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Chapter 1 – Combinational Circuits



Computation and Physics
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We Need to Map our Programs to Physics
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• Mechanics

• Voltage 

• Current

• Quantum Mechanics

• … 

include <stdio.h>

int main()

{

printf(“Hello World");

return 0;

}

1 + 1 = ?



Examples of Computation Machines
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Enigma 

an electromechanical encryption machine

Museo della Scienza e della Tecnologia “Leonardo da Vinci” CC BY-SA

„British Bombe“ by Alan Turing

An electromechanical machine to break Enigma



We Need to Map our Programs 
to Physics
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include <stdio.h>

int main()

{

printf("Hello World");

return 0;

}

1 + 1 = ?

IBM quantum computer
(Lars Plougmann via flickr CC BY-SA 2.0)

Zuse Z1 (mechanical)
ComputerGeek via Wikipedia CC BY-SA 3.0

CMOS Processor
(http://asic.ethz.ch)



Complementary Metal-Oxide-Semiconductor 
(CMOS)

• Invented at Bell Labs by Mohamed Atalla and Dawon Kahng in 1959

• CMOS uses PMOS and NMOS transistors 

• CMOS is the technology of almost all digital circuits (from contactless 
RFID chips to server CPUs
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Two Types of Transistors

• PMOS and NMOS transistors are essentially switches
• PMOS: A=0 → transistor conducting; A=1 → transistor not conducting

• NMOS: A=0 → transistor not conducting; A=1 → transistor conducting 

• How do we build a computer from these two types of transistors?

www.iaik.tugraz.at

7

PMOS transistor: is conducting, if A is connected to GND

NMOS transistor: is conducting, if A is connected to Vdd



We Need Two Things From Transistors
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• Computation (Combinational Logic)

• How to apply a function to input data to generate an output?

• Storage (Sequential Logic)

• How to store data and intermediate results of computations?



Computation – Logic Gates
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Transistors

Logic Gates

Combinational & Sequential Circuits

State Machines

Processors

Assembly Functions/Programs

C Programs

Applications and Operating Systems

Assembly Instructions 

Link Layer

Computer 1 Computer 2

Physical Communication Link

Software

Hardware

Network Layer

Transport Layer

Application Layer

The Big Picture



A Logic Gate – “The Smallest Functional Unit”

Logic
Gate

q

(“Vdd”, “high”, “1”)

a

b

(“GND”, “Vss”, “low”, “0”)
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The Simplest Gate – A CMOS Inverter
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PMOS transistor: is conducting, if A is connected to GND

NMOS transistor: is conducting, if A is connected to Vdd

A Q

High (1) Low (0)

Low (0) High (1)



CMOS NAND gate
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A B Out

Low (0) Low (0) High (1)

Low (0) High (1) High (1)

High (1) Low (0) High (1)

High (1) High (1) Low (0)



CMOS Design Principle
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Pull-Up Network with 
PMOS transistors

Pull-Down Network with 
NMOS Transistors

Pull-Up and Pull-Down networks 
are complementary 

–> given static inputs, the 
output is either pulled up or 
pulled down

Based on this principle, different 
logic gates can be built



CMOS NOR gate

15

A B Out

Low (0) Low (0) High (1)

Low (0) High (1) Low (0)

High (1) Low (0) Low (0)

High (1) High (1) Low (0)



More Complex Gates
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Building an AND Gate

• An AND gate cannot be built using a single pull-up/pull-down 
network

• It is built by a NAND gate followed by an inverter
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A B Out (Q)

Low (0) Low (0) Low (0)

Low (0) High (1) Low (0)

High (1) Low (0) Low (0)

High (1) High (1) High (1)



AND Gate

AND
Gate

q

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)
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a

b



AND Gate

AND
Gate

q

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)
19



AND Gate

AND
Gate

q

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)
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Cascading Gates

AND
Gate

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

AND
Gate

AND
Gate

a

b
c

d

q
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Combinational Circuit

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Combinational 
Circuit

(built from many 
gates)

N wires/bit 
input

M wires/bit 
output

This can 
contain 
millions 
of gates
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The Mathematical View of a Combinational 
Circuit

• Combinational circuits (physical view) realize logic functions (mathematical view)

• With “function” we mean a mapping from a set of inputs to a set of outputs

• In mathematics, we typically express such a mapping as a function, e.g.: y = f(x) = x2

• If you choose a value for x, you get a value for y. We call x the independent value and 
y the dependent value
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Logic Functions (or Boolean Functions)

• The “input” of a logic function is a tuple consisting of 0’s and 1’s

• The “output” of a logic function is, depending on the input values,  0 
or 1

http://en.wikipedia.org/wiki/Boolean_function

Bk → B, where B = {0, 1} is a Boolean domain and 
k is a non-negative integer called the arity of the function. 
In the case where k = 0, the "function" is essentially a constant element of B.

24
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How can be describe Logic functions?

• A logic function defines how to map a number of binary inputs to an a 
binary ouput

• For some input combinations, the output will be 1 

• For some input combinations, the output will be 0

• The most simply way of describing a logic function: make a table with 
all input combinations and define the output for each combination 

→ this is called truth table

www.iaik.tugraz.at
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Truth Table

• A truth table uniquely describes a logic function.

• Example: The logic-AND function with 2 input variables x1 and x0

x1 x0 y
0 0 0
0 1 0
1 0 0
1 1 1

26
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Elements of a truth table

x1 x0

Input
variables

y = f(x1, x0)

27
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Elements of a truth table

Input
variables

y = f(x1, x0)

List all combinations
of input variables.
It is convenient to
list them in sorted order. 
We usually start with 
all zeroes.

x1 x0

0 0
0 1
1 0
1 1

28
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Elements of a truth table

Input
variables Output

y = f(x1, x0)

x1 x0 y
0 0
0 1
1 0
1 1

List all combinations
of input variables.
It is convenient to
list them in sorted order. 
We usually start with 
all zeroes.

29
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Elements of a truth table

Input
variables Output

y = f(x1, x0)

x1 x0 y
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

List all combinations
of input variables.
It is convenient to
list them in sorted order. 
We usually start with 
all zeroes.

30
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Size of truth tables

x f(x)
0 f(0)
1 f(1)

1 input variable

21 possible values for x

31
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Size of truth tables

x1 x0 f(x1, x0)
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

2 input variables

22 possible combinations for (x1, x0)

n=2

2n

32
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Size of truth tables

x2 x1 x0 f(x2,x1,x0)
0 0 0 f(0,0,0)
0 0 1 f(0,0,1)
0 1      0 f(0,1,0)
0 1 1 f(0,1,1)
1 0 0 f(1,0,0)
1         0 1 f(1,0,1)
1 1 0 f(1,1,0)
1 1 1 f(1,1,1)

3 input variables

23 possible 
combinations 
for (x2, x1, x0)

n=3

2n

33
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Size of truth tables

n input variables

2n possible combinations

The size of a truth table grows exponentially with n. 

→ Except for very simple functions, we will need a 
different way of describing logic functions

34
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How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

35
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How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

• There exist 4 possible different truth tables:

x   y
0  0
1  0

x   y
0  1
1  0

x   y
0  0
1  1

x   y
0  1
1  1

36
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How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

• There exist 4 possible different truth tables

• In the y-column we see all possible combinations

37

x   y
0  0
1  0

x   y
0  1
1  0

x   y
0  0
1  1

x   y
0  1
1  1
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How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

• There exist 4 possible different truth tables

• In the y-column we see all possible combinations

x   y0 y1 y2 y3

0 0 1 0 1
1 0 0 1 1

38
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How many logic functions are possible?

• Two input variables x1 and x0

39
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How many logic functions are possible?

• Two input variables x1 and x0

n=2

40

www.iaik.tugraz.at



How many logic functions are possible?

• Two input variables x1 and x0

n=2

2n

41
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How many logic functions are possible?

• Two input variables x1 and x0

2   = 2    = 162n 22

42

n=2

2n
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With n = 3, 4, …

• n = 3,    23 = 8 lines,  28 = 256 functions

• n = 4,    24 = 16 lines, 216 = 65536 functions

• n = 5,    25 = 32 lines, 232 = 4294967296 functions

• n = 6,    26 = 64 lines, 264 = 18446744073709551616 functions

43
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Back to n = 2

Some functions are “popular” and have names and symbols for 
corresponding logic gates

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND

44
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Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND OR

45
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Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

46
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Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NAND

47
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Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR

48
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x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

49

Popular 2-input functions
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Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1

50
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Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0

51
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Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x00

52
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Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x00 1

53
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Some functions are “almost trivial”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x10 1

54
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Some functions are “almost trivial”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1
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Some functions are “implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

56
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Some functions are “implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

x1 is implied by x0

57
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And some functions are “inverse implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

x1 is implied by x0

x1 does not imply x0

58
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And some functions are “inverse implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

x1 is implied by x0

x1 does not imply x0

x1 is not implied by x0

59
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The popular functions can also have more 
than 2 inputs
• Example: 5-input AND

• Only if all input values are 1, the output is 1

60
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The popular functions can also have more 
than 2 inputs
• Example: 3-input OR

• If at least one input values is 1, the output is 1

61
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Be careful with XOR function with more than 
2 inputs
• Interpretation #1: Output is 1, if an odd number of input values is 1 

• Interpretation #2: Output is 1, if exactly 1 input value is 1 

• Interpretation #1 is the “common” interpretation! → This is what we 
use in the lecture

62

www.iaik.tugraz.at



Other Important Gates – Multiplexer (MUX)

• The select signal (sel) determines whether out is equal to I0 or I1:
• Sel = 0 means out = I0

• Sel = 1 means out = I1

63
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Scaling to more inputs

• With each additional select signal, 
the number of selectable inputs 
doubles

• 2to1MUX: 1 select signal

• 4to1MUX: 2 select signals

• 8to1MUX: 3 select signals

• …

64

4to1MUX
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Other Important Gates – Demultiplexer

• The select signals (sel) of a demultiplexer determine whether to 
which output the input is mapped:
• Sel = 0 means out0 = in

• Sel = 1 means out1 = in

65

1to2 DEMUX
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Tooling

www.iaik.tugraz.at
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Recommended tools for understanding logic circuits

• Tool DIGITAL (installed on your VM)
• https://github.com/hneemann/Digital 

• Online tool for logic circuit design
• https://circuitverse.org/



How many different types of gates are needed to be able to 
implement any logic function?

67
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Functional Completeness

• A functionally complete set of logic gates is a set that allows to build all 
possible truth tables by combining gates of this set.

• Important sets are:
• {NAND}: Any circuit can be built just by using NAND gates (try it out in Digital!)

• {NOR}: Any circuit can be built just by using NOR gates

• {AND, NOT}: Any circuit can be built just by using AND and NOT gates

• {AND, OR, NOT}: The set we use to map truth tables to equations

68

www.iaik.tugraz.at



Combinational Circuits

(Composing logic gates to implement a desired functionality)

www.iaik.tugraz.at
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Describing Combinational Circuits

In practice, it does not work to describe the functionality of larger 
compositions of logic gates based on a single truth table 

→We need a more powerful description 

www.iaik.tugraz.at
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Boolean Functions – The Mathematical Description 
of Combinational Circuits

• Symbol for inversion: ~ ¬ ˉ

• Symbol for AND: & ˄ *

• Symbol for OR: | ˅ +

• Example: 
y = (~x1 & x0) | (x2 & ~x0) | (x2 & x1)

71
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Logic functions map to Combinational Circuits 
and Vice Versa

q = (~a & b) | c

72
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q = (~a & b) | c

OR

73

www.iaik.tugraz.at



q = (~a & b) | c

ORAND

74
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q = (~a & b) | c

OR

NOT

75
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AND



q = (~a & b) | c

76
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OR

NOT
AND

inputs 
a, b, c



q = (~a & b) | c

output q 

77
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OR

NOT
AND

inputs
a, b, c



q = (~a & b) | c

Inputs are independent;
(can be chosen or 
are defined externally)

Outputs dependent
on the inputs

78
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OR

NOT
AND

inputs
a, b, c output q



Implementing a logic function: 
A design flow

• Start with developing a truth table

• Example: Adding three binary variables u, v and w:  s = u + v + w

• With 3 variables we have 23 possible combinations for input 
situations.

79
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Implementing a logic function: 
A design flow
U + v + w

0 + 0 + 0

0 + 0 + 1

0 + 1 + 0

0 + 1 + 1

1 + 0 + 0

1 + 0 + 1

1 + 1 + 0

1 + 1 + 1

8 possible combinations;
sorted from (0, 0, 0) to (1, 1, 1)

80
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Implementing a logic function: 
A design flow
u + v + w = s

0 + 0 + 0 = 0

0 + 0 + 1 = 1

0 + 1 + 0 = 1

0 + 1 + 1 = 2

1 + 0 + 0 = 1

1 + 0 + 1 = 2

1 + 1 + 0 = 2

1 + 1 + 1 = 3

The result for each possible case

81
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Implementing a logic function: 
A design flow
u + v + w = s1 s0

0 + 0 + 0 = 0 0

0 + 0 + 1 = 0 1

0 + 1 + 0 = 0 1

0 + 1 + 1 = 1 0

1 + 0 + 0 = 0 1

1 + 0 + 1 = 1 0

1 + 1 + 0 = 1 0

1 + 1 + 1 = 1 1

Re-writing the result as a 
binary number

82
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Implementing a logic function: 
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The truth table

83
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Implementing a logic function: 
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 We only look at lines

0 1 0 0 1 where s0 gets “true”

0 1 1 1 0 i.e. “1”.

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

84
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Implementing a logic function: 
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v &  w) … 

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

85
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Implementing a logic function: 
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v &  w) |

0 1 0 0 1 (~u &   v & ~w) …

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

86
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Implementing a logic function: 
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v &  w) |

0 1 0 0 1 (~u &   v & ~w) |

0 1 1 1 0

1 0 0 0 1 ( u & ~v & ~w) …

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:
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Implementing a logic function: 
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v &  w) |

0 1 0 0 1 (~u &   v & ~w) |

0 1 1 1 0

1 0 0 0 1 ( u & ~v & ~w) |

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1 ( u &  v & w)

The logic function for s0:
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Implementing a logic function: 
With a little help from Digital

89

www.iaik.tugraz.at

https://github.com/hneemann/Digital



Implementing a logic function: 
With a little help from Digital

Start Digital

Goto Analysis → Synthesis
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Implementing a logic function: 
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs
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Implementing a logic function: 
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table
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Implementing a logic function: 
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table
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Implementing a logic function: 
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table

Optionally: Check plain text export
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Implementing a logic function: 
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table

Optionally: Check plain text export

Click “Create” and “Circuit”.
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Implementing a logic function: 
With a little help from Digital

Switch to Simulation Mode:

Simulate circuit with
all possible input combinations.
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Implementing a logic function: 
With a little help from Digital

Alternative: specify the expression

Use “let” to specify outputs.
Separate formulas by comma.
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Boolean Algebra

(Rules to transform/simplify logic functions)

www.iaik.tugraz.at
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Motivation

• A truth table is a unique representation of a logic function 

• Describing a given functionality as a Boolean function is not unique 
→The same functionality can be described using different Boolean 

functions

• There is also no unique circuit representation for a logic function
→ The same functionality can be described by different combinational 
circuits

When building digital circuits, there is always an optimization 
towards different targets, such as minimum area, shortest latency, 
minimum power consumption, ….

www.iaik.tugraz.at
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Boolean Algebra

• Values of variables are only 0 or 1.

• 3 main operations:
• Negation, also known as “inversion” ~

• Conjunctions, also known as “ANDing” &

• Disjunction, also known as “ORing” |

• Boolean Algebra allows to transform Boolean functions/equations

100
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Boolean Algebra

a | 0 = a

a | 1 = 1

a & 0 = 0

a & 1 = a

a ^ 0 = a

a ^ 1 = ~a 

a |  a  = a

a | ~a = 1

a &   a = a

a & ~a = 0

a ^ a   = 0

a ^ ~a = 1 

a |  (a & b)  = a

a & (a | b)   = a

The proof of all these facts is rather easy: Take a truth table and check all possibilities.

101
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Boolean Algebra

Associative Law:

(a | b) | c = a | (b | c)

(a & b) & c = a & (b & c)

Commutative Law:

a | b  = b | a

a & b  = b & a

The proof of all these facts is rather easy: Take a truth table and check all possibilities. 102
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Boolean Algebra

Distributive Law:

a | (b & c) = (a | b) & (a | c)

a & (b | c) = (a & b) | (a & c)

The proof of all these facts is rather easy: Take a truth table and check all possibilities.
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Boolean Algebra

De Morgan’s Law:

~(a & b)    =  ~a | ~b

~(a | b)    =  ~a & ~b

The proof of all these facts is rather easy: Take a truth table and check all possibilities.
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Boolean Algebra

De Morgan’s Law:

~(a & b)    =  ~a | ~b

~(a | b)    =  ~a & ~b

The proof of all these facts is rather easy: Take a truth table and check all possibilities.
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Boolean Algebra

De Morgan’s Law:

~(a & b)    =  ~a | ~b

~(a | b)    =  ~a & ~b

The proof of all these facts is rather easy: Take a truth table and check all possibilities.
106
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Incomplete specification: “Don’t Cares”

• Sometimes we are not interested in some input combinations; we 
“don’t care” about the output of the logic function in this case.

• This is the case, when not all input combinations occur in some 
context.

107
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Incomplete specification: “Don’t Cares”

• Example: 3 inputs, 2 “don’t cares”.

108
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Result after “synthesizing” with Digital

109

www.iaik.tugraz.at



Describing Combinational Circuits
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Describing Combinational Circuits

111

Combinational 
Circuit

(built from many 
gates)

N wires/bit 
input

M wires/bit 
output
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Describing Combinational Circuits
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f1 q1

iN

i1i2 …

f2 q2…

fM qM…
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Describing Combinational Circuits
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f1 q1

iN

i1i2 …

f2 q2…

fM qM…

inputs

outputs
circuit
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Describing Combinational Circuits
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inputs outputscircuit
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Describing Combinational Circuits

115

inputs outputscircuit

Truth Tables

(exhaustive listing of all input/output 
combinations) 

Logic Equation

(one equation for each output)

Circuit Netlist

(“connected logic gates”)

Hardware Description Language 

(“writing code that describes physical 
hardware”)
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Describing Combinational Circuits

116

inputs outputscircuit

Truth Tables

Truth tables are only practical for 
small input sizes.

Logic Equation

Ideal format to apply transformations 
and optimizations (Boolean algebra).

Circuit Netlist

This is what is needed to physically 
build a chip.

Hardware Description Language

This is the standard way of describing 
the behavior of complex circuits.
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Example 1

117

module simple_circuit (
input in_a,
input in_b,
input in_c,
output out_q

);
assign out_q = ((~ in_a & in_b) | in_c);

endmoduleout_q = (~in_a & in_b) | in_c

www.iaik.tugraz.at



Example 1

118

out_q = (~in_a & in_b) | in_c

Circuit Netlist

(“connected 
logic gates”)

Truth Table

Logic equation

Hardware 
Description 
Language

www.iaik.tugraz.at

module simple_circuit (
input in_a,
input in_b,
input in_c,
output out_q

);
assign out_q = ((~ in_a & in_b) | in_c);

endmodule



SystemVerilog – A Hardware Description 
Language

119
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module simple_circuit (
input in_a,
input in_b,
input in_c,
output out_q

);
assign out_q = ((~ in_a & in_b) | in_c);

endmodule



Example 2

120
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module simple_circuit_with_mux (
input logic in_a,
input logic in_b,
input logic in_c,
input logic in_x,
input logic in_y,
input logic in_z,
input logic mux_sel,
output logic out_q

);

always_comb begin
if (mux_sel == 0)

out_q = (~in_a & in_b) | in_c;
else

out_q = (in_x ^ in_y) | ~in_z;
end

endmodule



(System) Verilog

• Powerful and widely used hardware description language (HDL); The 
second important HDL besides SystemVerilog is VHDL

• SystemVerilog was not created on the greenfield

• SystemVerilog is an extension of Verilog (all features of Verilog are also 
available in SystemVerilog)

→There are many variants and coding styles of how to use SystemVerilog

→In CON we focus on widely-used best-practice and current coding styles 

www.iaik.tugraz.at
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Two Main Styles for Hardware Description

• Gate-Level
• The module body contains a gate-level description of the circuit

• Circuits are created by instantiating gates (modules) and by connecting these modules

• Behavioral 
• The module body contains

• a functional description of the circuit
• logical and mathematical operators

• The level of abstraction is higher and there are many gate-level realizations for behavioral 
descriptions

• For composing circuits, also structural mechanisms for composition like instantiations (yet at 
a higher level of abstraction) are used

www.iaik.tugraz.at
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Design Flow

123

Circuit Netlist

(“connected logic gates”)

Synthesis

Module 
Description in  

HDL
Logic EquationsTruth Table or or

Cell Library

(“a description of 
available logic gates”)

Constraints

(“definition of 
optimization goals”)

This is what is provided 
by the manufacturing 

plant

Cell library is provided at 
at different levels – from 
physical level to Verilog 

level
Physical layout of transistors and 

wiring for fabrication as ASIC
(GDSII level)

www.iaik.tugraz.at

Gate-level netlist in 
Verilog

(structural)

Description in 
SystemVerilog

(mostly behavioral)

Place&Route

Constraints

(“definition of 
optimization goals”)



The Toolchain in our Practical

• iVerilog: 
• Simulator for Verilog code

• SV2V
• Converts SystemVerilog to Verilog

• Yosys:
• Synthesis Tool 

• Our flow does not do the place & route step – we stop at the gate-level 
netlist
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The Commands for Our Toolchain

• Make 

• build: Compile code

• run: Run simulation

• view: View simulation result in wave viewer

• syn: Synthesize code

• build-syn: compile synthesized code

• run-syn: Run Simulation based on netlist (synthesis result)

• show: Show netlist after synthesis 

125
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Synthesis and Place&Route

• Logic Synthesis is the process of mapping an abstract description 
(typically done in a hardware description language) of a circuit to a list 
of available logic gates

• Place&Route is the process of mapping a gate-level netlist to a 
physical layout that is ready for production

• Synthesis and Place&Route are parametrized to optimize different 
properties, like speed, area, or power consumption

www.iaik.tugraz.at

126



Building a physical device in practice
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SystemVerilog
Code

Field Programmable Gate Array 

(FPGA)

Application-Specific Integrated Circuit

(ASIC)



ASIC – Application-Specific Integrated Circuit
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A chip that physically realizes your circuit

• Basic steps to building your ASIC (very high level view):
• Select your favorite semiconductor manufacturing plant (see 

https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants)

• Receive the standard cell library from the plant (“the list of logic gates that 
the plant can build”)

• Map our circuit to the available cells (called “synthesis”)

• Place and route the cells

• Let the plant physically build your circuit

https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants


The Complexity of building a Microchip

• Get an impression of the size and structure

https://www.youtube.com/watch?v=2z9qme_ygRI

• Get an impression of the manufacturing process

• https://www.youtube.com/watch?v=c9arR8T0Qts

• Today’s chips contain billions of transistors connected by multiple layers of metal

Recent Example: Apple M2 Ultra has about 134.000.000.000 transistors 
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David Carron

https://www.youtube.com/watch?v=2z9qme_ygRI
https://www.youtube.com/watch?v=c9arR8T0Qts
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US and European Chips Acts

EU
• The EU aims to double its market share of the global chip production from 

currently 10% to 20% in 2030

• € 43 billion investment

USA
• The USA seeks to relocate the chips supply chain to the USA.

• $52.7 billion

www.iaik.tugraz.at
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FPGAs – Field Programmable Gate Arrays 
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Existing hardware that can be configured to correspond to your circuit 
(“programmable hardware”) 

• Basic concept (high level view):

• FPGA vendors build huge arrays of LUTs (Look-Up-Tables) and switches (highly regular repeated physical 
structure)

• You can map your design to this hardware (the gates are mapped to LUTs and the wiring is mapped to 
the switches connecting the LUTs)

• An FPGA bitfile stores how a given FPGA needs to be configured to realize your circuit (format is 
vendor-specific)

• Load the bitfile into the FPGA and the FPGA realizes your circuit



FPGA boards

• FPGAs are trade-off between hardware and software
• Less efficient than hardware, but more efficient than software
• Less expensive than hardware, but more expensive than software

• You can get small FPGA boards already for less than EUR 50. 

• Interested in putting your practical of this semester on physical hardware? 

• Basically, any FPGA works for this purpose; ICE40 FGPAs offer an open source 
toolflow based on the tools we also use in this class (e.g.
https://www.mouser.at/ProductDetail/Lattice/ICE40HX1K-STICK-
EVN?qs=hJ2CX3hEdVEyBLaHAEXelA%3D%3D)
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https://www.mouser.at/ProductDetail/Lattice/ICE40HX1K-STICK-EVN?qs=hJ2CX3hEdVEyBLaHAEXelA%3D%3D
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A Note on Complexity
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Note: Logarithmic Scale!



Linear Scaling
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