
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 1 – Combinational Circuits

Computation and Physics

www.iaik.tugraz.at

2

We Need to Map our Programs to Physics

www.iaik.tugraz.at

3

• Mechanics

• Voltage

• Current

• Quantum Mechanics

• …

include <stdio.h>

int main()

{

printf(“Hello World");

return 0;

}

1 + 1 = ?

Examples of Computation Machines

www.iaik.tugraz.at

4

Enigma

an electromechanical encryption machine

Museo della Scienza e della Tecnologia “Leonardo da Vinci” CC BY-SA

„British Bombe“ by Alan Turing

An electromechanical machine to break Enigma

We Need to Map our Programs
to Physics

www.iaik.tugraz.at

5

include <stdio.h>

int main()

{

printf("Hello World");

return 0;

}

1 + 1 = ?

IBM quantum computer
(Lars Plougmann via flickr CC BY-SA 2.0)

Zuse Z1 (mechanical)
ComputerGeek via Wikipedia CC BY-SA 3.0

CMOS Processor
(http://asic.ethz.ch)

Complementary Metal-Oxide-Semiconductor
(CMOS)

• Invented at Bell Labs by Mohamed Atalla and Dawon Kahng in 1959

• CMOS uses PMOS and NMOS transistors

• CMOS is the technology of almost all digital circuits (from contactless
RFID chips to server CPUs

www.iaik.tugraz.at

6

Two Types of Transistors

• PMOS and NMOS transistors are essentially switches
• PMOS: A=0 → transistor conducting; A=1 → transistor not conducting

• NMOS: A=0 → transistor not conducting; A=1 → transistor conducting

• How do we build a computer from these two types of transistors?

www.iaik.tugraz.at

7

PMOS transistor: is conducting, if A is connected to GND

NMOS transistor: is conducting, if A is connected to Vdd

We Need Two Things From Transistors

www.iaik.tugraz.at

8

• Computation (Combinational Logic)

• How to apply a function to input data to generate an output?

• Storage (Sequential Logic)

• How to store data and intermediate results of computations?

Computation – Logic Gates

www.iaik.tugraz.at

9

www.iaik.tugraz.at

10

Transistors

Logic Gates

Combinational & Sequential Circuits

State Machines

Processors

Assembly Functions/Programs

C Programs

Applications and Operating Systems

Assembly Instructions

Link Layer

Computer 1 Computer 2

Physical Communication Link

Software

Hardware

Network Layer

Transport Layer

Application Layer

The Big Picture

A Logic Gate – “The Smallest Functional Unit”

Logic
Gate

q

(“Vdd”, “high”, “1”)

a

b

(“GND”, “Vss”, “low”, “0”)
11

The Simplest Gate – A CMOS Inverter

12

PMOS transistor: is conducting, if A is connected to GND

NMOS transistor: is conducting, if A is connected to Vdd

A Q

High (1) Low (0)

Low (0) High (1)

CMOS NAND gate

13

A B Out

Low (0) Low (0) High (1)

Low (0) High (1) High (1)

High (1) Low (0) High (1)

High (1) High (1) Low (0)

CMOS Design Principle

14

Pull-Up Network with
PMOS transistors

Pull-Down Network with
NMOS Transistors

Pull-Up and Pull-Down networks
are complementary

–> given static inputs, the
output is either pulled up or
pulled down

Based on this principle, different
logic gates can be built

CMOS NOR gate

15

A B Out

Low (0) Low (0) High (1)

Low (0) High (1) Low (0)

High (1) Low (0) Low (0)

High (1) High (1) Low (0)

More Complex Gates

16

Building an AND Gate

• An AND gate cannot be built using a single pull-up/pull-down
network

• It is built by a NAND gate followed by an inverter

17

A B Out (Q)

Low (0) Low (0) Low (0)

Low (0) High (1) Low (0)

High (1) Low (0) Low (0)

High (1) High (1) High (1)

AND Gate

AND
Gate

q

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)
18

a

b

AND Gate

AND
Gate

q

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)
19

AND Gate

AND
Gate

q

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)
20

Cascading Gates

AND
Gate

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

AND
Gate

AND
Gate

a

b
c

d

q

21

Combinational Circuit

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Combinational
Circuit

(built from many
gates)

N wires/bit
input

M wires/bit
output

This can
contain
millions
of gates

22

The Mathematical View of a Combinational
Circuit

• Combinational circuits (physical view) realize logic functions (mathematical view)

• With “function” we mean a mapping from a set of inputs to a set of outputs

• In mathematics, we typically express such a mapping as a function, e.g.: y = f(x) = x2

• If you choose a value for x, you get a value for y. We call x the independent value and
y the dependent value

23

Logic Functions (or Boolean Functions)

• The “input” of a logic function is a tuple consisting of 0’s and 1’s

• The “output” of a logic function is, depending on the input values, 0
or 1

http://en.wikipedia.org/wiki/Boolean_function

Bk → B, where B = {0, 1} is a Boolean domain and
k is a non-negative integer called the arity of the function.
In the case where k = 0, the "function" is essentially a constant element of B.

24

www.iaik.tugraz.at

http://en.wikipedia.org/wiki/Boolean_domain
http://en.wikipedia.org/wiki/Arity

How can be describe Logic functions?

• A logic function defines how to map a number of binary inputs to an a
binary ouput

• For some input combinations, the output will be 1

• For some input combinations, the output will be 0

• The most simply way of describing a logic function: make a table with
all input combinations and define the output for each combination

→ this is called truth table

www.iaik.tugraz.at

25

Truth Table

• A truth table uniquely describes a logic function.

• Example: The logic-AND function with 2 input variables x1 and x0

x1 x0 y
0 0 0
0 1 0
1 0 0
1 1 1

26

www.iaik.tugraz.at

Elements of a truth table

x1 x0

Input
variables

y = f(x1, x0)

27

www.iaik.tugraz.at

Elements of a truth table

Input
variables

y = f(x1, x0)

List all combinations
of input variables.
It is convenient to
list them in sorted order.
We usually start with
all zeroes.

x1 x0

0 0
0 1
1 0
1 1

28

www.iaik.tugraz.at

Elements of a truth table

Input
variables Output

y = f(x1, x0)

x1 x0 y
0 0
0 1
1 0
1 1

List all combinations
of input variables.
It is convenient to
list them in sorted order.
We usually start with
all zeroes.

29

www.iaik.tugraz.at

Elements of a truth table

Input
variables Output

y = f(x1, x0)

x1 x0 y
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

List all combinations
of input variables.
It is convenient to
list them in sorted order.
We usually start with
all zeroes.

30

www.iaik.tugraz.at

Size of truth tables

x f(x)
0 f(0)
1 f(1)

1 input variable

21 possible values for x

31

www.iaik.tugraz.at

Size of truth tables

x1 x0 f(x1, x0)
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

2 input variables

22 possible combinations for (x1, x0)

n=2

2n

32

www.iaik.tugraz.at

Size of truth tables

x2 x1 x0 f(x2,x1,x0)
0 0 0 f(0,0,0)
0 0 1 f(0,0,1)
0 1 0 f(0,1,0)
0 1 1 f(0,1,1)
1 0 0 f(1,0,0)
1 0 1 f(1,0,1)
1 1 0 f(1,1,0)
1 1 1 f(1,1,1)

3 input variables

23 possible
combinations
for (x2, x1, x0)

n=3

2n

33

www.iaik.tugraz.at

Size of truth tables

n input variables

2n possible combinations

The size of a truth table grows exponentially with n.

→ Except for very simple functions, we will need a
different way of describing logic functions

34

www.iaik.tugraz.at

How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

35

www.iaik.tugraz.at

How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

• There exist 4 possible different truth tables:

x y
0 0
1 0

x y
0 1
1 0

x y
0 0
1 1

x y
0 1
1 1

36

www.iaik.tugraz.at

How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

• There exist 4 possible different truth tables

• In the y-column we see all possible combinations

37

x y
0 0
1 0

x y
0 1
1 0

x y
0 0
1 1

x y
0 1
1 1

www.iaik.tugraz.at

How many logic functions are possible?

• Let’s start with logic functions with 1 input variable

• There exist 4 possible different truth tables

• In the y-column we see all possible combinations

x y0 y1 y2 y3

0 0 1 0 1
1 0 0 1 1

38

www.iaik.tugraz.at

How many logic functions are possible?

• Two input variables x1 and x0

39

www.iaik.tugraz.at

How many logic functions are possible?

• Two input variables x1 and x0

n=2

40

www.iaik.tugraz.at

How many logic functions are possible?

• Two input variables x1 and x0

n=2

2n

41

www.iaik.tugraz.at

How many logic functions are possible?

• Two input variables x1 and x0

2 = 2 = 162n 22

42

n=2

2n

www.iaik.tugraz.at

With n = 3, 4, …

• n = 3, 23 = 8 lines, 28 = 256 functions

• n = 4, 24 = 16 lines, 216 = 65536 functions

• n = 5, 25 = 32 lines, 232 = 4294967296 functions

• n = 6, 26 = 64 lines, 264 = 18446744073709551616 functions

43

www.iaik.tugraz.at

Back to n = 2

Some functions are “popular” and have names and symbols for
corresponding logic gates

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND

44

www.iaik.tugraz.at

Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND OR

45

www.iaik.tugraz.at

Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

46

www.iaik.tugraz.at

Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NAND

47

www.iaik.tugraz.at

Popular 2-input functions

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR

48

www.iaik.tugraz.at

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

49

Popular 2-input functions

www.iaik.tugraz.at

Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1

50

www.iaik.tugraz.at

Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0

51

www.iaik.tugraz.at

Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x00

52

www.iaik.tugraz.at

Some functions are trivial

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x00 1

53

www.iaik.tugraz.at

Some functions are “almost trivial”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x10 1

54

www.iaik.tugraz.at

Some functions are “almost trivial”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

55

www.iaik.tugraz.at

Some functions are “implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

56

www.iaik.tugraz.at

Some functions are “implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

x1 is implied by x0

57

www.iaik.tugraz.at

And some functions are “inverse implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

x1 is implied by x0

x1 does not imply x0

58

www.iaik.tugraz.at

And some functions are “inverse implications”

x1 x0 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND ORXOR

NANDNOR XNOR

x1x0~x1 ~x00 1

x1 implies x0

x1 is implied by x0

x1 does not imply x0

x1 is not implied by x0

59

www.iaik.tugraz.at

The popular functions can also have more
than 2 inputs
• Example: 5-input AND

• Only if all input values are 1, the output is 1

60

www.iaik.tugraz.at

The popular functions can also have more
than 2 inputs
• Example: 3-input OR

• If at least one input values is 1, the output is 1

61

www.iaik.tugraz.at

Be careful with XOR function with more than
2 inputs
• Interpretation #1: Output is 1, if an odd number of input values is 1

• Interpretation #2: Output is 1, if exactly 1 input value is 1

• Interpretation #1 is the “common” interpretation! → This is what we
use in the lecture

62

www.iaik.tugraz.at

Other Important Gates – Multiplexer (MUX)

• The select signal (sel) determines whether out is equal to I0 or I1:
• Sel = 0 means out = I0

• Sel = 1 means out = I1

63

www.iaik.tugraz.at

Scaling to more inputs

• With each additional select signal,
the number of selectable inputs
doubles

• 2to1MUX: 1 select signal

• 4to1MUX: 2 select signals

• 8to1MUX: 3 select signals

• …

64

4to1MUX

www.iaik.tugraz.at

Other Important Gates – Demultiplexer

• The select signals (sel) of a demultiplexer determine whether to
which output the input is mapped:
• Sel = 0 means out0 = in

• Sel = 1 means out1 = in

65

1to2 DEMUX

www.iaik.tugraz.at

Tooling

www.iaik.tugraz.at

66

Recommended tools for understanding logic circuits

• Tool DIGITAL (installed on your VM)
• https://github.com/hneemann/Digital

• Online tool for logic circuit design
• https://circuitverse.org/

How many different types of gates are needed to be able to
implement any logic function?

67

www.iaik.tugraz.at

Functional Completeness

• A functionally complete set of logic gates is a set that allows to build all
possible truth tables by combining gates of this set.

• Important sets are:
• {NAND}: Any circuit can be built just by using NAND gates (try it out in Digital!)

• {NOR}: Any circuit can be built just by using NOR gates

• {AND, NOT}: Any circuit can be built just by using AND and NOT gates

• {AND, OR, NOT}: The set we use to map truth tables to equations

68

www.iaik.tugraz.at

Combinational Circuits

(Composing logic gates to implement a desired functionality)

www.iaik.tugraz.at

69

Describing Combinational Circuits

In practice, it does not work to describe the functionality of larger
compositions of logic gates based on a single truth table

→We need a more powerful description

www.iaik.tugraz.at

70

Boolean Functions – The Mathematical Description
of Combinational Circuits

• Symbol for inversion: ~ ¬ ˉ

• Symbol for AND: & ˄ *

• Symbol for OR: | ˅ +

• Example:
y = (~x1 & x0) | (x2 & ~x0) | (x2 & x1)

71

www.iaik.tugraz.at

Logic functions map to Combinational Circuits
and Vice Versa

q = (~a & b) | c

72

www.iaik.tugraz.at

q = (~a & b) | c

OR

73

www.iaik.tugraz.at

q = (~a & b) | c

ORAND

74

www.iaik.tugraz.at

q = (~a & b) | c

OR

NOT

75

www.iaik.tugraz.at

AND

q = (~a & b) | c

76

www.iaik.tugraz.at

OR

NOT
AND

inputs
a, b, c

q = (~a & b) | c

output q

77

www.iaik.tugraz.at

OR

NOT
AND

inputs
a, b, c

q = (~a & b) | c

Inputs are independent;
(can be chosen or
are defined externally)

Outputs dependent
on the inputs

78

www.iaik.tugraz.at

OR

NOT
AND

inputs
a, b, c output q

Implementing a logic function:
A design flow

• Start with developing a truth table

• Example: Adding three binary variables u, v and w: s = u + v + w

• With 3 variables we have 23 possible combinations for input
situations.

79

www.iaik.tugraz.at

Implementing a logic function:
A design flow
U + v + w

0 + 0 + 0

0 + 0 + 1

0 + 1 + 0

0 + 1 + 1

1 + 0 + 0

1 + 0 + 1

1 + 1 + 0

1 + 1 + 1

8 possible combinations;
sorted from (0, 0, 0) to (1, 1, 1)

80

www.iaik.tugraz.at

Implementing a logic function:
A design flow
u + v + w = s

0 + 0 + 0 = 0

0 + 0 + 1 = 1

0 + 1 + 0 = 1

0 + 1 + 1 = 2

1 + 0 + 0 = 1

1 + 0 + 1 = 2

1 + 1 + 0 = 2

1 + 1 + 1 = 3

The result for each possible case

81

www.iaik.tugraz.at

Implementing a logic function:
A design flow
u + v + w = s1 s0

0 + 0 + 0 = 0 0

0 + 0 + 1 = 0 1

0 + 1 + 0 = 0 1

0 + 1 + 1 = 1 0

1 + 0 + 0 = 0 1

1 + 0 + 1 = 1 0

1 + 1 + 0 = 1 0

1 + 1 + 1 = 1 1

Re-writing the result as a
binary number

82

www.iaik.tugraz.at

Implementing a logic function:
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The truth table

83

www.iaik.tugraz.at

Implementing a logic function:
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 We only look at lines

0 1 0 0 1 where s0 gets “true”

0 1 1 1 0 i.e. “1”.

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

84

www.iaik.tugraz.at

Implementing a logic function:
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v & w) …

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

85

www.iaik.tugraz.at

Implementing a logic function:
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v & w) |

0 1 0 0 1 (~u & v & ~w) …

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

86

www.iaik.tugraz.at

Implementing a logic function:
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v & w) |

0 1 0 0 1 (~u & v & ~w) |

0 1 1 1 0

1 0 0 0 1 (u & ~v & ~w) …

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The logic function for s0:

87

www.iaik.tugraz.at

Implementing a logic function:
A design flow

u v w s1 s0

0 0 0 0 0

0 0 1 0 1 s0 = (~u & ~v & w) |

0 1 0 0 1 (~u & v & ~w) |

0 1 1 1 0

1 0 0 0 1 (u & ~v & ~w) |

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1 (u & v & w)

The logic function for s0:

88

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

89

www.iaik.tugraz.at

https://github.com/hneemann/Digital

Implementing a logic function:
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

90

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

91

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table

92

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table

93

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table

Optionally: Check plain text export

94

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Start Digital

Goto Analysis → Synthesis

Adjust inputs and outputs

Specify the output section of
the truth table

Optionally: Check plain text export

Click “Create” and “Circuit”.

95

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Switch to Simulation Mode:

Simulate circuit with
all possible input combinations.

96

www.iaik.tugraz.at

Implementing a logic function:
With a little help from Digital

Alternative: specify the expression

Use “let” to specify outputs.
Separate formulas by comma.

97

www.iaik.tugraz.at

Boolean Algebra

(Rules to transform/simplify logic functions)

www.iaik.tugraz.at

98

Motivation

• A truth table is a unique representation of a logic function

• Describing a given functionality as a Boolean function is not unique
→The same functionality can be described using different Boolean

functions

• There is also no unique circuit representation for a logic function
→ The same functionality can be described by different combinational
circuits

When building digital circuits, there is always an optimization
towards different targets, such as minimum area, shortest latency,
minimum power consumption, ….

www.iaik.tugraz.at

99

Boolean Algebra

• Values of variables are only 0 or 1.

• 3 main operations:
• Negation, also known as “inversion” ~

• Conjunctions, also known as “ANDing” &

• Disjunction, also known as “ORing” |

• Boolean Algebra allows to transform Boolean functions/equations

100

www.iaik.tugraz.at

Boolean Algebra

a | 0 = a

a | 1 = 1

a & 0 = 0

a & 1 = a

a ^ 0 = a

a ^ 1 = ~a

a | a = a

a | ~a = 1

a & a = a

a & ~a = 0

a ^ a = 0

a ^ ~a = 1

a | (a & b) = a

a & (a | b) = a

The proof of all these facts is rather easy: Take a truth table and check all possibilities.

101

www.iaik.tugraz.at

Boolean Algebra

Associative Law:

(a | b) | c = a | (b | c)

(a & b) & c = a & (b & c)

Commutative Law:

a | b = b | a

a & b = b & a

The proof of all these facts is rather easy: Take a truth table and check all possibilities. 102

www.iaik.tugraz.at

Boolean Algebra

Distributive Law:

a | (b & c) = (a | b) & (a | c)

a & (b | c) = (a & b) | (a & c)

The proof of all these facts is rather easy: Take a truth table and check all possibilities.

103

www.iaik.tugraz.at

Boolean Algebra

De Morgan’s Law:

~(a & b) = ~a | ~b

~(a | b) = ~a & ~b

The proof of all these facts is rather easy: Take a truth table and check all possibilities.

104

www.iaik.tugraz.at

Boolean Algebra

De Morgan’s Law:

~(a & b) = ~a | ~b

~(a | b) = ~a & ~b

The proof of all these facts is rather easy: Take a truth table and check all possibilities.

105

www.iaik.tugraz.at

Boolean Algebra

De Morgan’s Law:

~(a & b) = ~a | ~b

~(a | b) = ~a & ~b

The proof of all these facts is rather easy: Take a truth table and check all possibilities.
106

www.iaik.tugraz.at

Incomplete specification: “Don’t Cares”

• Sometimes we are not interested in some input combinations; we
“don’t care” about the output of the logic function in this case.

• This is the case, when not all input combinations occur in some
context.

107

www.iaik.tugraz.at

Incomplete specification: “Don’t Cares”

• Example: 3 inputs, 2 “don’t cares”.

108

www.iaik.tugraz.at

Result after “synthesizing” with Digital

109

www.iaik.tugraz.at

Describing Combinational Circuits

110

www.iaik.tugraz.at

Describing Combinational Circuits

111

Combinational
Circuit

(built from many
gates)

N wires/bit
input

M wires/bit
output

www.iaik.tugraz.at

Describing Combinational Circuits

112

f1 q1

iN

i1i2 …

f2 q2…

fM qM…

www.iaik.tugraz.at

Describing Combinational Circuits

113

f1 q1

iN

i1i2 …

f2 q2…

fM qM…

inputs

outputs
circuit

www.iaik.tugraz.at

Describing Combinational Circuits

114

inputs outputscircuit

www.iaik.tugraz.at

Describing Combinational Circuits

115

inputs outputscircuit

Truth Tables

(exhaustive listing of all input/output
combinations)

Logic Equation

(one equation for each output)

Circuit Netlist

(“connected logic gates”)

Hardware Description Language

(“writing code that describes physical
hardware”)

www.iaik.tugraz.at

Describing Combinational Circuits

116

inputs outputscircuit

Truth Tables

Truth tables are only practical for
small input sizes.

Logic Equation

Ideal format to apply transformations
and optimizations (Boolean algebra).

Circuit Netlist

This is what is needed to physically
build a chip.

Hardware Description Language

This is the standard way of describing
the behavior of complex circuits.

www.iaik.tugraz.at

Example 1

117

module simple_circuit (
input in_a,
input in_b,
input in_c,
output out_q

);
assign out_q = ((~ in_a & in_b) | in_c);

endmoduleout_q = (~in_a & in_b) | in_c

www.iaik.tugraz.at

Example 1

118

out_q = (~in_a & in_b) | in_c

Circuit Netlist

(“connected
logic gates”)

Truth Table

Logic equation

Hardware
Description
Language

www.iaik.tugraz.at

module simple_circuit (
input in_a,
input in_b,
input in_c,
output out_q

);
assign out_q = ((~ in_a & in_b) | in_c);

endmodule

SystemVerilog – A Hardware Description
Language

119

www.iaik.tugraz.at

module simple_circuit (
input in_a,
input in_b,
input in_c,
output out_q

);
assign out_q = ((~ in_a & in_b) | in_c);

endmodule

Example 2

120

www.iaik.tugraz.at

module simple_circuit_with_mux (
input logic in_a,
input logic in_b,
input logic in_c,
input logic in_x,
input logic in_y,
input logic in_z,
input logic mux_sel,
output logic out_q

);

always_comb begin
if (mux_sel == 0)

out_q = (~in_a & in_b) | in_c;
else

out_q = (in_x ^ in_y) | ~in_z;
end

endmodule

(System) Verilog

• Powerful and widely used hardware description language (HDL); The
second important HDL besides SystemVerilog is VHDL

• SystemVerilog was not created on the greenfield

• SystemVerilog is an extension of Verilog (all features of Verilog are also
available in SystemVerilog)

→There are many variants and coding styles of how to use SystemVerilog

→In CON we focus on widely-used best-practice and current coding styles

www.iaik.tugraz.at

121

Two Main Styles for Hardware Description

• Gate-Level
• The module body contains a gate-level description of the circuit

• Circuits are created by instantiating gates (modules) and by connecting these modules

• Behavioral
• The module body contains

• a functional description of the circuit
• logical and mathematical operators

• The level of abstraction is higher and there are many gate-level realizations for behavioral
descriptions

• For composing circuits, also structural mechanisms for composition like instantiations (yet at
a higher level of abstraction) are used

www.iaik.tugraz.at

122

Design Flow

123

Circuit Netlist

(“connected logic gates”)

Synthesis

Module
Description in

HDL
Logic EquationsTruth Table or or

Cell Library

(“a description of
available logic gates”)

Constraints

(“definition of
optimization goals”)

This is what is provided
by the manufacturing

plant

Cell library is provided at
at different levels – from
physical level to Verilog

level
Physical layout of transistors and

wiring for fabrication as ASIC
(GDSII level)

www.iaik.tugraz.at

Gate-level netlist in
Verilog

(structural)

Description in
SystemVerilog

(mostly behavioral)

Place&Route

Constraints

(“definition of
optimization goals”)

The Toolchain in our Practical

• iVerilog:
• Simulator for Verilog code

• SV2V
• Converts SystemVerilog to Verilog

• Yosys:
• Synthesis Tool

• Our flow does not do the place & route step – we stop at the gate-level
netlist

124

The Commands for Our Toolchain

• Make

• build: Compile code

• run: Run simulation

• view: View simulation result in wave viewer

• syn: Synthesize code

• build-syn: compile synthesized code

• run-syn: Run Simulation based on netlist (synthesis result)

• show: Show netlist after synthesis

125

Behavioral Level

Gate Level

Synthesis and Place&Route

• Logic Synthesis is the process of mapping an abstract description
(typically done in a hardware description language) of a circuit to a list
of available logic gates

• Place&Route is the process of mapping a gate-level netlist to a
physical layout that is ready for production

• Synthesis and Place&Route are parametrized to optimize different
properties, like speed, area, or power consumption

www.iaik.tugraz.at

126

Building a physical device in practice

127

www.iaik.tugraz.at

www.iaik.tugraz.at

128

SystemVerilog
Code

Field Programmable Gate Array

(FPGA)

Application-Specific Integrated Circuit

(ASIC)

ASIC – Application-Specific Integrated Circuit

www.iaik.tugraz.at

129

A chip that physically realizes your circuit

• Basic steps to building your ASIC (very high level view):
• Select your favorite semiconductor manufacturing plant (see

https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants)

• Receive the standard cell library from the plant (“the list of logic gates that
the plant can build”)

• Map our circuit to the available cells (called “synthesis”)

• Place and route the cells

• Let the plant physically build your circuit

https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants

The Complexity of building a Microchip

• Get an impression of the size and structure

https://www.youtube.com/watch?v=2z9qme_ygRI

• Get an impression of the manufacturing process

• https://www.youtube.com/watch?v=c9arR8T0Qts

• Today’s chips contain billions of transistors connected by multiple layers of metal

Recent Example: Apple M2 Ultra has about 134.000.000.000 transistors

130

David Carron

https://www.youtube.com/watch?v=2z9qme_ygRI
https://www.youtube.com/watch?v=c9arR8T0Qts

www.iaik.tugraz.at

131

US and European Chips Acts

EU
• The EU aims to double its market share of the global chip production from

currently 10% to 20% in 2030

• € 43 billion investment

USA
• The USA seeks to relocate the chips supply chain to the USA.

• $52.7 billion

www.iaik.tugraz.at

132

FPGAs – Field Programmable Gate Arrays

www.iaik.tugraz.at

133

Existing hardware that can be configured to correspond to your circuit
(“programmable hardware”)

• Basic concept (high level view):

• FPGA vendors build huge arrays of LUTs (Look-Up-Tables) and switches (highly regular repeated physical
structure)

• You can map your design to this hardware (the gates are mapped to LUTs and the wiring is mapped to
the switches connecting the LUTs)

• An FPGA bitfile stores how a given FPGA needs to be configured to realize your circuit (format is
vendor-specific)

• Load the bitfile into the FPGA and the FPGA realizes your circuit

FPGA boards

• FPGAs are trade-off between hardware and software
• Less efficient than hardware, but more efficient than software
• Less expensive than hardware, but more expensive than software

• You can get small FPGA boards already for less than EUR 50.

• Interested in putting your practical of this semester on physical hardware?

• Basically, any FPGA works for this purpose; ICE40 FGPAs offer an open source
toolflow based on the tools we also use in this class (e.g.
https://www.mouser.at/ProductDetail/Lattice/ICE40HX1K-STICK-
EVN?qs=hJ2CX3hEdVEyBLaHAEXelA%3D%3D)

www.iaik.tugraz.at

134

https://www.mouser.at/ProductDetail/Lattice/ICE40HX1K-STICK-EVN?qs=hJ2CX3hEdVEyBLaHAEXelA%3D%3D
https://www.mouser.at/ProductDetail/Lattice/ICE40HX1K-STICK-EVN?qs=hJ2CX3hEdVEyBLaHAEXelA%3D%3D

A Note on Complexity

135

www.iaik.tugraz.at

136

Note: Logarithmic Scale!

Linear Scaling

137
Beauty and Joy of Computing by University of California, Berkeley and Education Development Center, Inc, CC-BY-SA-NC
https://bjc.edc.org/bjc-r/cur/programming/6-computers/3-history-impact/2-moore.html

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2
	Slide 3: We Need to Map our Programs to Physics
	Slide 4: Examples of Computation Machines
	Slide 5: We Need to Map our Programs to Physics
	Slide 6: Complementary Metal-Oxide-Semiconductor (CMOS)
	Slide 7: Two Types of Transistors
	Slide 8: We Need Two Things From Transistors
	Slide 9
	Slide 10: The Big Picture
	Slide 11: A Logic Gate – “The Smallest Functional Unit”
	Slide 12: The Simplest Gate – A CMOS Inverter
	Slide 13: CMOS NAND gate
	Slide 14: CMOS Design Principle
	Slide 15: CMOS NOR gate
	Slide 16: More Complex Gates
	Slide 17: Building an AND Gate
	Slide 18: AND Gate
	Slide 19: AND Gate
	Slide 20: AND Gate
	Slide 21: Cascading Gates
	Slide 22: Combinational Circuit
	Slide 23: The Mathematical View of a Combinational Circuit
	Slide 24: Logic Functions (or Boolean Functions)
	Slide 25: How can be describe Logic functions?
	Slide 26: Truth Table
	Slide 27: Elements of a truth table
	Slide 28: Elements of a truth table
	Slide 29: Elements of a truth table
	Slide 30: Elements of a truth table
	Slide 31: Size of truth tables
	Slide 32: Size of truth tables
	Slide 33: Size of truth tables
	Slide 34: Size of truth tables
	Slide 35: How many logic functions are possible?
	Slide 36: How many logic functions are possible?
	Slide 37: How many logic functions are possible?
	Slide 38: How many logic functions are possible?
	Slide 39: How many logic functions are possible?
	Slide 40: How many logic functions are possible?
	Slide 41: How many logic functions are possible?
	Slide 42: How many logic functions are possible?
	Slide 43: With n = 3, 4, …
	Slide 44: Back to n = 2
	Slide 45: Popular 2-input functions
	Slide 46: Popular 2-input functions
	Slide 47: Popular 2-input functions
	Slide 48: Popular 2-input functions
	Slide 49: Popular 2-input functions
	Slide 50: Some functions are trivial
	Slide 51: Some functions are trivial
	Slide 52: Some functions are trivial
	Slide 53: Some functions are trivial
	Slide 54: Some functions are “almost trivial”
	Slide 55: Some functions are “almost trivial”
	Slide 56: Some functions are “implications”
	Slide 57: Some functions are “implications”
	Slide 58: And some functions are “inverse implications”
	Slide 59: And some functions are “inverse implications”
	Slide 60: The popular functions can also have more than 2 inputs
	Slide 61: The popular functions can also have more than 2 inputs
	Slide 62: Be careful with XOR function with more than 2 inputs
	Slide 63: Other Important Gates – Multiplexer (MUX)
	Slide 64: Scaling to more inputs
	Slide 65: Other Important Gates – Demultiplexer
	Slide 66: Tooling
	Slide 67
	Slide 68: Functional Completeness
	Slide 69
	Slide 70: Describing Combinational Circuits
	Slide 71: Boolean Functions – The Mathematical Description of Combinational Circuits
	Slide 72: Logic functions map to Combinational Circuits and Vice Versa
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Implementing a logic function: A design flow
	Slide 80: Implementing a logic function: A design flow
	Slide 81: Implementing a logic function: A design flow
	Slide 82: Implementing a logic function: A design flow
	Slide 83: Implementing a logic function: A design flow
	Slide 84: Implementing a logic function: A design flow
	Slide 85: Implementing a logic function: A design flow
	Slide 86: Implementing a logic function: A design flow
	Slide 87: Implementing a logic function: A design flow
	Slide 88: Implementing a logic function: A design flow
	Slide 89: Implementing a logic function: With a little help from Digital
	Slide 90: Implementing a logic function: With a little help from Digital
	Slide 91: Implementing a logic function: With a little help from Digital
	Slide 92: Implementing a logic function: With a little help from Digital
	Slide 93: Implementing a logic function: With a little help from Digital
	Slide 94: Implementing a logic function: With a little help from Digital
	Slide 95: Implementing a logic function: With a little help from Digital
	Slide 96: Implementing a logic function: With a little help from Digital
	Slide 97: Implementing a logic function: With a little help from Digital
	Slide 98
	Slide 99: Motivation
	Slide 100: Boolean Algebra
	Slide 101: Boolean Algebra
	Slide 102: Boolean Algebra
	Slide 103: Boolean Algebra
	Slide 104: Boolean Algebra
	Slide 105: Boolean Algebra
	Slide 106: Boolean Algebra
	Slide 107: Incomplete specification: “Don’t Cares”
	Slide 108: Incomplete specification: “Don’t Cares”
	Slide 109: Result after “synthesizing” with Digital
	Slide 110
	Slide 111: Describing Combinational Circuits
	Slide 112: Describing Combinational Circuits
	Slide 113: Describing Combinational Circuits
	Slide 114: Describing Combinational Circuits
	Slide 115: Describing Combinational Circuits
	Slide 116: Describing Combinational Circuits
	Slide 117: Example 1
	Slide 118: Example 1
	Slide 119: SystemVerilog – A Hardware Description Language
	Slide 120: Example 2
	Slide 121: (System) Verilog
	Slide 122: Two Main Styles for Hardware Description
	Slide 123: Design Flow
	Slide 124: The Toolchain in our Practical
	Slide 125: The Commands for Our Toolchain
	Slide 126: Synthesis and Place&Route
	Slide 127
	Slide 128
	Slide 129: ASIC – Application-Specific Integrated Circuit
	Slide 130: The Complexity of building a Microchip
	Slide 131
	Slide 132: US and European Chips Acts
	Slide 133: FPGAs – Field Programmable Gate Arrays
	Slide 134: FPGA boards
	Slide 135
	Slide 136
	Slide 137: Linear Scaling

