
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 4: Processors

www.iaik.tugraz.at

2https://www.smbc-comics.com/comic/logic-gates

Limitations of State Machines Discussed So Far

• The State machines that we have discussed so far have been designed
for a specific application (e.g. controlling traffic lights)

• Changing the application requires building a new state machine, new
hardware, …

• We want to have a general-purpose machine that
• Can be used for all kinds of different applications
• Can be reconfigured quickly

→We want general purpose hardware that is “configured in memory” for a particular
application

www.iaik.tugraz.at

3

This reasoning
is the birth of

software!

Von Neumann Model

• Components of a computer built based on Von Neumann

• Processing Unit

• Control Unit

• Memory

• Input

• Output

• Buses

www.iaik.tugraz.at

4

John Von Neumann
(born 1945 in Budapest)

Von Neumann Model

www.iaik.tugraz.at

5

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

Central Processing Unit (CPU)

Memory
Data
path

Control

The Von Neumann Model is the classical computer model – it is the basis of most CPUs

Von Neumann Model

www.iaik.tugraz.at

6

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

Note for Task 1 of the practical:
I/O Peripherals can be “memory

mapped”
(their registers are addressable

just like memory locations)

Harvard Architecture

www.iaik.tugraz.at

7

Processing Unit

Control Unit
Bus

System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Data Memory

Register
File

Program
Counter

Instruction
Register

Instruction Memory

• Harvard Architecture is similar to a the
Von Neumann Architecture

• Difference: data and instruction memory
are separated

• We use a Harvard Architecture in the
first lectues

ALU

Arithmetic Logic Unit (ALU)

www.iaik.tugraz.at

8

• The ALU is a combinational circuit performing
calculation operations

• Basic Properties
• Takes two n-bit inputs (A, B); today typically 32 bit or 64

bit

• Performs an operation based on one or both inputs; the
performed operation is selected by the control input
alu_sel

• Returns an n-bit output; It typically also provides a status
output with flags to e.g. indicate overflows or relations
of A and B, such as A==B or A<B

ALU

input A input B

ALU output

statusOperation select

Register File

• The register file contains m n-bit registers

• In a given clock cycle one n-bit value can be stored
in the register selected via the signal RW; In case
RegWrite is low, no register is written

• In each cycle two registers can be read and are
provided at the outputs A and B. The registers to
be read are selected via RA and RB

• The register file is essentially a memory with one
write port and two read ports

www.iaik.tugraz.at

9

Register File
Data

Read Port A

Read Port B

RegWrite RW RA

output B

output A

Data input

RB

Data Registers (Register File)

www.iaik.tugraz.at

10

Register File

x0

x1

x2

x3

x4

x31

…

• In case of RISC-V, the register
file consists of 32 registers

• 5 bit are needed for RW, RA, RB

Data Registers (Register File)

www.iaik.tugraz.at

11

Register File

x0

x1

x2

x3

x4

x31

…

Output A

Output B

RA

RB

Data Registers (Register File)

• Basic Properties
• Data registers with two

output MUX

• Input is stored in any
one of the registers
(selection via RW signal)

• Typical register sizes: 8,
16, 32, 64 bit

www.iaik.tugraz.at

12

Register File

x0

x1

x2

x3

x4

x31

…

Input

RegWrite

RW

Output A

Output B

RA

RB

Processing Unit

• The processing unit constitutes the data path of the CPU

• Based on control signals that are provided as inputs operations are
performed in the ALU and data registers are updated

www.iaik.tugraz.at

13

Processing Unit

Data
RegistersALU

A First Simple Datapath for Our CPU

www.iaik.tugraz.at

14

ALU

Operation select

Register File
Data

Read Port A

Read Port B

RegWrite RW RA RB

• How do we get data from “outside” into the register file?

• Where do we get the control signals from?

www.iaik.tugraz.at

15

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Program
Counter

Instruction
Register

Processing Unit

Data
RegistersALU

Instruction Register

• The instruction register stores the
instruction that shall be executed by the
data path

• The instruction decoder maps the
instruction register to control signals

www.iaik.tugraz.at

16

Control Unit

Program
Counter

Instruction
Register

Instruction
Register

Instruction
decoding

Control
Signals

A First Simple Datapath with Control for Our
CPU

www.iaik.tugraz.at

17

ALU

Operation select

Register File
Data

Read Port A

Read Port B

RegWrite RW RA RB

Instruction
Decoder

IR

What is an instruction?

How do we encode an instruction?

Instruction Set Architectures

www.iaik.tugraz.at

18

Instruction Set Architecture (ISA)

• An instruction is the basic unit of processing on a computer

• The instruction set is the set of all instructions on a given computer
architecture

• The ISA is the interface between hardware and software

• Options to represent instructions
• Machine language:

• A sequence of zeros and ones, e.g. 0x83200002 → this is the sequence of zeros and ones
the processor takes into its instruction register for decoding and execution

• Length varies can be many bytes long (up to 15 bytes on x86 CPUs)

• Assembly language:
• This is a human readable representation of an instruction, e.g. ADD x3, x1, x2

www.iaik.tugraz.at

19

ISA

Software

Hardware

Instruction Set Architectures

• There are many instruction set architectures from different vendors
• Examples: Intel x86, AMD64, ARM, MIPS, PowerPC, SPARC, AVR, RISC-V, …

• Instruction sets vary significantly in terms of number of instructions
• Complex Instruction Set Computer (CISC)

• Not only load and store operations perform memory accesses, but also other instructions
• Design philosophy: many instructions, few instructions also for complex operations
• Hundreds of instructions that include instructions performing complex operations like entire encryptions
• Examples: x86 and x64 families

• Reduced Instruction Set Computer (RISC)
• RISC architectures are load/store architectures: only dedicated load and store instructions read/write from/to memory
• Design philosophy: fewer instructions, lower complexity, high execution speed.
• Instruction set including just basic operations
• Examples: ARM, RISC-V

• One Instruction Set Computer (OISC)
• Computers with a single instruction (academic), e.g. SUBLEQ

see https://en.wikipedia.org/wiki/One_instruction_set_computer

www.iaik.tugraz.at

20

Competition Between Instruction Sets

• Given a fixed program (e.g. written in C), which instruction set leads

• to the smallest code size (the smallest number of instructions need to express
the program)?

• to best performance on a processor implementing the ISA?

• lowest power consumption on a processor implementing the ISA?

• …

www.iaik.tugraz.at

21

Open vs. Closed Instruction Sets

• Most instruction sets are covered by patents
→Building a computer that is compatible with that instruction set requires

patent licensing

• RISC-V (the instruction set of this course)
• is open

• developed at UC Berkeley

• An instruction family from low-end 32bit devices to large 64bit CPUs

• Significant momentum in industry and academia

• More information and full specs available at https://riscv.org/

www.iaik.tugraz.at

22

www.iaik.tugraz.at

23

Processing Unit

Control Unit
Bus

System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Data Memory

Register
File

Program
Counter

Instruction
Register

Instruction Memory

ALU

First RISC-V Basics

www.iaik.tugraz.at

24

RISC-V Instruction Sets

• Base instruction sets
• RV32I (RV32E is the same as RV32I, except the fact that it only allows 16 registers)

• RV64I

• RV128I

• Extensions
• “M” Standard Extension for Integer Multiplication and Division

• “A” Standard Extension for Atomic Instructions

• “Zicsr”, Control and Status Register (CSR) Instructions

• “F” Standard Extension for Single-Precision Floating-Point

• ….

www.iaik.tugraz.at

25

Register File and ALU

• We focus on RV32I

• The ALU and the register file are all
32 bit

• Our register file consists of 32
registers (Note: register x0 always
reads zero; writing to x0 does not
lead to storing a value)

www.iaik.tugraz.at

26

ALU

Register File
Data

Read Port A

Read Port B

Basics

www.iaik.tugraz.at

27

The base instruction set has fixed-length 32-bit instructions

What information to
include in the 32

bit?

• The operation to be
executed

• Parameters (e.g. source
registers, target register,
constants)

www.iaik.tugraz.at

28

• Opcode, funct3, funct7: definition of the functionality

• Imm: immediate values (constants)

• rs1, rs2: source registers

• rd: destination register

R-Type Instructions

www.iaik.tugraz.at

29

• These are instructions that perform arithmetic and logic operations based
on two input registers

• funct7, funct4 and opcode define the operation to be performed

• rs1 defines source register 1
• rs2 defines source register 2
• rd defines the destination register

Example

www.iaik.tugraz.at

30

5 bit values to do the indexing in
our register file

Example

www.iaik.tugraz.at

31

Machine Language and Assembly

www.iaik.tugraz.at

32

• Every instruction can be represented in human readable form → assembly

• Every instruction can be represented in machine readable form →machine
language

• There is a strict 1:1 mapping
Assembly

Machine
Language

The RV32I
Instruction Set

• 40 instructions

• Categories:
• Integer Computational

Instructions

• Load and Store Instructions

• Control Transfer Instructions

• Memory Ordering Instructions

• Environment Call and
Breakpoints

www.iaik.tugraz.at

33

Integer Computational Instructions

• All instructions take two input registers (rs1 and rs2) and compute the
result in rd

• Example: sub r3, r1, r2 computes r3 = r1 – r2

www.iaik.tugraz.at

34

Integer Computational Instructions

• Arithmetic
• ADD (Addition)

• SUB (Subtraction)

www.iaik.tugraz.at

35

• Shifts
• SLL (Logical Shift Left)

• SRL (Logical Shift Right)

• SRA (Arithmetic Shift Right)

• Logic Functions
• AND

• OR

• XOR

• Compares
• SLT (Set on Less Than)

• SLTU (Set on Less Than –
unsigned)

A First Simple Datapath with Control for Our
CPU

www.iaik.tugraz.at

36

ALU

Operation select

Register File
Data

Read Port A

Read Port B

RegWrite RW RA RB

Instruction
Decoder

IR

ADD R3, R2, R1

0000000 00001
00010 000 00011 0110011

This simple datapath
essentially allows us to
perform R-type instructions

www.iaik.tugraz.at

37

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Program
Counter

Instruction
Register

Processing Unit

Data
RegistersALU

Let’s learn about memories!

Memory

www.iaik.tugraz.at

38

Memory address

write
(0: don’t write,
1: write)

data
input

data
output

39

00: 83200002
04: 03214002
08: 83200002
0C: 03214002
10: B3812000
14: 23243002
18: 73001000
1C: 00000000
20: 00000000
24: 00000000
28: 2A000000
2C: 0D000000

….

www.iaik.tugraz.at

Our Memories are RAMs

Random Access Memory

(“Memory where arbitrary read and write accesses can be performed”)

40

www.iaik.tugraz.at

Reading from memory

010101 … 1010101

Reading from memory

41

www.iaik.tugraz.at

Writing to Memory

Reading from memory

Writing to memory

010101 … 1010101

42

www.iaik.tugraz.at

A Word in Memory in Case of a 32-bit System

Reading

Writing

010101 … 010101
Word in memory
(“Speicherwort”)

43

1 Word consists of
32 bit = 4 byte

www.iaik.tugraz.at

Each Byte in Memory Has an Address

010101 … 1010101

010101 … 1010101
110100 … 0011101
010111 … 1000001
010101 … 1010101
110100 … 0011101
010111 … 1000001
010101 … 1010101
110100 … 0011101
010111 … 1000001

010101 … 1010101
110100 … 0011101
010111 … 1000001
110100 … 0011101
010111 … 1000001
010111 … 1000001

00:
04:
08:
0C:
10:
14:
18:
1C:
20:
24:
28:
2C:
30:
34:
38:
3C:

Address:

44

Address

(increment by 1
is an increment
of the position

by 1 byte)

1 Word = 4 byte = 32 bit

www.iaik.tugraz.at

The Indices of the Bits Within a Word in
Memory

010111 … 1000001

Address:

Bit 31 Bit 0

45

00:
04:
08:
0C:
10:
14:
18:
1C:
20:
24:
28:
2C:
30:
34:
38:
3C:

010101 … 1010101

010101 … 1010101
110100 … 0011101
010111 … 1000001
010101 … 1010101
110100 … 0011101
010111 … 1000001
010101 … 1010101
110100 … 0011101

010101 … 1010101
110100 … 0011101
010111 … 1000001
110100 … 0011101
010111 … 1000001
010111 … 1000001

www.iaik.tugraz.at

Memory
0x00

0x01

0x02

0x03

0xFF..FF

0001001 … 110100

address
(32 wires,
where to read from
or where to store to)

write
(1 wire
0: don’t write,
1: write)

data
input
(32 wires)

data
output

(32 wires)

clk (when to store)

0001001 … 110100

0001001 … 110100

0001001 … 110100

0001001 … 110100

46

www.iaik.tugraz.at

Endianess

• There are two options for the sequence of storing the bytes of a word
in memory:
• Little endian: least significant byte is at the lowest address

• Big endian: most significant byte is at lowest address

www.iaik.tugraz.at

47

Endianess - Example

www.iaik.tugraz.at

48

00: 1234
01: 2345
02: ????
03: ????

.

.
10: 8100
11: 8201
12: 0000
13: ????

02002083

00: 83200002
04: 03214002
08: B3812000
0C: 23243002
10: 73001000
14: 00000000
18: 00000000
20: 2A000000
24: 0D000000

CPU Register Content
(little endian)

Representation
in Memory

Building Memories in Practice

• Building Memories based on standard flip flops (FFs), decoders and
multiplexers would be extremely expensive!

• Note: The functionality of a memory is less than what is available in a
set of FFs:
• A set of FFs allows that in each cycle a different value is written to each FF

• A set of FFs allows that in each cycle the content of each FF is read

→ A single port read/write memory requires only that it is possible to
read/write one memory cell at a time

www.iaik.tugraz.at

49

Basic Idea of Memory Design

• Example: A RAM with a one bit read/write
port

• Memories are built using so-called memory
cells. Each cell can store one bit

• The memory cells are placed on a chip next to
each other and form a rectangular structure:
the so-called cell array.

www.iaik.tugraz.at

50

1 bit in each of
the cells of the

array

Basic Idea of Memory Design

• A bitline connects all memory cells of a column
vertically (yellow)

• A wordline connects all memory cells of a row
horizontally

• This basic structure is used for all kinds of memories:
• Non-volatile memory (Flash memory)
• Static memory (SRAM)
• Dynamic memory (DRAM)
• DDR memory

• Each memory type is for different trade-offs with
respect to size, speed, …

www.iaik.tugraz.at

51

Basic Idea of Read/Write for DRAM

• A DRAM cell just consists of a single transistor
and a capacitance that stores the data value

• In steady state (no access) all bitlines and
wordlines are disconnected from the power
supply (i.e. they are floating)

www.iaik.tugraz.at

52Tosaka, CC BY 3.0

Basic Idea of Read/Write for DRAM

• Writing a cell:
• Set corresponding bitline to the desired storage value
• Set corresponding wordline to high
→This charges the capacitance of the desired cell to the

desired storage value

• Reading a cell:
• Pre-charge the corresponding bitline to the desired

voltage value
• Disconnect the bitline
• Set the corresponding wordline to high
→ The bitline keeps its value, if the stored value is high or
is pulled to low, if the stored value is zero

www.iaik.tugraz.at

53Tosaka, CC BY 3.0

Memories

• There are many details to know and learn about
memories →memories are highly optimized components
of a computer system (The size of a memory cell has a
huge multiplication effect)

• In this lecture, we focus on the top-level view

• With “memory” we mean a single-port read and single-
port write memory for 32-bit values

www.iaik.tugraz.at

54

Memory
Address

Data

Output

MemRead/Memwrite

Datapath Including Data Memory and Sign
Extension

www.iaik.tugraz.at

55

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

IR

MemRead/MemwriteRegWrite RW RA RB
Operation select

Status

Sign ext. for load
byte/halfword

www.iaik.tugraz.at

56

Arithmetic/Logic operations
were already possible with
our first version of the ALU

www.iaik.tugraz.at

57

Additional operations that
we can perform with our

updated datapath:

Load/Store Operations

Additional operations that
we can perform with our

updated datapath:

Operations using immediate
values

Example: Load Word

• Assembly:
• LW rd, offset(rs1)

• Machine language

• Load from data from memory at address (rs1+imm) and store in rd

• Functionality:
• Loads a word (32 bits / 4 bytes) from memory into a register
• Example applications

• load data from a pointer by setting offset to zero (LW rd, 0x0(rs1))
• load data from a pointer providing a relative offset (LW rd, offset(rs1))
• load data from a fixed address by setting rs1 to x0 (LW rd, addr(x0))

www.iaik.tugraz.at

58

www.iaik.tugraz.at

59

Register File Data
Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

IR

Sign ext. for load
byte/halfword

Example: LW x5, 0x16(x1)

0x16

x1

5 1

RegWrite RW RA RB

1

X1+0x16

MemRead

0x16

More Load Instructions

• LBU (Load Byte Unsigned) and LHU (Load Halfword Unsigned) work
exactly the same way as LW (Load Word) except for the fact that they
only load 8 bit /16 bit instead of 32 bit. The unused bits are zero

• LB and LH work like LBU und LHU, but perform sign extension for the
upper bits

www.iaik.tugraz.at

60

Example: Store Word

• Assembly:
• SW rs2, offset(rs1)

• Machine language

• Store the value in rs2 to memory address (rs1+imm)

• Functionality:
• Store a word (32 bits / 4 bytes) to memory
• Example applications

• store data to a pointer stored in a register by setting offset to 0 (SW rs2, 0x0(rs1))
• store data to pointer + offset (SW rs2, offset(rs1))
• store data to an absolute address (SW rs2, addr(x0))

www.iaik.tugraz.at

61

www.iaik.tugraz.at

62

Register File Data
Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

IR

Sign ext. for load
byte/halfword

Example: SW x7, 0x53(x1)

0x53

x1

71

RegWrite RW RA RB

0 MemWrite

X1+0x53

0x53

More Store Instructions

• SB (Store Byte) and SH (Store Halfword) work exactly the same way as
SW (Store Word) except for the fact that they only store the lowest 8
bit /16 bit of the rs2 register instead of the full 32 bit.

• Note that sign extension is not necessary for storing. To illustrate this
consider the representation of -1 as 32 bit value and as 8 bit value.

www.iaik.tugraz.at

63

www.iaik.tugraz.at

64

Additional operations that
we can perform with our

updated datapath:

Load/Store Operations

Additional operations that
we can perform with our

updated datapath:

Operations using immediate
values

Example: ADDI

• Assembly:
• ADDI rd, rs1, immediate

• Machine language

• Computes rd = rs1 + imm

• Functionality:
• Computes rd = rs1 + imm
• Example applications

• Move content of one register to another register by setting immediate to 0 (ADDI rd,rs1,0)
• Set a register to a constant value by using x0 as source: (ADDI rd, x0, immediate)
• Increment/decrement a register by setting rd=rs (e.g. ADDI x1, x1, 1)

www.iaik.tugraz.at

65

www.iaik.tugraz.at

66

Register File Data
Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

IR

Sign ext. for load
byte/halfword

Example: ADDI x1, x1, 0x42

0x42

x1

11

RegWrite RW RA RB

0 MemWrite

X1+0x42

0x42

More Operations with Immediates

• LUI allows to load 20 bits into the upper bits of a register; together with ADDI this allows to set a
register to a 32 bit constant value

• SLTI sets the register rd to 1, if rs1 is less than the sign-extended immediate; SLTIU is the unsigned
version

• XORI, ORI, ANDI are logic operations with immediates

• SLLI, SRLI, SRAI are shift operations, where the 5 bit immediate “shamt” defines the shift amount

www.iaik.tugraz.at

67

www.iaik.tugraz.at

68

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Program
Counter

Instruction
Register

Processing Unit

Data
RegistersALU

Let’s learn about control!

Adding Instruction Memory

www.iaik.tugraz.at

69

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

Instruction Memory

• The instruction memory stores a sequence of
instruction

• The program counter (PC) is incremented by 4 in
each cycle and reads one instruction after the
other

• This allows executing a static batch of
instructions

www.iaik.tugraz.at

70

Instruction
Memory

PC

+4

InstructionAddress

Extending the datapath for conditional branch
instructions

www.iaik.tugraz.at

71

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

www.iaik.tugraz.at

72

Additional operations that
we can perform with our

updated datapath:

Conditional Branch
Operations

Example: BEQ

• Assembly:
• BEQ rs1, rs2, offset

• Machine language

• Branch to location PC + offset, if rs2 == rs1

• Functionality:
• Branch if equal by to address PC + imm*2
• Example applications

• Implement a branch to secure code, if password was entered correctly

www.iaik.tugraz.at

73

74

Example: BEQ x1, x7, 0x42

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+
0x42

1 7

Equal?

More Conditional Branches

• BNE (Branch if not equal)

• BLT (Branch if less than)

• BGE (Branch if greater of equal)

• BLTU (Branch if less than unsigned)

• BGEU (Branch if greater of equal unsigned)

www.iaik.tugraz.at

75

High-Level Overview (Single Cycle Datapath)
www.iaik.tugraz.at

76

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

www.iaik.tugraz.at

77

Load/Store Operations

Operations using immediate
values

Conditional Branch
Operations

Arithmetic/Logic operations

JAL/JALR

• Jump and Link (JAL):
• Performs an unconditional jump to PC + imm*2

• Stores the PC of the next instruction in rd

• Example applications
• Unconditional jump (rd is set to x0 in this case)

• Subroutine call (will be discussed later)

www.iaik.tugraz.at

78

JAL/JALR

• Jump and Link Register (JALR):
• Performs an unconditional jump to rs1 + imm

• Stores the PC of the next instruction in rd

• Example applications
• Subroutine call/return (will be discussed later)

www.iaik.tugraz.at

79

High-Level Overview incl. JAL/JALR
www.iaik.tugraz.at

80

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Writing a First Program

www.iaik.tugraz.at

81

Simple Demo Program

• Load values from memory address 0x20, 0x24 into registers

• Add the registers together

• Store the result back to memory at 0x28

• Halt the CPU

www.iaik.tugraz.at

82

A First Mapping to Instructions

www.iaik.tugraz.at

83

Mapping to Encoding

www.iaik.tugraz.at

84

Mapping to Binary

www.iaik.tugraz.at

85

www.iaik.tugraz.at

86

Putting the Program (Code and Data) into a
single Memory

www.iaik.tugraz.at

87

Tools to Write Assembler Code

• Writing instruction opcodes by hand is tedious

• An assembler is a tools to assemble machine code for us

• For this lecture we use riscvasm.py

• usage: riscvasm.py program.asm -o program.hex

www.iaik.tugraz.at

88

The Demo Program Written in Assembly

www.iaik.tugraz.at

89

Try out to assemble and simulate your own code

con04_adding-two-constants

90

www.iaik.tugraz.at

Watch the Hardware in Action with QtRVSim

Visit https://comparch.edu.cvut.cz/qtrvsim/app/ or use qtrvsim in your
virtual machine to visualize how a sequence of instructions becomes
executed on the single-cycle datapath that we have built

www.iaik.tugraz.at

91

Notes:
• riscvasm.py assumes that the

instruction pointer starts at 0x0000,
while QtRVSim starts at 0x0200

• You can upload and build assembly
Code on the website; suitable
source files are available in the
QtRVSim directories of the
examples repository

https://comparch.edu.cvut.cz/qtrvsim/app/

Interfacing with I/O Devices

www.iaik.tugraz.at

92

www.iaik.tugraz.at

93

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Program
Counter

Instruction
Register

Processing Unit

Data
RegistersALU

How to Implement I/O?

How to
Implement I/O?

www.iaik.tugraz.at

94

• We access I/O and other
devices like memory

→ we build memory-
mapped peripherals

Memory-Mapped Peripherals

• Store and load instructions allow addressing 32-bit of memory space

• Not all the memory space that is addressable is used for actual
memory

• We can split the memory space in pieces and assign a certain range to
actual memory and other ranges to peripherals:

→ load/store operations write to registers of state machines with additional
functionality (I/O, Co-processors, sound, graphics, …)

www.iaik.tugraz.at

95

www.iaik.tugraz.at

96

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Program
Counter

Instruction
Register

Processing Unit

Data
RegistersALU

The bus system takes care of routing the load/store operations to the
correct physical device as defined by the memory ranges

The Hardware View

www.iaik.tugraz.at

97

Processor

ROMRAM Peripheral 1 Peripheral 2 Address
Decoder

WriteData

ReadData

Address

Enable2Enable1 Enable3 Enable4

MemWrite

Memory Mapping – Different for different
Systems

• The memory map is not part of the instruction set architecture and it
is also not defined by RISC V

• There are commonalities, but in the end the memory map is
individual for every device

www.iaik.tugraz.at

98

Real-World Example of a Memory Map

www.iaik.tugraz.at

99

The Core Used in Our Course: Micro RISC-V

• Micro RISC-V is a very simple CPU that we use for our introductory
programming examples and the practical

• Micro RISC-V implements a large subset of R32I

• Tools and code for micro RISC-V
• Code for Micro RISC-V and examples are available in the examples repo

• Assembler: riscvasm.py

• Simulator: riscvsim.py

www.iaik.tugraz.at

100

Micro RISC-V Overview

www.iaik.tugraz.at

101

Memory Map in Micro RISC-V

• In Micro RISC-V, the physical memory
map is as follows:
• RAM is located from 0x00000000 to

0x000007FB

• I/O is located at address 0x000007FC

• The remaining memory range is not
connected (write has no effect; read
returns 0)

• The physical memory map is defined for
each device depending on size of
memory, peripherals, etc.

www.iaik.tugraz.at

102

Software

www.iaik.tugraz.at

103

.asm file

.hex file

Instruction Set
Simulation

(“riscvsim.py”)

SytemVerilog RTL
Simulation
(“iverilog”)

Verilog
Gate-Level
Simulation

Assembler (“riscvasm.py”)

Hardware
Synthesis

(using yosys)

Physical Chip

.sv file

Placement, Routing, Chip Manufacturing
(this is part of the course “Digitial System Design”)

Our Design Flow

Notes on ASM Examples

• Run “make” to generate .hex files

• Run “make run” to assemble and run the .asm file in the current working
directory with the RTL simulator (micro-RISCV)

• Run “make sim” to simulate the .asm file in the current working directory
with the python asmlib RISC-V simulator

If there are more than one asm files in the current working directory, you
need to specify the target explicitly using “make
run=the_asm_file_without_file_extension_suffix” (and accordingly for
“make sim”).

www.iaik.tugraz.at

104

Read/Write from Memory vs. Read Write
from I/O on Our Micro RISC-V CPU

www.iaik.tugraz.at

105

adding-two-constants adding-stdin-numbers

Peripherals of QtRVSim

www.iaik.tugraz.at

106

• Also QtRVSim has peripherals.

• Let’s set the color of LED RGB 1:

see con04.02_QtRVSim_simple_examples

Common Pseudo-Instructions

nop addi x0, x0, 0 No operation

li rd, immediate
lui rd, imm[31:12]
addi rd, rd,
imm[11:0]

Load immediate

mv rd, rs addi rd, rs, 0 Copy register

bgez rs, offset bge rs, x0, offset Branch if ≥ zero

bltz rs, offset blt rs, x0, offset Branch if < zero

bgtz rs, offset blt x0, rs, offset Branch if > zero

bgt rs, rt, offset blt rt, rs, offset Branch if >

ble rs, rt, offset bge rt, rs, offset Branch if ≤

bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned

bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned

j offset jal x0, offset Jump

www.iaik.tugraz.at

107

To ease programming, there are pseudo-
instructions for

• common instruction sequences and

• instructions that can be derived from
another instruction

These examples nicely show
the value of having an x0
register that is always 0

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2
	Slide 3: Limitations of State Machines Discussed So Far
	Slide 4: Von Neumann Model
	Slide 5: Von Neumann Model
	Slide 6: Von Neumann Model
	Slide 7: Harvard Architecture
	Slide 8: Arithmetic Logic Unit (ALU)
	Slide 9: Register File
	Slide 10: Data Registers (Register File)
	Slide 11: Data Registers (Register File)
	Slide 12: Data Registers (Register File)
	Slide 13: Processing Unit
	Slide 14: A First Simple Datapath for Our CPU
	Slide 15
	Slide 16: Instruction Register
	Slide 17: A First Simple Datapath with Control for Our CPU
	Slide 18
	Slide 19: Instruction Set Architecture (ISA)
	Slide 20: Instruction Set Architectures
	Slide 21: Competition Between Instruction Sets
	Slide 22: Open vs. Closed Instruction Sets
	Slide 23
	Slide 24
	Slide 25: RISC-V Instruction Sets
	Slide 26: Register File and ALU
	Slide 27: Basics
	Slide 28
	Slide 29: R-Type Instructions
	Slide 30: Example
	Slide 31: Example
	Slide 32: Machine Language and Assembly
	Slide 33: The RV32I Instruction Set
	Slide 34: Integer Computational Instructions
	Slide 35: Integer Computational Instructions
	Slide 36: A First Simple Datapath with Control for Our CPU
	Slide 37
	Slide 38
	Slide 39: Memory
	Slide 40: Our Memories are RAMs
	Slide 41: Reading from memory
	Slide 42: Writing to Memory
	Slide 43: A Word in Memory in Case of a 32-bit System
	Slide 44: Each Byte in Memory Has an Address
	Slide 45: The Indices of the Bits Within a Word in Memory
	Slide 46: Memory
	Slide 47: Endianess
	Slide 48: Endianess - Example
	Slide 49: Building Memories in Practice
	Slide 50: Basic Idea of Memory Design
	Slide 51: Basic Idea of Memory Design
	Slide 52: Basic Idea of Read/Write for DRAM
	Slide 53: Basic Idea of Read/Write for DRAM
	Slide 54: Memories
	Slide 55: Datapath Including Data Memory and Sign Extension
	Slide 56
	Slide 57
	Slide 58: Example: Load Word
	Slide 59
	Slide 60: More Load Instructions
	Slide 61: Example: Store Word
	Slide 62
	Slide 63: More Store Instructions
	Slide 64
	Slide 65: Example: ADDI
	Slide 66
	Slide 67: More Operations with Immediates
	Slide 68
	Slide 69: Adding Instruction Memory
	Slide 70: Instruction Memory
	Slide 71: Extending the datapath for conditional branch instructions
	Slide 72
	Slide 73: Example: BEQ
	Slide 74
	Slide 75: More Conditional Branches
	Slide 76: High-Level Overview (Single Cycle Datapath)
	Slide 77
	Slide 78: JAL/JALR
	Slide 79: JAL/JALR
	Slide 80: High-Level Overview incl. JAL/JALR
	Slide 81
	Slide 82: Simple Demo Program
	Slide 83: A First Mapping to Instructions
	Slide 84: Mapping to Encoding
	Slide 85: Mapping to Binary
	Slide 86
	Slide 87: Putting the Program (Code and Data) into a single Memory
	Slide 88: Tools to Write Assembler Code
	Slide 89: The Demo Program Written in Assembly
	Slide 90
	Slide 91: Watch the Hardware in Action with QtRVSim
	Slide 92
	Slide 93: How to Implement I/O?
	Slide 94: How to Implement I/O?
	Slide 95: Memory-Mapped Peripherals
	Slide 96
	Slide 97: The Hardware View
	Slide 98: Memory Mapping – Different for different Systems
	Slide 99: Real-World Example of a Memory Map
	Slide 100: The Core Used in Our Course: Micro RISC-V
	Slide 101: Micro RISC-V Overview
	Slide 102: Memory Map in Micro RISC-V
	Slide 103: Software
	Slide 104: Notes on ASM Examples
	Slide 105: Read/Write from Memory vs. Read Write from I/O on Our Micro RISC-V CPU
	Slide 106: Peripherals of QtRVSim
	Slide 107: Common Pseudo-Instructions

