address of virtual 
address 0x03FEFB0?

• We determine the page table number 
and use this to index the first-level page 
table

• This leads to 0x2375000 as physical 
address for the second-level page table. 

• We access the second-level page-table at 
index 0x3FE and receive the physical page 
number 0x23F1

• The physical address is 0x23F1FB0
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Example from the RISC-V Manual (32 bit)

• Pointer Layout for sv32 mode:

• This mode supports 4KB pages and 4MB megapages
• For 4KB pages, we have two levels of paging (VPN[1] and VPN[0])

• For 4MB megapages, the second level is skipped and the first table directly 
translates the virtual address to a physical address (Note: 22 bit correspond to 
4MB)
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Example from the RISC-V Manual (32 bit)

• Sv32 allows to translate a 20-bit virtual page number (VPN) to a a 22-
bit physical page number (PPN)

• Virtual address:

• Physical address: 

• Page Table Entry:
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Summary on Virtual Memory

• Virtual memory 
• provides a “fresh empty memory” for each process
• increases memory capacity by adding the HDD as an additional level of the memory 

hierarchy; The operating system manages swapping

• Mechanisms
• The memory management unit maps virtual addresses to physical address via page 

tables (implemented in a hierarchical manner to save space in memory)

• The page table entries contain metadata defining e.g. access rights

• The TLB acts as cache for page table entries (doing the mapping of virtual to physical 
page number)
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Combining Virtual Memory and Caches
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Virtual Memory and Caches

• In this chapter, we have built an abstraction for physical memory that 
consists of a memory hierarchy with different levels of caches

• We have then added another layer of abstraction by introducing virtual 
memory that is mapped to physical memory via an MMU

→All the memory lookups for page tables that don’t lead to a TLB hit, will 
run through the memory system with its caches

Note: On large systems with multi-level paging, multiple levels of TLB caches, 
and multiple levels of caches for the physical memory this creates quite 
some interactions …
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Example System with 1-level Paging, 1 TLB 
Cache and 1 Cache for Physical Memory

• A memory access can encounter
• A TLB miss → the MMU need to read 

the page table from memory to get 
the physical address

• A Page Fault → the operating system 
needs to swap the page from HDD to 
physical memory 

• A Cache Miss→ data needs to loaded 
from main memory into the cache

• In best case, there is a hit on all 
types of accesses

• In the worst case, there is a miss on 
all types of accesses

101Figure Copyright © 2019, Elsevier Inc. All rights Reserved



Optimizing Speed – Positioning of the Cache

102

• Misses on TLB and cache accesses lead to significant overheads

• Is it possible to do other arrangements of TLB and caches for better 
speed?

• The example shown corresponds to what is called a “Physically 
indexed and Physically Tagged” (PIPT) Cache  → The cache only works 
with physical addresses



VA PA

VA PA

TLB

Optimizing Speed – Positioning of the Cache
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CPU TLB

Cache

Next Caches /Memory

Virtual 
Address 
(VA)

Physical 
Address 
(PA)

“Physically 
indexed 
Physically 
Tagged” (PIPT)

“Virtually 
indexed 
Virtually 
Tagged” (VIVT)

“Virtually 
indexed 
Physically 
Tagged” (VIPT)



Physically indexed Physically Tagged Cache 
(PIPT)
• Cache works as the caches we have discussed at the beginning of this 

slide set 

• Drawback: 

We need to wait with the cache access until the TLB delivers the 
physical address before we can access the cache
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Virtually Indexed Virtually Tagged Cache 
(VIVT)

• Cache works on virtual addresses only – no need to wait for TLB

• TLB access is only needed in case of a cache miss

• Drawback:
Different processes have different mappings (virtual tag is not unique) →
shared memory can be in cache multiple times. This aliasing needs to be 
handled.
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Virtually indexed Physically Tagged Cache 
(VIPT)
• The virtual address is used to index the cache, but the physical address is used for the tagging of the cache

• Advantage: Lookups of TLB and Cache can be started in parallel. 

• Disadvantage: Aliasing may occur if a process accesses the same physical memory via two different virtual addresses 

• Typical compromise: 
• Keep the size of the cache so low that the tagging is just done using address bits of the page offset (which is the same for virtual and physical 

addresses)
• Example: 4KB Page size (12 bit used for offset) → Build caches that are not larger than 4KB * (Number of Ways)
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Simulating Caches with QtRVSim
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QtRVSim

• QtRVSim allows configuring different caches for the basic CPU (non-
pipelined) that we have designed earlier in the lecture
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Configure Your Instruction 
and Data Caches here 



QtRVSim
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Configuration

Watch activity and content 
during the simulation



QtRVSim
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Examples

• Look at the examples repo and simulate the code examples in the 
directory

con09.01_QtRVSim_cache_examples

• Use the following files as starting point – change the files, the cache 
configuration, add more load operations, add store operations, … to 
see effects on the hit ratio of the cache:
• cache_example_1.S 

• cache_example_2.S
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Errata

This errata slide lists typos that have been fixed after the recording of 
the lecture during winter term 2023/2024

• 29.01.2024: 
• Slide 44: 25 → 24

• Slides 103 – 106: PT → PA 
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