Model Checking Practicals:
Assignment 2 - Bounded Model Checking

April 25, 2024

1 Assignment Summary

The goal of the second exercise in the model checking practicals is to imple-
ment the bounded model checking (BMC) method. The implementation
is supposed to closely follow the Model Checking book. Your implementation
must extend the provided framework to implement BMC using incremental
solving with Z3. All work is done in the same repository as the last exercise,
only in the hwmc directory instead of warmup. The preliminary submission dead-
line is Wednesday 22nd of May end-of-day. We provide question hours on
Mondays from 11:00 to 12:00 after the lecture. Feel free to contact us via
Discord if you have any additional assignment-related questions. Moreover,
make use of the test system where you can see how well your implementation
performs on our tests and how well it does compared to other students. The
rest of the document provides more details.

2 Setup and Submission

The tags for this assignment are bmc and bmc-final. Only commits with the
bmc-final tag that were submitted before the deadline will be graded. For more
details on setting up your wor environment and managing your repository, please
consult the guide in the warmup assignment handout.

3 Input Format

The framework implementation already includes a lot of things needed for a
hardware model checker. Since the benchmarks used at the official competition
use the BTOR2 format [NPWB]|, we include parts of a BTOR2 parser that
extracts a circuit from the input file. As a bit-vector format, BTOR2 has its
own type system, where each file declares its sorts as bit-vectors of a certain
length. Furthermore, the format specifies state variables which are actually just
registers in the hardware design, that include an init for reset values, and next

for flip-flop inputs triggered with a clock. Similarly, each input corresponds
to one of the signals provided from outside the circuit, and might change in
each clock cycle. Assumptions about these inputs are defined using constraint
properties, which model the environments interaction with the system. Other
than that, all the wires are represented as gate outputs. In contrast to real
RTL, BTOR2 includes a few special declarations related to model checking.
Out of those, the only interesting one for this exercise is the bad property,
which defines one condition which makes a state bad. There can be multiple
bad state conditions, and if any of them is satisfied, the state is undesirable.
Essentially, these are the properties you want to reach when executing your
BMC routine.

4 Bounded Model Checking

This section briefly recounts the formalization of BMC you should use as a
guide for the actual implementation tasks. BMC is an algorithm that unrolls
the hardware up to a certain depth and checks whether any bad states can be
reached. As such BMC maintains a trace of frames, where each frame corre-
sponds to the state of a circuit in a given clock cycle. Each frame consists of
several components. The frame has a set of variables V; for registers and in-
puts, and a set of formulas F; for the intermediate computations of wires. For
the transitions between the (¢ — 1)-th and é-th frame, BMC constructs a set of
equalities T; := {v = w} where v € V; and w € V;_jUF;_1UL and L is a set of
constants. Using this notation, we can think of the initial state V[, as being con-
strained with equalities Ty where V_1 U F_1 = (), i.e., the initial state variables
v € V; are set to equal some constants through equalities Ty. Additionally, the
set of constraints C; makes sure that the solver respects the assumptions about
the circuit’s environment.

In each BMC step, the implementation tries to find a sequence of states
such that the last state in the sequence satisfies a bad state property. If we call
B; the set of bad state properties in each frame, then the solver tries to solve

Equation m
(V) A (A (Ar))

Because the BMC algorithm is iterative, and would have already proven that
none of the bad state properties b € B; are reachable in i < k steps, we can add
them to the problem we are trying to solve, in order to speed up the solving
process, as shown in Equation

(oA (A A e

If any such states are found, BMC terminates and prints the counterexample
as a simulation trace for the given circuit. In case none are found, BMC expands

o =

ot

the trace by one frame and tries again. Note here, that the bad state property
is only checked in the last frame, as the previous iteration show that no bad
state is reachable in any of the previous frames.

5 Task 1: State Forwarding [20 Points]

In the framework we provide to you, the state of a circuit is stored as a map
between BTOR indices and Z3 expressions in the ExprMap data structure. Simi-
larly, the datatypes from the BTOR file are also stored in a similar map SortMap.

According to the notation from before, you would store all variables v € V;
and expressions over the variables f; € F; inside such a ExprMap data structure.
The trace is then just a vector containing such frames.

Forwarding is then just creating a new full frame, based on the previous
frame. In the framework, you have to implement the following functions:

void forward_wires (Btor2Parser* parser, ExprMap& curr_state);
void forward_state(Btor2Parser* parser, ExprMap& curr_state,
const ExprMap& prev_state, z3::expr_vector& eqs, uint32_t
step);
static void forward_cons(Btor2Parser* parser, ExprMap& curr_state,
z3::expr_vector& cons);
void forward(Btor2Parser* parser, const Options& opt, uint32_t step

)

The function forward is main forwarding function that is called later by your
BMC algorithm implementation to create a new frame. Internally it calls the
other forwarding functions. It creates the state variables and inputs in the new
frame with forward_state and constrains them with the transition equalieies
(T} from before). The transition equalities are determined based on the declared
next statements from the BTOR file. Afterwards, forward calls forward_wires
to determine the Z3 expressions representing all the wire values and storing
them in the current frame. Finally, forward calls forward_cons to generate the
environmental constraints and add them to the solver. After forward finishes,
the current frame is completely generated and constrained properly, so that the
caller can perform checks. Importantly, you should implement these functions
as generally as possible, so that you can also use them with K-induction in the
next exercise.

6 Task 2: Implement BMC [8 Points]

After finishing forwarding functions, you are ready to implement the actual
BMC routine. The model checker keeps everything required for BMC ready,
meaning that at the point at which the check bmc function is called, you just
need to add the bad properties into the solver and perform the actual sat solver
call. In other words, you can assume that the solver already contains

Alla) (A7)

Here, you should break down the \/,_ B, b expression into multiple solver
calls. That is, iterate through all bad state properties, add the current one
into the solver, and check for satisfiability. If the solver says SAT, you are
done and return the index of the bad state property. Otherwise, you undo the
addition of the bad property into the solver and check the next one. In case
there are no bad state properties that are satisfiable, return —1 from check_-
bmc. With this implementation, you have essentially implemented the checking
as done in Equation [I| For those inclined to do more, you can think about and
implement the second optimized Equation |2| for the solver call. Does this make
the performance better? Test it!

7 Task 3: Testcases [12 Points] 4 [4 Bonus Points]

For the last task, you are supposed to implement small hardware modules in
Verilog, translate them to BTOR using Yosys and use them to test your imple-
mentation of BMC.

VLOG_FILE="my_test.v" \
TOP_MODULE="my_test" \

BTOR_FILE="my_test.btor" \
yosys verilog_btor.tcl

The idea behind this task is to thoroughly test your implementation. These
testcases are supposed to show different aspects of your implementation. Points
gained per testcase are exponentially decaying. The first two testcases each give
2 points, the next four testcases each give 1 point, and the next eight testcases
each give 0.5 points, for a total of 12 points. If you really like testing, you can
also get an additional 0.25 points for each of the next 16 testcases you create
after that for a total of up to 4 bonus points. Finally, earning points for testcases
is going go through randomized manual review, and e.g., submitting 30 testcases
that check whether a counter ever reaches the numbers from 1 to 30 is not going
to be considered a valid test suite. Moreover, a bad performance on private tests
will scale the points you get from writing tests accordingly. For example, if your
BMC implementation only correctly solves 50% of our private test suite, your
test suite only receives 50% of the points you would have otherwise gotten. You
should also document your testcases. If it is not obvious at a glance what you
are actually doing in the testcase, it might lead to you not getting any points
during the randomized manual review.

Here are a few test ideas:

e Test all the operators that the format supports. Write a few tests, each
of which peforms 3 or more different operations with the state and inputs
and check for reaching a bad state.

© 00O Ut W -

e Create different state machines without a real data path. Examples can
include simplified examples of traffic lights, arbiters, dishwashers, soda
machines, a kettle, microwave, refrigerator light, a football game, the
check-engine light in your car, the process of catching a Pokemon, winning
in a fighting game, etc.

e Create modules that process a lot of data, but in reallity have very little
control state. Examples can include modules for big arithmetic opera-
tions with accumulators, quirky computations exploiting overflow logic,
toy CPU arightmetic-logic-units.

e Test what happens when your modules have multiple bad state properties,
multiple environment assumptions, disjoint bad state sets, or modules
where all states are bad due to specification issues.

e Think about modules which reach their bad state properties at a very late
point in the computation, e.g., after 50 states. Con your implementation
handle such cases?

e Also write modules that do not have any bugs in them, i.e., although there
are bad states, none of them are reachable because the implementation is
correct. Every test module you write can be like this: have one imple-
mentation where the bad state property is reached due to an intentional
"bug” you introduced, and have a fixed version that does not reach the
bug in the first e.g., 100 states.

8 Analyzing the Output

As you may notice, we have already given you the function which prints the
found bug in the BOTR2 witness format. Therefore, after running one of your
tests, you can plug the output into the btorsim utility to see what the solver
has found and analyze it further. Here is an example of how this might work:

./ /hwmc --btor2-file \
tests/counter.btor > results/counter.btor

./btor2tools/ /bin/btorsim \
-v tests/counter.btor results/counter.btor

The btorsim utility will then give you a detailed trace of what the hardware
module was doing accoring to your model checker. Moreover, it will also tell
you if there is a bug in your model checker and the result is in any way wrong!

[btorsim] checking mode: both model and witness specified
[btorsim] reading BTOR model from ’tests/counter.btor’
[btorsim] reading BTOR witness from ’results/counter.btor’
[btorsim] parsing unknown witness 1

[btorsim] initializing states at #0

#0

[btorsim] initializing inputs @O

@0

0 0001 addeo

10
11
12
13
14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43
44
45
46

1 0 clk@O
2 0 rst@oO
[btorsim]
[btorsim]
[btorsim]
Q1

simulating step O
transition 1
initializing inputs @1

0 0001 addei

1 0 clke1l
2 0 rste1l
[btorsim]
[btorsim]
[btorsim]
Q2

simulating step 1
transition 2
initializing inputs @2

0 0001 adde2

1 0 clk@2
2 0 rst@2
[btorsim]
[btorsim]
[btorsim]
Q3

simulating step 2
transition 3
initializing inputs @3

0 0001 adde3

1 0 clk@3
2 0 rst@3
[btorsim]
[btorsim]
[btorsim]
Q4

simulating step 3
transition 4
initializing inputs @4

0 0000 adde4

1 0 clke4
2 0 rste4
[btorsim]
[btorsim]
[btorsim]
[btorsim]

[btorsim]
[btorsim]
MB)

simulating step 4

all 1 bad state properties reached
reached bad state properties { b0@4 }
constraints always satisfied

finished parsing k = 4 frames
finished parsing 1 witnesses after reading 226 bytes

(0.0

References

[NPWB] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2
, btormc and boolector 3.0. In Hana Chockler and Georg Weis-
senbacher, editors, Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Confer-

ence, FloC 2018, Ozxford, UK, July 14-17, 2018, Proceedings, Part
L

	Assignment Summary
	Setup and Submission
	Input Format
	Bounded Model Checking
	Task 1: State Forwarding [20 Points]
	Task 2: Implement BMC [8 Points]
	Task 3: Testcases [12 Points] + [4 Bonus Points]
	Analyzing the Output

