
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 3 – State Machines

Sequential Circuits

(How to store data)

www.iaik.tugraz.at

2

From Combinational Circuits to Sequential
Circuits

• The circuits that we have discussed so far did not contain storage

• A change of an input has directly led to a change at the output

• We now build storage elements from logic gates
• The basic idea to achieve storage is to create a feedback loop

www.iaik.tugraz.at

3

A Simple Set-Reset Latch (NOR Version)

www.iaik.tugraz.at

4

Set

Enable

Reset

We set the “set” input

www.iaik.tugraz.at

5

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

We release the “set” input

www.iaik.tugraz.at

6

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

The feedback loop
is in a stable state;
The output value is
kept – even if the
“set” input is set to
0

We set the “reset” input

www.iaik.tugraz.at

7

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

We release the “reset” input

www.iaik.tugraz.at

8

Set

Enable

Reset

Again, the output
value is kept

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

Illegal Action: We set “Set” and “Reset”

www.iaik.tugraz.at

9

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

Invalid output state

Combining Computation and Storage

• There are many ways to combine gates for computation and for storage

→ It has turned out that only few scale to large circuit designs

• Nearly all digital circuits are built as synchronous circuits with a global clock
signal

→ These circuits don’t use latches as storage, but Flip-Flops that are
connected to a clock signal

→ This course focuses on synchronous circuits only

• There is also a design methodology for asynchronous circuits (self-timed
circuits), but they are a nice topic

10

Flip-Flop based on CMOS Gates

11
Note: A flip-flop simply consists of two latches

Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Flip-Flop

Clock

output

data input

• The flip-flop sets output = input when the
clock switches from low to high;

• In all other cases, the input is ignored; the
last “sampled” value is kept at the output

Clock

12

Create a Flip-Flop in
DIGITAL and play
with the inputs in
order to learn the

behavior

Naming Conventions

• Flip-Flop: A 1-bit storage sampling data on the rising clock edge

• Register: An n-bit storage sampling data on the rising clock edge

13

Combining

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers
Combinational

Circuit

Data Input

Data Output

14

Sequential Logic Splits Time in Discrete Slices

i i + 1 i + 2i - 1 i - 2

0

1

clock
period

time

• Time is divided in discrete time slices – called clock cycles
• We call this time between two rising clock edges also “clock period”.

• On the rising clock edge the “next value” of every flip flop becomes
the “preset value” 15

www.iaik.tugraz.at

Example Counter

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers +1

Data Output

16

Data Input

Present value

Next value

Example Counter

Registers +1

Data Output

Register 0 1 2 3 4 5 6 7 …..

Clock

17

Present value

Next value

SystemVerilog

combintional
logic registers

clk_i

QD

reset_i

d_pd_n

18

www.iaik.tugraz.at

always_comb

Describes combinationl logic

always_ff @(posedge clk_i or posedge reset_i)

Descibes sequential logic (flip-flops, registers)

On every rising clock edge, the registers sample
the input and provide it to the output

The FF sets d_p equal to d_n on the rising clock
edge

Let’s Build This in SystemVerilog

• See example con03.02_addsub

https://extgit.iaik.tugraz.at/con/examples-2023.git

19

https://extgit.iaik.tugraz.at/con/examples-2023.git

Coding Guidelines in SystemVerilog

combintional
logic registers

clk_i

QD

reset_i

d_p

input

out-
put

logic

outputd_n

20

www.iaik.tugraz.at

always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
d_p <= d_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;

SystemVerilog:
Blocking vs. Non-Blocking Assignments

• Blocking Assignments (=) are done immediately and impact the subsequent
operations. The following operations are only executed after the
assignment has been completed.

• Non-Blocking Assignments (<=) do not impact subsequent operations in the
same always block. These assignments describe parallel behaviour. Using
them for FFs means describing the output of the FFs after the next rising
clock edge

See example con03.03_blocking_vs_nonblocking

https://extgit.iaik.tugraz.at/con/examples-2023.git

www.iaik.tugraz.at

21

Do not write code like in this
example!

Do not mix blocking and non-
blocking assignments in the

same always block

https://extgit.iaik.tugraz.at/con/examples-2023.git

Another Note on SystemVerilog

• The synthesis tool builds exactly what you describe – be careful not to
create latches in your combinational circuit

→CHECK what happens, if you remove the else branch from the example

con01.03_simple_circuit_with_mux

https://extgit.iaik.tugraz.at/con/examples-2023.git

(You need to replace always_comb by always @(*) to see the creation of
latches → the always_comb statement of SystemVerilog helps to avoid latches
in com)

www.iaik.tugraz.at

22

https://extgit.iaik.tugraz.at/con/examples-2023.git

Summary of CON SystemVerilog Coding Style

• Suffix _o for module outputs, _i for module inputs

• Register variables with suffix _p for present and _n for next value

• Array range with [MSB:LSB], like e.g. [31:0]

• Clocked processes use non-blocking (<=) others use blocking assignments (=)

• Clocked processes only update registers, everything else has to be done in combinational blocks

• Filename corresponds to module name: module MyDesign in file mydesign.sv

• Module instantiation always with named assignments (.A(C))

• With significant implications beyond style:
• Always use default assignments (e.g. state_n = state_p)
• Always use default branches (default:) in case statements
→ If you do not assign the output of a combinational block for all input conditions, latches are created for data
storage!

The Clock Frequency

• Can we increase the clock frequency arbitrarily?

• The clock frequency is limited by the time the combinational
circuit needs to compute its outputs.

• The critical path is the path with the longest propagation delay in
the combinational circuit. It defines the maximum clock rate

24

Registers
Combinational

Circuit

Data Input Data Output

Temperature, Power Consumption

• The higher the temperature, the slower the transistors
become and the lower becomes the maximum clock rate

→ The lower the temperature,
the higher clock rates are possible

• Why does a CPU produce heat?

• Every time a logic gate switches, NMOS and PMOS transistors are
open at the same time → there is a short current.

• Upon a switch, there is also current flowing to charge and discharge
parasitics

→ The more transistors are switching, the more heat is produced

25

Clock Frequency Too High

What happens, if the clock frequency is too high?

• The circuit stores an intermediate state of the combinational
circuit in the registers.

• The intermediate state depends on the physical layout, the
temperature, fabrication details, … → hard to predict;
overclocking a processor too much typically leads to a crash

26

Observations

• What we have discussed the basics of combinational and
sequential circuits

• In order to build large systems composed of registers and
combinational logic, we need a structured approach and more
tools and theory to describe our systems

27

Registers
Combinational

Circuit

Data Input

Data Output

State Machines

www.iaik.tugraz.at

28

Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• We look at “synchronous” FSMs only:
• The “clock signal” controls the action over time

• FSMs can be described with different “views”:
• The functional view with the “state diagram”

• The timing view with the “timing diagram”

• The structural view with the “logic circuit diagram”

• The behavioral view with “SystemVerilog”

29

www.iaik.tugraz.at

Finite State Machine (= automaton)

• A synchronous FSM is clocked by a clock signal (“clk”)

• In each clock period, the machine is in a defined (current) state.

• With each rising edge of the clock signal, the machine advances to a defined next state.

30

www.iaik.tugraz.at

FSM

clk

in out

The sequence of
states can be
defined in a
state diagram.

31

www.iaik.tugraz.at

State diagram:

We denote the
states with circles
and give them
symbolic names,
e.g. A, B, and C.

A

B

C

32

www.iaik.tugraz.at

State diagram:

We define one of
the states as the
initial state.

A

B

C

33

www.iaik.tugraz.at

In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.

initial period

A

34

www.iaik.tugraz.at

State diagram:

With arrows we
define the sequence
of states.

A

B

C

35

www.iaik.tugraz.at

The sequence of
states can also
be defined in a
state transition
table.

A

B

C

present
state

A
B
C

next
state

B
C
A

36

www.iaik.tugraz.at

FSMs typically also have inputs influencing
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

37

www.iaik.tugraz.at

FSMs typically also have inputs influencing
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

38

www.iaik.tugraz.at

The State Transition Table

A

B
C

in == 0

in == 1

in == 0

in == 1

present in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

39

www.iaik.tugraz.at

Timing Diagram – Example 1

0

1

B

clk

B CA CAstate

time

in
0

1

40

www.iaik.tugraz.at

A

B
C

in == 0

in == 1

in == 0

in == 1

Timing Diagram – Example 2

0

1

B

clk

A AC BAstate

time

in
0

1

41

www.iaik.tugraz.at

A

B
C

in == 0

in == 1

in == 0

in == 1

FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1
output = f(state)

In this example the outputs are a function
of the state. We write the output
values into the circles.

We call such machines also
“Moore machines”:

in == 0

in == 1

42

www.iaik.tugraz.at

We define the outputs with the “output
function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 4
B 3
C 2

C

in == 0

in == 1

43

www.iaik.tugraz.at

Timing Diagram – Example 3

0

1

B

clk

AC BAstate

time

in
0

1

out 4 3 2 4 3

44

www.iaik.tugraz.at

4

3
2

A

B

in == 0

in == 1
C

in == 0

in == 1

Mapping a State Diagram to Hardware

www.iaik.tugraz.at

45

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1 FSM

clk

in out

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

46

www.iaik.tugraz.at

Sequential Logic

(Storing the
current state
with a given

state encoding)

Combinational Logic

(mapping the
current state to next
state according the

state transition
table)

Combinational Logic

(Mapping the current
state to the output

according the output
function)

State Encoding

www.iaik.tugraz.at

47

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1
state

A
B
C

encoding

00
01
10

We use binary enconding→ we
need two bits to encode the
three states A, B, C

State Transition Table

www.iaik.tugraz.at

48

present in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

in == 1

4

3
2

A

B C

in == 0

in == 0

in == 1

“11” does not exist: We use “Don’t Care” as
the following state

49

present in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

www.iaik.tugraz.at

in == 1

4

3
2

A (00)

B (01) C (10)

in == 0

in == 0

in == 1

next s0 = ((~s1) & (~s0) & (~in)) | ((~s1) & (~s0) & in)

next s1 = ((~s1) & s0 & in) | (s1 & (~s0) & in)

Output Function

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

50

www.iaik.tugraz.at

in == 1

4
(100)

3
(011) 2

(010)

B (01) C (10)

in == 0

in == 0

in == 1

A (00)

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

Structural diagram of the FSM

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|(s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

51

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

52

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

53

www.iaik.tugraz.at

Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

With “areset” we can
initialize the ASM
(“initial state”).

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

54

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the next-state function f
we compute the next state:
next state = f(state, input)

55

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

56

www.iaik.tugraz.at

Implementation with Digital

57

www.iaik.tugraz.at

Coding Guidelines in SystemVerilog - Moore
Machines

next-
state
logic

state

clk

QD

areset

state_p

input

out-
put

logic

outputstate_n

58

www.iaik.tugraz.at

always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
state_p <= state_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;

Modeling with SystemVerilog

www.iaik.tugraz.at

59

See example con03.04_moore_fsm

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1

There exist 2 types of machines - check out the
LITTLE but IMPORTANT difference

• Moore Machines
• next state = function of present state and input

• output = function of present state

• Mealy Machines
• next state = function of present state and input

• output = function of present state and input

60

www.iaik.tugraz.at

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

61

www.iaik.tugraz.at

Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

62

www.iaik.tugraz.at

An example for a Mealy Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also
depend on the input.

C

in == 0

in == 1
out = 0

63

www.iaik.tugraz.at

The output function

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state in output
A 0 4
A 1 4
B 0 3
B 1 1
C 0 2
C 1 0

out = 2
in == 0

in == 1

out = 0
C

64

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A AC BAstate

time

in

Note how the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0

65

www.iaik.tugraz.at

Modeling with SystemVerilog

www.iaik.tugraz.at

66

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2
in == 0

in == 1
out = 0

C

See example con03.05_mealy_fsm

We can combine machines

• Combining Moore Machines causes no problem. We get another
Moore Machine.

• Combining a Moore Machine with a Mealy Machine causes also no
problem. We get a Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause troubles: One needs to
avoid combinational loops!

67

www.iaik.tugraz.at

The combination of two Moore Machines creates
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

68

www.iaik.tugraz.at

We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

69

www.iaik.tugraz.at

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

70

www.iaik.tugraz.at

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

71

www.iaik.tugraz.at

The combination of two Mealy Machines is “dangerous”:
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

72

www.iaik.tugraz.at

The combination of two Mealy Machines is “dangerous”: You
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

73

www.iaik.tugraz.at

Summary

• All digital logic can in principle be built with Moore Machines and Mealy
Machines.

• You go from one representation to the other (in both directions from each
representation to each other):

State Diagram – Timing Diagram – SystemVerilog Code – Circuit Diagram

74

www.iaik.tugraz.at

Not for every circuit the
modelling as Moore/Mealy

Machine is the best.

Separating Control and Data Path

75

www.iaik.tugraz.at

Rembember our AddSub Machine

www.iaik.tugraz.at

76

+/-1
Registers

clk

QD

areset

input

out-
put

logic

How many states
does this machine

have?

Does it make sense
to draw a graph with

all “state
transitions”?

Our AddSub Machine is a Datapath

• A Datapath “contains everything that is related to data processing”

• consists of
• Functional units doing computations
• Data registers
• Wires and multiplexers connecting the registers und functional units

• takes as Inputs
• Control signals defining “which computations are performed and where data is stored”

• provides as outputs
• Data values and derived data values (e.g. overflow, underflow, result of compares, …)

→ Often visualized based on block diagrams; state diagrams are not suitable

www.iaik.tugraz.at

77

Control Units are the Counterpart

• A Control Unit/Controller/FSM “contains everything that is related
managing what happens when and under what condition”

• consists of
• Next-state logic
• State registers
• Wires connecting the nextstate logic and registers

• takes as inputs
• Control signals and status flags (system conditions)

• provides as outputs
• Control signals connected to a data path taking them as input

→ Best visualized based on state diagrams

www.iaik.tugraz.at

78

Control Unit

• State machine generating
control signals for the data
path

www.iaik.tugraz.at

79

Data Path
• Contains all functional units and

registers related to data processing

• Receives control signals to perform
operations on the data.

• Provides status signals to the control-
related data to the control unit

“Piano Player” “Piano”

Mapping to SystemVerilog
Control Unit

• Always_comb Block describing
nextstate logic

• Always_FF Block describing the
state registers

www.iaik.tugraz.at

80

Data Path

• Always_comb Block describing the
functional units of the data path

• Always_FF Block describing the
data registers

Depending on the implemented system, it is useful to implement the “always blocks” of
control and data separate or together

IMPORTANT Announcement: No points will be reduced in Task 1 if there is a joint
always_comb and a joint always_FF block for control and data

Algorithmic State Machines

(Modelling Control and Data Path in a Single Graph)

81

www.iaik.tugraz.at

Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state machines

• ASMs allow to specify a system consisting of a data path together
with its control logic

• All FSM state diagrams have an equivalent ASM diagram

82

www.iaik.tugraz.at

FSM state diagram → ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0

83

www.iaik.tugraz.at

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

84

www.iaik.tugraz.at

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

85

www.iaik.tugraz.at

Adding the Datapath Using Register-Transfer
Statements
• Register-transfer statements define the change of a value stored in a

register of the data path

• Values in registers can only change at the active (= rising) edge of
clock.

• “Register-transfer statements” with a “left arrow” (“”)

• Example: “a  x” means that the value in the register “a” gets the
value of “x” at the “next” active (= rising) edge of clock.

www.iaik.tugraz.at

86

“=“ versus “” in an ASM

• The symbols “=“ versus “” in an ASM align with the symbols “=“
and “<=“ in Systemverilog

• With the equal sign (“=“) we denote that the output of the FSM has a certain
value during a particular state (SystemVerilog: output logic – combinational)

• With the left-arrow (“”) we denote a register-transfer statement: The
register value left of the arrow changes to whatever is defined right of the
arrow upon the next active (= rising) edge of clock.

87

www.iaik.tugraz.at

ASM Diagram With two Register-Transfer Statements

out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0

The value stored in register X gets 0
at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B.

88

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0

89

www.iaik.tugraz.at

out = 4
X  0

out = 3

out = 2
X  X + 1

in

1

A

B

C

0

Several register-transfer statements can
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

90

www.iaik.tugraz.at

Several register-transfer statements can
be specified within one state

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

91

www.iaik.tugraz.at

Example in SystemVerilog

92

www.iaik.tugraz.at

See example con03.06_asm_generic_example

https://extgit.iaik.tugraz.at/con/examples-2023.git

https://extgit.iaik.tugraz.at/con/examples-2023.git

Example 2
A “Simple Calculator”

Simple_calc

1. Reads two inputs via the input port
input_data_i
(Read is done one after the other in
the clock cycles when
input_data_valid_i == 1)

2. Performs one out of four operations
on the inputs (add,sub, shl, shr)
selected by op_sel_i

3. Provides the result at result_o for one
clock cycle (result_valid_o is set
during this clock cycle)

4. It provides a blinking LED output in
case the result is zero and then starts
from the beginning

www.iaik.tugraz.at

93

simple_calc

Input_data_i [3:0]

Input_data_valid_i

op_sel_i [1:0]

result_o

result_valid_o

zero_led_o

“Simple Calculator”

result_valid = 0

result_valid = 1

94

www.iaik.tugraz.at

result == 0

result  input_1 + input_2 result  input_1 >> input_2result  input_1 – input_2 result  input_1 << input_2

result_valid = 0
zero_led_o = counter[0]
counter  counter - 1

Input_data_valid

Input_reg_1  input

Input_reg_2  input

Input_data_valid

counter == 0

0 0

1

1

1

0

0

counter  6

1

STATE_READ_INPUT_1

STATE_READ_INPUT_2

STATE_CALC_ADD STATE_CALC_SUB STATE_CALC_SHL STATE_CALC_SHR

STATE_PROVIDE_OUTPUT
STATE_BLINK_ZERO

Example in SystemVerilog

95

www.iaik.tugraz.at

See example con03.07_simple_calc

https://extgit.iaik.tugraz.at/con/examples-2023.git

https://extgit.iaik.tugraz.at/con/examples-2023.git

Synthesis of the Data Path and its
Control Signals

96

www.iaik.tugraz.at

www.iaik.tugraz.at

97

The Interface Between Control and Data Path

Data Path

implementing
the actions on
data registers

Control

defines when
what action
should be
performed

Control Signals

provided by
control to

perform actions
on data path

Status Signals

provided by
data path to

inform control

Register-Transfer Statements Define the Data Path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y  0
Y  X

Operations for register X:

Operations for register Y:

98

www.iaik.tugraz.at

These are the actions that our system is able to perform on
The data registers X and Y

Register-Transfer Statements Define the Data Path

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

X  0
X  X
X  X+ 1

Y  0
Y  X

Operations for register X:

Operations for register Y:

99

www.iaik.tugraz.at

These are the operations that our data path implements

Operations for register X

Case 0: X  X
Case 1: X  X+ 1
Case 2: X  0

We need to distinguish
between 3 cases.

100

www.iaik.tugraz.at

→ A one bit control signal is not enough. We need two control signals.

Control Signals and Datapath for the Actions
on Register X

clrx incx action
0 0 X  X
0 1 X  X+ 1
1 0 X  0

101

www.iaik.tugraz.at

Control Signals and Datapath for the Actions
on Register Y

clry ldy action
0 0 Y  Y
0 1 Y  X
1 0 Y 0

102

www.iaik.tugraz.at

Register-transfer statements become assignment of
control signals in the controller

out = 4
X  0
Y  0

out = 3
Y  X

out = 2
X  X + 1

Y  X

in

1

A

B

C

0

103

www.iaik.tugraz.at

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

Separated Control & Datapath

104

www.iaik.tugraz.at

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

Example in SystemVerilog

105

www.iaik.tugraz.at

See example
con03.08_asm_generic_example_with_separate_datapath

https://extgit.iaik.tugraz.at/con/examples-2023.git

https://extgit.iaik.tugraz.at/con/examples-2023.git

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2
	Slide 3: From Combinational Circuits to Sequential Circuits
	Slide 4: A Simple Set-Reset Latch (NOR Version)
	Slide 5: We set the “set” input
	Slide 6: We release the “set” input
	Slide 7: We set the “reset” input
	Slide 8: We release the “reset” input
	Slide 9: Illegal Action: We set “Set” and “Reset”
	Slide 10: Combining Computation and Storage
	Slide 11: Flip-Flop based on CMOS Gates
	Slide 12: Storage
	Slide 13: Naming Conventions
	Slide 14: Combining
	Slide 15: Sequential Logic Splits Time in Discrete Slices
	Slide 16: Example Counter
	Slide 17: Example Counter
	Slide 18: SystemVerilog
	Slide 19: Let’s Build This in SystemVerilog
	Slide 20: Coding Guidelines in SystemVerilog
	Slide 21: SystemVerilog: Blocking vs. Non-Blocking Assignments
	Slide 22: Another Note on SystemVerilog
	Slide 23: Summary of CON SystemVerilog Coding Style
	Slide 24: The Clock Frequency
	Slide 25: Temperature, Power Consumption
	Slide 26: Clock Frequency Too High
	Slide 27: Observations
	Slide 28
	Slide 29: Finite State Machines (FSMs)
	Slide 30: Finite State Machine (= automaton)
	Slide 31: The sequence of states can be defined in a state diagram.
	Slide 32: State diagram: We denote the states with circles and give them symbolic names, e.g. A, B, and C.
	Slide 33: State diagram: We define one of the states as the initial state.
	Slide 34: In the beginning…
	Slide 35: State diagram: With arrows we define the sequence of states.
	Slide 36: The sequence of states can also be defined in a state transition table.
	Slide 37: FSMs typically also have inputs influencing the transition to the next state
	Slide 38: FSMs typically also have inputs influencing the transition to the next state
	Slide 39: The State Transition Table
	Slide 40: Timing Diagram – Example 1
	Slide 41: Timing Diagram – Example 2
	Slide 42: FSMs typically also have outputs
	Slide 43: We define the outputs with the “output function”
	Slide 44: Timing Diagram – Example 3
	Slide 45
	Slide 46: Essence of Moore Machines
	Slide 47: State Encoding
	Slide 48: State Transition Table
	Slide 49: “11” does not exist: We use “Don’t Care” as the following state
	Slide 50: Output Function
	Slide 51: Structural diagram of the FSM
	Slide 52: Essence of Moore Machines
	Slide 53: Essence of Moore Machines
	Slide 54: Essence of Moore Machines
	Slide 55: Essence of Moore Machines
	Slide 56: Essence of Moore Machines
	Slide 57: Implementation with Digital
	Slide 58: Coding Guidelines in SystemVerilog - Moore Machines
	Slide 59: Modeling with SystemVerilog
	Slide 60: There exist 2 types of machines - check out the LITTLE but IMPORTANT difference
	Slide 61: Essence of Moore Machines
	Slide 62: Essence of Mealy Machines
	Slide 63: An example for a Mealy Machine
	Slide 64: The output function
	Slide 65: Timing diagram
	Slide 66: Modeling with SystemVerilog
	Slide 67: We can combine machines
	Slide 68: The combination of two Moore Machines creates again a (more complex) Moore Machine
	Slide 69: We can even connect More Machines in a loop-like fashion
	Slide 70: The combination of a Moore Machine with a Mealy Machine creates a Moore Machine or a Mealy Machine
	Slide 71: The combination of a Moore Machine with a Mealy Machine creates a Moore Machine or a Mealy Machine
	Slide 72: The combination of two Mealy Machines is “dangerous”: You need to avoid “combinational loops”
	Slide 73: The combination of two Mealy Machines is “dangerous”: You need to avoid “combinational loops”
	Slide 74: Summary
	Slide 75
	Slide 76: Rembember our AddSub Machine
	Slide 77: Our AddSub Machine is a Datapath
	Slide 78: Control Units are the Counterpart
	Slide 79: Control Unit
	Slide 80: Mapping to SystemVerilog
	Slide 81
	Slide 82: Algorithmic State Machines (ASMs)
	Slide 83: FSM state diagram  ASM diagrams
	Slide 84: Mealy Machines
	Slide 85: Mealy Machines
	Slide 86: Adding the Datapath Using Register-Transfer Statements
	Slide 87: “=“ versus “” in an ASM
	Slide 88: ASM Diagram With two Register-Transfer Statements
	Slide 89: Timing diagram
	Slide 90: Several register-transfer statements can be specified within one state
	Slide 91: Several register-transfer statements can be specified within one state
	Slide 92: Example in SystemVerilog
	Slide 93: Example 2 A “Simple Calculator”
	Slide 94: “Simple Calculator”
	Slide 95: Example in SystemVerilog
	Slide 96
	Slide 97: The Interface Between Control and Data Path
	Slide 98: Register-Transfer Statements Define the Data Path
	Slide 99: Register-Transfer Statements Define the Data Path
	Slide 100: Operations for register X
	Slide 101: Control Signals and Datapath for the Actions on Register X
	Slide 102: Control Signals and Datapath for the Actions on Register Y
	Slide 103: Register-transfer statements become assignment of control signals in the controller
	Slide 104: Separated Control & Datapath
	Slide 105: Example in SystemVerilog

