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Chapter 3 – State Machines



Sequential Circuits 

(How to store data)
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From Combinational Circuits to Sequential 
Circuits

• The circuits that we have discussed so far did not contain storage

• A change of an input has directly led to a change at the output

• We now build storage elements from logic gates
• The basic idea to achieve storage is to create a feedback loop
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A Simple Set-Reset Latch (NOR Version)
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Set  

Enable  

Reset  



We set the “set” input

www.iaik.tugraz.at

5

Set  

Enable  

Reset  

Truth Table of NOR
a b   q 
0 0   1
0 1   0
1 0   0 
1 1   0 



We release the “set” input  
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Set  

Enable  

Reset  

Truth Table of NOR
a b   q 
0 0   1
0 1   0
1 0   0 
1 1   0 

The feedback loop 
is in a stable state;
The output value is 
kept – even if the 
“set” input is set to 
0



We set the “reset” input
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Set  

Enable  

Reset  

Truth Table of NOR
a b   q 
0 0   1
0 1   0
1 0   0 
1 1   0 



We release the “reset” input 
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Set  

Enable  

Reset  

Again, the output 
value is kept

Truth Table of NOR
a b   q 
0 0   1
0 1   0
1 0   0 
1 1   0 



Illegal Action: We set “Set” and “Reset”
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Set  

Enable  

Reset  

Truth Table of NOR
a b   q 
0 0   1
0 1   0
1 0   0 
1 1   0 

Invalid output state



Combining Computation and Storage

• There are many ways to combine gates for computation and for storage

→ It has turned out that only few scale to large circuit designs

• Nearly all digital circuits are built as synchronous circuits with a global clock 
signal 

→ These circuits don’t use latches as storage, but Flip-Flops that are 
connected to a clock signal

→ This course focuses on synchronous circuits only

• There is also a design methodology for asynchronous circuits (self-timed 
circuits), but they are a nice topic
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Flip-Flop based on CMOS Gates

11
Note: A flip-flop simply consists of two latches  



Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Flip-Flop

Clock

output

data input

• The flip-flop sets output = input when the 
clock switches from low to high; 

• In all other cases, the input is ignored; the 
last “sampled” value is kept at the output 

Clock

12

Create a Flip-Flop in 
DIGITAL and play 
with the inputs in 
order to learn the 

behavior



Naming Conventions

• Flip-Flop: A 1-bit storage sampling data on the rising clock edge

• Register: An n-bit storage sampling data on the rising clock edge

13



Combining 

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers
Combinational 

Circuit

Data Input

Data Output
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Sequential Logic Splits Time in Discrete Slices

i i + 1 i + 2i - 1 i - 2  

0

1

clock
period 

time

• Time is divided in discrete time slices – called clock cycles
• We call this time between two rising clock edges also “clock period”.

• On the rising clock edge the “next value” of every flip flop becomes 
the “preset value” 15
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Example Counter

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers +1

Data Output
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Data Input

Present value

Next value



Example Counter

Registers +1

Data Output

Register     0       1         2       3       4         5        6       7   …..

Clock
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Present value

Next value



SystemVerilog

combintional
logic registers

clk_i

QD

reset_i

d_pd_n

18
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always_comb

Describes combinationl logic 

always_ff @(posedge clk_i or posedge reset_i)

Descibes sequential logic (flip-flops, registers)

On every rising clock edge, the registers sample 
the input and provide it to the output

The FF sets d_p equal to d_n on the rising clock 
edge



Let’s Build This in SystemVerilog

• See example con03.02_addsub

https://extgit.iaik.tugraz.at/con/examples-2023.git
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https://extgit.iaik.tugraz.at/con/examples-2023.git


Coding Guidelines in SystemVerilog

combintional
logic registers

clk_i

QD

reset_i

d_p

input

out-
put

logic

outputd_n

20
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always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
d_p <= d_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;



SystemVerilog: 
Blocking vs. Non-Blocking Assignments

• Blocking Assignments (=) are done immediately and impact the subsequent 
operations. The following operations are only executed after the 
assignment has been completed. 

• Non-Blocking Assignments (<=) do not impact subsequent operations in the 
same always block. These assignments describe parallel behaviour. Using 
them for FFs means describing the output of the FFs after the next rising 
clock edge

See example con03.03_blocking_vs_nonblocking

https://extgit.iaik.tugraz.at/con/examples-2023.git
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Do not write code like in this 
example!

Do not mix blocking and non-
blocking assignments in the 

same always block

https://extgit.iaik.tugraz.at/con/examples-2023.git


Another Note on SystemVerilog

• The synthesis tool builds exactly what you describe – be careful not to 
create latches in your combinational circuit

→CHECK what happens, if you remove the else branch from the example 

con01.03_simple_circuit_with_mux

https://extgit.iaik.tugraz.at/con/examples-2023.git

(You need to replace always_comb by always @(*) to see the creation of 
latches → the always_comb statement of SystemVerilog helps to avoid latches 
in com) 
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https://extgit.iaik.tugraz.at/con/examples-2023.git


Summary of CON SystemVerilog Coding Style

• Suffix _o for module outputs, _i for module inputs

• Register variables with suffix _p for present and _n for next value

• Array range with [MSB:LSB], like e.g. [31:0]

• Clocked processes use non-blocking (<=) others use blocking assignments (=)

• Clocked processes only update registers, everything else has to be done in combinational blocks

• Filename corresponds to module name: module MyDesign in file mydesign.sv

• Module instantiation always with named assignments (.A(C))

• With significant implications beyond style:
• Always use default assignments (e.g. state_n = state_p)
• Always use default branches (default:) in case statements
→ If you do not assign the output of a combinational block for all input conditions, latches are created for data 
storage!



The Clock Frequency

• Can we increase the clock frequency arbitrarily? 

• The clock frequency is limited by the time the combinational 
circuit needs to compute its outputs.  

• The critical path is the path with the longest propagation delay in 
the combinational circuit. It defines the maximum clock rate

24

Registers
Combinational 

Circuit

Data Input Data Output



Temperature, Power Consumption

• The higher the temperature, the slower the transistors 
become and the lower becomes the maximum clock rate  

→ The lower the temperature, 
the higher clock rates are possible

• Why does a CPU produce heat?

• Every time a logic gate switches, NMOS and PMOS transistors are 
open at the same time → there is a short current.

• Upon a switch, there is also current flowing to charge and discharge 
parasitics

→ The more  transistors are switching, the more heat is produced
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Clock Frequency Too High

What happens, if the clock frequency is too high?

• The circuit stores an intermediate state of the combinational 
circuit in the registers. 

• The intermediate state depends on the physical layout, the 
temperature, fabrication details, … → hard to predict; 
overclocking a processor too much typically leads to a crash
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Observations

• What we have discussed the basics of combinational and 
sequential circuits

• In order to build large systems composed of registers and 
combinational logic, we need a structured approach and more 
tools and theory to describe our systems

27

Registers
Combinational 

Circuit

Data Input

Data Output



State Machines
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Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• We look at “synchronous” FSMs only:
• The “clock signal” controls the action over time

• FSMs can be described with different “views”:
• The functional view with the “state diagram”

• The timing view with the “timing diagram”

• The structural view with the “logic circuit diagram”

• The behavioral view with “SystemVerilog”

29
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Finite State Machine (= automaton)

• A synchronous FSM is clocked by a clock signal (“clk”)

• In each clock period, the machine is in a defined (current) state.

• With each rising edge of the clock signal, the machine advances to a defined next state.

30
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FSM

clk 

in out



The sequence of
states can be
defined in a 
state diagram.

31
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State diagram:

We denote the
states with circles
and give them 
symbolic names,
e.g. A, B, and C.

A

B

C

32
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State diagram:

We define one of 
the states as the
initial state.

A

B

C

33
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In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the 
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.  

initial period 

A

34
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State diagram:

With arrows we
define the sequence
of states.

A

B

C

35
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The sequence of
states can also 
be defined in a 
state transition
table.

A

B

C

present
state

A
B
C

next 
state

B
C
A

36
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FSMs typically also have inputs influencing 
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in” 
influences the choice of
the state after B.

37
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FSMs typically also have inputs influencing 
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in” 
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

38
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The State Transition Table

A

B
C

in == 0

in == 1

in == 0

in == 1

present    in       next
state                   state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

39
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Timing Diagram – Example 1

0

1

B

clk

B CA CAstate

time

in
0

1

40
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A

B
C

in == 0

in == 1

in == 0

in == 1



Timing Diagram – Example 2

0

1

B

clk

A AC BAstate

time

in
0

1

41
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A

B
C

in == 0

in == 1

in == 0

in == 1



FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1
output = f(state)

In this example the outputs are a function
of the state. We write the output
values into the circles. 

We call such machines also
“Moore machines”:

in == 0

in == 1

42
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We define the outputs with the “output 
function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state    output
A 4
B 3
C 2

C

in == 0

in == 1

43
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Timing Diagram – Example 3

0

1

B

clk

AC BAstate

time

in
0

1

out 4 3 2 4 3

44
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4

3
2

A

B

in == 0

in == 1
C

in == 0

in == 1



Mapping a State Diagram to Hardware
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4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1 FSM

clk 

in out



Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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Sequential Logic

(Storing the 
current state 
with a given 

state encoding)

Combinational Logic 

(mapping the  
current state to next 
state according the 

state transition 
table)

Combinational Logic

(Mapping the current 
state to the output 

according the output 
function)



State Encoding
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4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1
state

A
B
C

encoding

00
01
10

We use binary enconding→ we 
need two bits to encode the 
three states A, B, C



State Transition Table
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present    in       next
state                   state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

in == 1

4

3
2

A

B C

in == 0

in == 0

in == 1



“11” does not exist: We use “Don’t Care” as 
the following state

49

present      in        next
s1  s0                      s1   s0

0 0    0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

www.iaik.tugraz.at

in == 1

4

3
2

A (00)

B (01) C (10)

in == 0

in == 0

in == 1

next s0 = ((~s1) & (~s0) & (~in)) | ((~s1) & (~s0) & in )

next s1 = ((~s1) & s0 & in) | (s1  & (~s0) & in) 



Output Function

s1  s0   o2 o1 o0 
0   0      1 0    0       
0   1 0   1 1 
1   0 0   1 0      

50
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in == 1

4 
(100)

3
(011) 2

(010)

B (01) C (10)

in == 0

in == 0

in == 1

A (00)

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0    



Structural diagram of the FSM 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &   in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &   s0)
|( s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

51
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &   in)

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

52
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal.

53
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Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

the state is 
stored 
in a register

a state transition is 
caused by the 
clock signal.

With “areset” we can 
initialize the ASM
(“initial state”). 

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

54
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Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the next-state function f 
we compute the next state:
next state = f(state, input)

55

www.iaik.tugraz.at



Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in) 
| (~s1 

& ~s0 &  in )

next s1 = (~s1 & s0 & in) 
| (s1  & ~s0 & in) 

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 &  s0)
| (s1 & ~s0)

o0 = ~s1 & s0    

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

56
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Implementation with Digital

57
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Coding Guidelines in SystemVerilog - Moore 
Machines

next-
state
logic

state

clk

QD

areset

state_p

input

out-
put

logic

outputstate_n

58
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always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
state_p <= state_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;



Modeling with SystemVerilog
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See example con03.04_moore_fsm  

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1



There exist 2 types of machines - check out the 
LITTLE but IMPORTANT difference

• Moore Machines
• next state = function of present state and input

• output = function of present state

• Mealy Machines
• next state = function of present state and input

• output = function of present state and input 

60
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Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

61
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Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

62
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An example for a Mealy Machine

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also 
depend on the input. 

C

in == 0

in == 1
out = 0

63
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The output function

A

B

in == 0
out = 3 

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state   in    output
A       0 4
A       1            4
B 0            3
B       1            1
C 0            2
C       1            0

out = 2
in == 0

in == 1

out = 0
C

64
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Timing diagram

0

1

B

clk

A AC BAstate

time

in

Note how the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0

65
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Modeling with SystemVerilog
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A

B

in == 0
out = 3 

in == 1
out = 1

out = 4 out = 2
in == 0

in == 1
out = 0

C

See example con03.05_mealy_fsm



We can combine machines

• Combining Moore Machines causes no problem. We get another 
Moore Machine.

• Combining a Moore Machine with a Mealy Machine causes also no 
problem. We get a Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause troubles: One needs to 
avoid combinational loops!

67
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The combination of two Moore Machines creates 
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

68
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We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

69
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The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

70

www.iaik.tugraz.at



The combination of a Moore Machine with a Mealy Machine 
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

71
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The combination of two Mealy Machines is “dangerous”: 
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

72
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The combination of two Mealy Machines is “dangerous”: You 
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state
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Summary

• All digital logic can in principle be built with Moore Machines and Mealy 
Machines.

• You go from one representation to the other (in both directions from each 
representation to each other):

State Diagram – Timing Diagram – SystemVerilog Code – Circuit Diagram

74
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Not for every circuit the 
modelling as Moore/Mealy 

Machine is the best.



Separating Control and Data Path

75
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Rembember our AddSub Machine
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+/-1
Registers

clk

QD

areset

input

out-
put

logic

How many states 
does this machine 

have? 

Does it make sense 
to draw a graph with 

all “state 
transitions”?



Our AddSub Machine is a Datapath

• A Datapath “contains everything that is related to data processing”

• consists of 
• Functional units doing computations
• Data registers
• Wires and multiplexers connecting the registers und functional units

• takes as Inputs
• Control signals defining “which computations are performed and where data is stored”

• provides as outputs
• Data values and derived data values (e.g. overflow, underflow, result of compares, …)

→ Often visualized based on block diagrams; state diagrams are not suitable

www.iaik.tugraz.at
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Control Units are the Counterpart

• A Control Unit/Controller/FSM “contains everything that is related 
managing what happens when and under what condition”

• consists of 
• Next-state logic
• State registers
• Wires connecting the nextstate logic and registers

• takes as inputs
• Control signals and status flags (system conditions)

• provides as outputs
• Control signals connected to a data path taking them as input

→ Best visualized based on state diagrams
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Control Unit

• State machine generating 
control signals for the data 
path

www.iaik.tugraz.at
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Data Path
• Contains all functional units and 

registers related to data processing

• Receives control signals to perform 
operations on the data.

• Provides status signals to the control-
related data to the control unit

“Piano Player” “Piano”



Mapping to SystemVerilog
Control Unit

• Always_comb Block describing 
nextstate logic

• Always_FF Block describing the 
state registers
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Data Path

• Always_comb Block describing the 
functional units of the data path

• Always_FF Block describing the 
data registers

Depending on the implemented system, it is useful to implement the “always blocks” of 
control and data separate or together

IMPORTANT Announcement: No points will be reduced in Task 1 if there is a joint 
always_comb and a joint always_FF block for control and data



Algorithmic State Machines

(Modelling Control and Data Path in a Single Graph)
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Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state machines

• ASMs allow to specify a system consisting of a data path together 
with its control logic

• All FSM state diagrams have an equivalent ASM diagram
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FSM state diagram → ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0
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Mealy Machines

A

B

C
in == 0
out = 3 

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3
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Mealy Machines

A

B

C
in == 0
out = 3 

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3
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Adding the Datapath Using Register-Transfer 
Statements
• Register-transfer statements define the change of a value stored in a 

register of the data path

• Values in registers can only change at the active (= rising) edge of 
clock.

• “Register-transfer statements” with a “left arrow” (“”)

• Example:   “a  x” means that the value in the register “a” gets the 
value of “x” at the “next” active (= rising) edge of clock.
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“=“ versus “” in an ASM

• The symbols “=“ versus “” in an ASM align with the symbols “=“ 
and “<=“ in Systemverilog

• With the equal sign (“=“) we denote that the output of the FSM has a certain 
value during a particular state (SystemVerilog: output logic – combinational)

• With the left-arrow (“”) we denote a register-transfer statement: The 
register value left of the arrow changes to whatever is defined right of the 
arrow upon the next active (= rising) edge of clock. 
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ASM Diagram With two Register-Transfer Statements

out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0

The value stored in register X gets 0 
at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.

The value in register X does not change
upon leaving state B.

88

www.iaik.tugraz.at



Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0
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out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0



Several register-transfer statements can 
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

in

1

A

B

C

0

The values stored in register X and 
register Y become 0 at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.
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Several register-transfer statements can 
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

The values stored in register X and 
register Y become 0 at the state transition 
from state A to state B.

The value in register X gets incremented 
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.
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Example in SystemVerilog
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See example con03.06_asm_generic_example

https://extgit.iaik.tugraz.at/con/examples-2023.git

https://extgit.iaik.tugraz.at/con/examples-2023.git


Example 2
A “Simple Calculator”

Simple_calc

1. Reads two inputs via the input port 
input_data_i
(Read is done  one after the other in 
the clock cycles when 
input_data_valid_i == 1)

2. Performs one out of four operations 
on the inputs (add,sub, shl, shr) 
selected by op_sel_i

3. Provides the result at result_o for one 
clock cycle (result_valid_o is set 
during this clock cycle)

4. It provides a blinking LED output in 
case the result is zero and then starts 
from the beginning

www.iaik.tugraz.at
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simple_calc

Input_data_i [3:0]

Input_data_valid_i

op_sel_i [1:0]

result_o

result_valid_o

zero_led_o



“Simple Calculator”

result_valid = 0

result_valid = 1
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result == 0

result  input_1 + input_2 result  input_1 >> input_2result  input_1 – input_2 result  input_1 << input_2

result_valid = 0
zero_led_o = counter[0]
counter  counter - 1

Input_data_valid

Input_reg_1  input

Input_reg_2  input

Input_data_valid

counter == 0

0 0

1

1

1

0

0

counter  6

1

STATE_READ_INPUT_1

STATE_READ_INPUT_2

STATE_CALC_ADD STATE_CALC_SUB STATE_CALC_SHL STATE_CALC_SHR

STATE_PROVIDE_OUTPUT
STATE_BLINK_ZERO



Example in SystemVerilog
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See example con03.07_simple_calc

https://extgit.iaik.tugraz.at/con/examples-2023.git

https://extgit.iaik.tugraz.at/con/examples-2023.git


Synthesis of the Data Path and its 
Control Signals
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The Interface Between Control and Data Path

Data Path

implementing 
the actions on 
data registers

Control

defines when 
what action 
should be 
performed

Control Signals 

provided by 
control to 

perform actions 
on data path

Status Signals 

provided by 
data path to 

inform control



Register-Transfer Statements Define the Data Path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y  0
Y  X

Operations for register X:

Operations for register Y:
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These are the actions that our system is able to perform on
The data registers X and Y



Register-Transfer Statements Define the Data Path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y  0
Y  X

Operations for register X:

Operations for register Y:
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These are the operations that our data path implements



Operations for register X

Case 0: X  X
Case 1: X  X+ 1
Case 2: X  0

We need to distinguish
between 3 cases.
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→ A one bit control signal is not enough. We need two control signals.



Control Signals and Datapath for the Actions 
on Register X

clrx incx action
0 0 X  X
0  1 X  X+ 1
1  0 X  0
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Control Signals and Datapath for the Actions 
on Register Y

clry ldy action
0 0 Y  Y
0  1 Y  X
1  0 Y 0
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Register-transfer statements become assignment of 
control signals in the controller

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0
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out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0



Separated Control & Datapath
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out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0



Example in SystemVerilog
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See example 
con03.08_asm_generic_example_with_separate_datapath

https://extgit.iaik.tugraz.at/con/examples-2023.git

https://extgit.iaik.tugraz.at/con/examples-2023.git
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