Computer Organization and Networks

Chapter 7: Networking I

Winter 2022/2023

IPv4 address space

* IPv4 addresses are 32 bits long
 How many different IP addresses can exist?

IPv4 address exhaustion

* IPv4 addresses are 32 bits long
* There can be at most 23? different IPv4 addresses
e 232 =4 billion, 294 million, 967 thousand, two hundred and ninety-six
* Global population = 7.9 billion (September 2021)

* How many devices do you own that use IPv4?
* Your home PC
* Your phone
* Your ISP router (twice!)
* Laptops? Game consoles? Cars? Fridges? Doorbells?

www.iaik.tugraz.at

IPv4 address exhaustion

https.//www.arin.net/vault/announcements/2015/20150924.html|

ARIN IPv4 Free Pool Reaches Zero

Posted: Thursday, 24 September 2015

On 24 September 2015, ARIN issued the final IPv4 addresses in its free pool. ARIN will

https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses

The RIPE NCC has run out of IPv4
Addresses

Today, at 15:35 (UTC+1) on 25 November 2013, we made our final /22 IPv4
allocation from the last remaining addresses in our available pool. We have
now run out of IPv4 addresses.

https://www.lacnic.net/4848/2/lacnic/ipv4-exhaustion:-lacnic-has-assigned-the-last-remaining-address-block

IPv4 Exhaustion: LACNIC Has Assigned the Last
Remaining Address Block

19 August 2020
The Latin American and Caribbean Internet Address Registry (LACNIC) announces that the last available IPv4 address block has been

reserved.

83

IPv4 address exhaustion

* The internet is out of IPv4 addresses...
* Somehow, your new phone still works?

* There are ways around address exhaustion
* We’ll talk about this later!

IPv6

* Internet Protocol, version 6

e Successor to IPv4

* Not natively interoperable with IPv4
* |Pv4-only devices cannot communicate with IPv6-only devices
* Most modern devices implement both IPv4 and IPv6
* Eventually, IPv4 will be phased out...

www.iaik.tugraz.at

IPv6 addressing

Ethernet adapter Ethernet:

Link-local IPv6 Address : fTe80::10e5:1t700:1t6ab:7afc

e 128-bit address

* Notation: 16-bit hexadecimal blocks separated by colons (:)
e Zero blocks can be omitted using double colon (: :)

e fe80::10e5:£f700:f6ab:7afcisthe same as
fe 80 00 00 00 00 00 00 10 e5 £f7 00 f£f6 ab 7a fc

86

www.iaik.tugraz.at

IPv6 addressing

Ethernet adapter Ethernet:

Link-local IPv6 Address : Te80::10e5:1t700:1t6ab:7afc

* 64-bit network prefix, 64-bit interface identifier

* A single interface (e.g.: a network card) may have multiple addresses
* Addresses share the interface identifier

* Addresses have a scope in which they are valid

87

IPv6 scoping

* Global addresses
* Valid in any network connected to the internet
* May be routed on the public internet

* Unique-local addresses (in £c00::/7)

* Same idea as IPv4 private networks
* No assighment/registration needed
* Routed only in local networks, but not on the public internet

* Link-local addresses (in £e80: : /64)
* Only valid within the Link Layer network

IPv6 packet overview

 Similar fields to IPv4 packets
 Version is always 0110 (version 6)
* Length, Source and Destination fields
* Optional extension header blocks

e Header checksum removed
* Relies on Link Layer to provide error detection

* Fragmentation (mostly) removed
* No fragmentation by routers

* Fragmentation by hosts only as an extension
* Transport Layer is expected to perform fragmentation

IPv6 recap

e Successor to IPv4

* “Permanent” solution to IP address exhaustion
 We’'ll talk about IPv4 workarounds in a bit!

* Some protocol-level improvements
* Not interoperable with IPv4

e Supported by most modern end-user devices
* Server-side support is... still lacking [https://ipv6.watch]

» 128-bit addresses (64-bit network part, 64-bit interface identifier)
» 2% networks, each consisting of 254 hosts

https://ipv6.watch/

COMMYIANDER! Py | THEY DEVOURED HO% OF THE TS A MYCTERY UNLESS IN THE SWARM:
- (oME : e el WHAT DO YOU ;

EARTH, AND THEN JusT...com! WHATS THE VoLuME OF | iR o
AR TR et (TEvRE TuST SITING THERE! TR el "N UT OF ADDRESSES
THEYVE STD9%ED! N LOOK, WE SHOUD'VE
A FEW CLUBIC B MIGRATED AWY FOM
MICRONS. 3.\, 1pve AR AGO...
WHY?
-':-_..‘Ill T by
T THINK. THE
YEAR 1998
JUST BouGHT _/
VS SOME TIME.

xkcd #865 “Nanobots” | Randall Munroe | https://xkcd.com/

www.iaik.tugraz.at

The Transport Layer

92

The Transport Layer

 Computers A and B are capable of sending data to each other

* Goal: Allow multiple applications to communicate reliably

 Concerns:

* How to distinguish which application data is meant for? (multiplexing)
 What if data is lost on the lower layers? (reliability)

 How much data can the network handle? (congestion control)

 How much data can the receiver handle? (flow control)

The Transport Layer

* The internet has two widely-used protocols at the Transport Layer:

* Transmission Control Protocol
* Focused on reliable delivery
* Connection-based

e User Datagram Protocol

* Focused on speed
e Connectionless

The Transport Layer: Ports

* Concept used for both TCP and UDP

e Source and destination identified by port number
* 16 bits (65536 available ports)

 TCP and UDP ports are separate
* The protocols implement the same idea, but each only cares about its own ports...

e Common notation: Port number after IP address
«127.0.0.1:8000 s port 8000 at host 127.0.0.1
e [::1]1:8000 is port 8000 at host ::1

UDP

* Fire-and-forget transmission of single datagrams
» Useful for real-time applications

 Data may never arrive, may arrive out of order, ...
* Data loss must be tolerable for the upper-layer application

* Extremely simple and straightforward

UDP datagram header
Offsets Octet 0 1 2 o

Octet | Bit | 0| 1| 2 3| 4| 5| 6 7| 8| 9/10|11 (12|13 |14 |15 16|17 |18 19 20|21 |22 |23 |24 25 26|27 28|29 | 30|31
0 0 Source port Destination port

4 32 Length Checksum

TCP

* Highly reliable transmission of a byte stream
* Acknowledgments and re-transmission
* Guaranteed to maintain data ordering

* Non-trivial protocol overhead
* Still better than re-inventing the wheel if you need it!

TCP

e TCP connections have two sides: server and client

 Server listens on a specific port
» Server port is fixed for all connections

 Client connects to that port on the server

* Client uses a “random” ephemeral port, different for each connection
* See for yourself: netstat —onb (Win)or netstat —-tnap (Linux, Mac)

* Connections are uniquely identified by client IP + client port

The Transport Layer: Ports

* Two applications can’t use the same port number

* Client needs to know which port number to connect to

* Port numbers are standardized by IANA

e 0—1023: well-known ports
« Examples: 22 (SSH), 80 (HTTP), 123 (NTP), 194 (IRC), 443 (HTTPS), ...
* 1024-49151.: registered ports
* Most server applications will use this range (even unregistered ones...)

e 49152-65535: dynamic ports

e Most OS will use this range for ephemeral (client) ports

TCP packet overview

Offsets Octet 0 1 2 3

Octet Bit (7(6(5/(4/ 3(2(1/0|7(6|5(4|3(2|1(0|7|6|5/4/3|2|1|/0|7|6|5|/4|3|2|1|0

0 0 Source port Destination port
4 32

8 64

12 96

16 128 Checksum

e Source + destination ports allow identification of connection
* Checksum over entire header + data

TCP data ordering

Offsets Octet 0 1 2 o

Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210
0 0

4 o2 Sequence number

8 64 Acknowledgment number (if ACK set)

A
12 96 C
K

16 128
* TCP maintains a sequence number across the entire connection
* Separate number for each end’s packets

* Receipt of contiguous data confirmed via acknowledgment number
* Acknowledgement number := next expected sequence number

* This allows ordering of data and re-sending of lost packets!

TCP data ordering

Offsets Octet 0 1 2 o

Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210

0 0

4 o2 Sequence number

g 64 Acknowledgment number (if ACK set)
A s

12 -1 C b
K M

16 128

e Connection establishment: Three-way handshake
* Client -> Server: SYN
e Server -> Client: SYN + ACK
e Client -> Server: ACK

TCP data ordering

Offsets Octet 0 1

2 3

Octet Bit 7/,6(5/ 4(3(2|/1/0| 7| 6|5|4|3|2|1|0|7|6(5/4|/3(2(1/0(7|6|5(4|3/2(1/|0
0 0

e 32 Sequence number

8 64

S
12 96 PG
16 128

* Client -> Server: SYN

* Sequence number: seq_c, chosen randomly

TCP data ordering

Offsets Octet 0 1 2 3
Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210

0 0

4 o2 Sequence number

g 64 Acknowledgment number (if ACK set)
A s

12 -1 C b
K M

16 128

e Server -> Client: SYN + ACK

* Sequence number: seq_s, chosen randomly
* Acknowledgement: seq_c+1

TCP data ordering

Offsets Octet 0 1 2 o

Octet Bt 7/ &6(5 4/3/ 2|1 0 7|86 5 4|3 2|1|0|7 6/ 543 2107 6|54/ 3 210

0 0

4 o2 Sequence number

g 64 Acknowledgment number (if ACK set)
A

12 -1 C
K

16 128

* Client -> Server: ACK

* Sequence number: seq_c+1
* Acknowledgement: seq_s+1

* Now both sides know that the other side has their sequence number
* Ready to communicate!

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

ujewop 21jgnd :auoyd ysap e jo we di))

106

o sol4e) 3 INYO @ 493ndwod43dNns JwwNg 40 030yd

0°C A9 DD d9pun pasn ‘sau

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

107

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

108

www.iaik.tugraz.at

TCP flow control

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

* The desk phone doesn’t stand a chance to keep up!

109

TCP flow control

1 2 o

Offsets Octet 0
Octet | Bit 7 6 5 4 3 2 1 0 7 6/5 4 3|21 0 7|/6/543 21076543210
0 0
4 32
8 64 Acknowledgment number (if ACK set)

12 96 Window Size

16 128

* Imagine: a supercomputer talking to a desk phone via a 100Gbps link

e Window size indicates how much more data the host can handle

e The other end must throttle its transmission rate to accommodate
* Window size is relative to the last ACK'd packet

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
e Keep in mind: the “dial-up connection” could be some intermediate network

9ld @ Y10|s paoi-23iy] e Jo 0l0yd

H
0°Z DN-Ag DD Japun pasn ‘uinbinogd atJ
0"t Ag-DD Japun pasn ‘SoziaH uelnf @ Jaindwodasadns yox Ael) o 010yd

111

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
e Keep in mind: the “dial-up connection” could be some intermediate network

112

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
e Keep in mind: the “dial-up connection” could be some intermediate network

113

www.iaik.tugraz.at

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
e Keep in mind: the “dial-up connection” could be some intermediate network

Hm, data was los

DX

; */4<— =\ / | :J Seemmmmene__ \ .

114

TCP congestion control

* Imagine: two supercomputers talking via a dial-up connection
e Keep in mind: the “dial-up connection” could be some intermediate network

* If you just keep shoving data...

e ... it will get stuck in a queue somewhere ...

* ...soyou think it was lost and send it again ...
e ...NOw your queue is twice the size ...
e ... and nothing useful gets done.

e How do we avoid that?

TCP congestion control

* Each side throttles its data transmission rate independently
* No cooperation required
 Different OS have different algorithms

* Basic concept:

 Start at a relatively slow rate, then increase speed until data gets lost
* Once data is lost, assume we overloaded the connection and slow down again

e Details differ from OS to OS

www.iaik.tugraz.at

TCP: Selective Acknowledgment

12]]3|]4

time > 117

www.iaik.tugraz.at

TCP: Selective Acknowledgment

* “Standard” TCP does not deal with packet loss efficiently
e Superfluous data is re-sent, wasting time and bandwidth!

K
2 2] 2 2]]3[[4]

> 118

www.iaik.tugraz.at

TCP: Selective Acknowledgment

* The SACK extension lets the recipient acknowledge further ranges

> 119

www.iaik.tugraz.at

TCP: Selective Acknowledgment

* The SACK extension lets the recipient acknowledge further ranges
* These ranges do not need to be re-sent!

> 120

Transport Layer recap

* Two main protocols: TCP and UDP
e TCP: highly reliable, but comes with overhead
 UDP: low overhead, but no reliability guarantees

* Port numbers identify target application

e By convention, low port numbers (0-1023) are reserved for specific services
* 1024-49151 are used by other servers
* 49152-65535 are used for ephemeral ports

TCP recap

e Client establishes connection to Server

e Server listens on a pre-agreed port
 Client uses a “random” port (49152-65535)

* Sequence numbers and acknowledgement numbers
* Client and server have separate counters
* Acknowledgement of received data using the other side’s counter
* Re-ordering and re-sending if necessary

TCP recap

* Flow Control protects the recipient
* Recipient advertises its capacity
* Sender has to abide by it

* Congestion Control protects the network
* Transmission rate is gradually increased
* Throttled back if packet loss is detected
* Each side handles this independently
e Details differ from OS to OS

Image used under Pixabay License

S
Q
>
(O
—
-V
r)
O ¢
< 5
)
Q
=
Q
.
_I

Recap: IPv4 address exhaustion

* IPv4 addresses are 32 bits long
 23%is about 4 billion

* Every Internet-enabled device needs an address to communicate
* There are a lot of devices

* The internet is (mostly) out of IPv4 addresses!

Network Address Translation

e “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

* Also known as:
* “NAT”
e Port Address Translation (“PAT”)
* Network Address and Port Translation (“NAPT”)
* NAT overloading
* |P masquerading

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

Saved port mappings:

Internal External

|1;2.15:3.-:u.254 L__|?3.125.1;.31

From (IF): 1892.165.0.1
To (IP): 83.658.137.76
From port (UDE): 49152

To port {UDE) : 123 ‘hﬁdeffj/fr'

127

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152

DA ‘/
192.168.0.254 L__|?3.125.1;.31|

From (IF): 73.125.1%5.81
To (IP): 83.658.137.76
From port (UDE): 49152
To port {UDE) : 123 ‘hﬁdeffj/fr'

128

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP
* Rewrite IP packets at the boundary

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152

(::} 152.148.0.1 192.153.0.254L 4?3.125.19.31

From (IFj: 1892.165.0.1
To (IP): 83.68.137.76
From port (UDE): 49152

To port {UDP) : 123

129

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

D ”
(::} 152.148.0.1 1?2.153.0.254L_4T3.125.1§.31|

From (IF): 73.125.19.81
To (IP): 83.68.137.76
From port (UDE): 49153

To port {UDP) : 123

130

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

1;2.15:3.::;.254 L__|?3.125.1;.31|

From (IF): 83.68.137.746
To (IP): 73.125.19.81
From port (UDP): 123
To port (UDE): 49152 ‘hﬁdeffj/fr'

131

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

e
{::} 192.163.0.1 |192.155.0.254L_4T3.125.1§.31

From (IPF): 83.68.137.74
To (IBy: 152.165.0.1
From port (UDP): 123

To port (UDF) : 43152

132

www.iaik.tugraz.at

Network Address Translation

* “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External

182.165.0.1:49152 | §83.468.137.74 wvia 49152
182.165.0.2:49152 ' §83.468.137.74 wvia 49153

133

www.iaik.tugraz.at

Network Address Translation

e “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

Saved port mappings:

Internal External
1892.165.0.1249152 | 83.63.137.76 via 48152
1892.165.0.2249152 ' 83.68.137.76 via 48153

134

Network Address Translation

e “Hide” an entire private network behind a single public IP

* Rewrite IP packets at the boundary
* Rewrite TCP/UDP ports to disambiguate

* Transparent if a client “inside” connects to a server “outside”
* The reverse will not work (by default)

* You can have PAT networks nested within PAT networks
* Entire ISPs can connect all their clients using one publicly-routable IP address!

* Your home ISP router almost definitely does this!
* Compare your ipconfig/ifconfig address with “what’s my ip” (google)

IPv4 fragmentation — Issues

* 16-bit packet ID is insufficient for high transmission rates
* 16 bit packet ID = 65536 packets “in flight”
* No acknowledgments = ID can’t be reused until TTL expires
* 65536 packets + 128 seconds = 512 packets per second

Further reading: https://datatracker.ietf.org/doc/html/rfc8900

IPv4 fragmentation — Issues

* Fragmentation splits TCP/UDP transmission units across IP packets

* Only the first fragment has the transport layer header!
 Ifit even does...? There’s no minimum fragment size...

* Which host should a PAT firewall forward the data to?
* Firewalls can’t effectively filter these packets either...

* Reassembly is very fragile

* How long should fragments be kept around for?
* Denial-of-service attacks!

 How do you handle overlapping fragments?
* They are valid as per the protocol spec...

Further reading: https://datatracker.ietf.org/doc/html/rfc8900

Recap

* Data Link Layer: send data to locally connected devices
* Ethernet, Wi-Fi, Bluetooth, ...

* Network Layer: send data to devices over the internet
* |Pv4, IPv6, ...

 Transport Layer: structure the data into individual connections
* TCP, UDP, ...

 What's left?
e Actually send useful data!

