Model Checking Practicals:
Assignment 1 - Warmup

March 18, 2024

1 Assignment Summary

The goal of the first exercise in the model checking practicals is to get familiar
with the SMT solver Z3 and symbolic representation. In this exercise, you will
learn how to work with the Z3 C++ API and how to check properties of simple
programs using Single Static Assignment.

You should have already received GIT repositories in which you will imple-
ment all of the exercises. Submissions are done directly in the repository, by
creating and pushing tags. The preliminary submission deadline is Sunday
21st of April end-of-day. We provide question hours every Monday from
11:00 to 12:00 during the practicals timeslot. You can also ask questions
using at any time on Discord. This year there is an automated test system,
which will give you feedback for your submission whenever you push a tag to
your repository. The rest of the document provides more details.

2 Setup

You should have received an email that grants you access to a GIT repository
intended for the model checking exercises with some group number XX. The
repository we provide you with is empty. Therefore, as a first step, you have
to declare our template repository as your upstream, and pull the framework
we provide from there. Any improvements or fixes will be published in that
repository and we will notify you as soon as possible.

First, we suggest that you set up an SSH key to make everything easier.
GitLab provides a good tutorial. First, clone your repository from our GIT
server, declare the upstream remote and pull the framework. For group number
XX, you should do something like this:

URL1="git@git.teaching.iaik.tugraz.at:mc24/mc24gXX.git"
URL2="https://extgit.iaik.tugraz.at/scos/scos.teaching/mc/mc2024-public

upstream $URL2


https://docs.gitlab.com/ee/ssh/#generate-an-ssh-key-pair

git upstream master
git origin master
./mk_submodules.sh

Since we make heavy use of the Z3 solver library, please make sure that
the version 4.8.12 is installed on your system, so that you can develop with

a version that is compatible with the one we use. You can do this with most
package managers on Linux distributions, e.g. for Ubuntu:

sudo apt install 1ibz3-dev=4.8.12-1

Alternatively, we also provide you with a Docker image that is compatible
with the Docker image used for the automated test system, which you can use
to build and test your implementations. To build the docker image and run a
shell in it interactively, you can do the following:

-t mc_docker .

-it -v $(pwd):/mnt/data mc_docker /bin/bash

After running this in your terminal, you should be inside the docker container,
and your files should be mounted to /mnt/data. From here, you can change
into the given directory and perform all of the building and testing steps you
require.

When you are confident that your implementation is good and want to test
it with the test system, create a tag and push it. Pushing without a tag assumes
that you are not done and does not run the test system. The results of the test
system will be visible in a CI pipeline in your repository, and pooled on the test
system websitd!] as soon as it becomes available.
git "warmup"
git origin "warmup"

After implementing everything, you should submit the solution by running:
git "warmup-final"

git origin "warmup-final"

Your code only counts as submitted when you tag it with the warmup-final
tag, and will not be graded otherwise. This means that you can still use the
test system without getting a bad grade if you decide to stop participating in
the practicals before the second assignment.

3 Template

After setting up the repository and pulling from the upstream and building the
submodules, you should have everything you need to implement the tasks. For
this assingment, you will primarily work in the warmup directory. Inside, there
are two sub-directories containing the two warmup tasks. Inside each, there is
a CMakeLists.txt file which is used by CMake to generate build scripts that
compile your implementations. You can use the following to create a build
directory with the build scripts, and then run them.

Thttps://mc.student.iaik.tugraz.at/


https://mc.student.iaik.tugraz.at/

cmake -B "build" .

cmake --build "build"

You can use the second command whenever you want to re-build your im-
plementation. For each of the tasks, there is usually a clearly marked part of
the implementation you are supposed to complete. Moreover, there is exten-
sive documentation for the provided framework code. You should only edit the
parts labeled with @todo so as not to break unrelated parts of the code, or the
automated testing.

4 Task 1: Minesweeper [10 Points]

In the first task, your goal is to get acquainted with Z3 and using it to solve
a fun puzzle game. Minesweeper is a pre-installed game on many Windows
operating systems and Linux desktop environments. The game is set up on a
n X n grid, where initially all fields are hidden. After opening up a field, it can
either be a mine, a number, or empty. Opening a mine means that the game
is over and that the player lost. A filed with number m means that within the
neighboring fields there are m mines. If the player clears all non-mine fields, the
player wins the game and can enter their name on the scoreboard. An example
of a Minesweeper field is shown in Figure
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(a) Game state (b) Text input

Figure 1: Example of a Minesweeper state and a corresponding text input

In this exercise, we will consider Minesweeper games that have already been
started. Using the current game state, your task is to determine all fields are safe
(guaranteed to not be a mine), as well as all fields that are deadly (guaranteed
to contain a mine) using Z3. At the end, your implementation is supposed to
output the state of the game, where all safe and deadly fields (which have not



already been uncovered) are marked appropriately. Implement the functionality
inside the file mines.cpp. Below, we discuss the details of the implementation,
which should serve as a guide on how to solve the task.

4.1 Input and Output

Your program will receive input in the format shown in Figure Each charac-
ter represents a field in the Minesweeper game state. Numbers represent fields
that are either empty or contain a number indicating neighboring mines, the
character 7 represents an unopened field. The output of your implementation
is going to label all safe unopened fields with S and all deadly fields with D,
keeping the same format otherwise.

4.2 Modeling

In order to solve this problem with Z3, you will need to model the state of
the game. As a first step, before doing anything else, you have to create a
variable context and solver with z3: :context and z3: :solver. You can think
of a context as the variable storage, which tells the solver which variables exist,
their name and types. The solver itself only contains the constraints you provide.

Since the game state is organized as a two-dimensional array of fields, you will
need to do something similar in the modelling with Z3. Here, we suggest that you
create a two-dimensional array of Z3 variables (unknowns), each representing
whether the corresponding field is a mine or not.

This is the task of the context. Confusingly, Z3 variables of integer, Boolean
and bit vector types are created with the functions z3: :context: :int_const,
z3::context: :bool_const, or z3::context: :bv_const. Real constants that
are fixed and not decided by the solver are defined with z3: : context: :int_val,
z3::context: :bool_val, or z3: :context: :bv_val. The context will return a
z3: :expr expression representing your variable. In general, working with the
solver will involve creating and manipulating z3: : expr objects.

In this task, it is easiest for you to use integer variables, whereas the other
task and the upcoming assignments focus much more on Booleans and bit vec-
tors.

4.3 Constraints

After creating all the variables needed to represent the state of the game, it is
necessary to constrain them to reasonable values. In this case, each field can
either contain a mine or not contain a mine. Therefore, constrain each variable
so it can only be set to the values 1 (mine) and 0 (no mine).

With the Z3 API for C++ it is extremely easy to formulate all kinds of
constraints. All C4++ operators are overloaded in various ways to enable easier
manipulation of expressions stored in z3::expr objects. This includes arith-
metic operators like + and -, as well as logical operators like !, ==, || and &&.
However, you have to be careful about the typing, because the type system of



the expressions is dynamic, and you might get errors at runtime. For example
adding a variable created with z3::context::int_const to another variable
created with z3::context: :bv_const would crash your program. Same goes
for addition of Boolean expressions, or logical negation of integer expressions.

In order to constrain your variables to be either 0 or 1, you should use
the equivalence operator == and logical or operator || to create corresponding
expressions. For already open fields, we know that they do not contain a mine,
so create expressions that force the variable to equal 0 instead. To actually tell
the solver that it needs to satisfy the constraints, you have to call the function
z3::solver: :add with the Boolean expressions you just created.

Finally, the most complex rule in Minesweeper concerns open fields that
contain a number. The number in the field represents the number of surrounding
fields that contain mines. In order to encode this for the solver, create a sum
of all variables surrounding an opened number, and tell the solver that the sum
must equal the desired number of mines. After adding the expression into the
solver with z3: :solver: :add, you have finished encoding the rules of the game.

4.4 Tterative Solving

After creating the variables and constraints of the game, it is time to let Z3
solve the problem we are interested in. As stated previously, a field is safe if
it is guaranteed to not contain a mine. This means that there is no possible
assignment the solver could come up with, that places a 1 (mine) into the given
variable (field). That is, you have to create a constraint saying the variable is
equal to 1, and then check if the solver is able to satisfy all constraints. If it is
not, the field is safe. A similar argument can be made for fields that are deadly,
so guaranteed to be a mine.

Since there are many unopened fields we are interested in, we want to only
temporarily add such assumption constraints into the solver. The Z3 API en-
ables this with the functions z3: : solver: :push and z3: : solver: :pop. Calling
push, creates a new solving frame and any constraints you add into the solver
later, are only temporary. All constraints added after the last push are removed
when calling pop. Therefore, whenever you want to check an unopened field,
first do a push, add your constraints, let the solver check them, and then pop
them again.

Actually solving the formula that we added into the solver is done with
z3::solver: :check. If the problem is satisfiable, the solver will return the
value z3: :check_result::sat and z3::check_result: :unsat otherwise.

4.5 Looking at Solutions

If you are interested in the solution Z3 came up with if the problem is satisfiable,
it provides a model assigning values to all variables. You can obtain the model
with z3::solver: :get_model and then evaluate variables or even expressions
with z3::model::eval. However, when evaluating an unbounded integer, or
any other Z3 type for that matter, the model will return an immutable value
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int num = input();
assume (num >= 0);
int low = O0;
int high = num;
int sqrt = low;
repeat (17) {
int mid = (low + high) / 2;
print (mid) ;
if (num < (mid*mid))
{
high = mid;
} else if (num > (mid * mid))
{
low = mid;
}
sqrt = mid;
}
print (sqrt);

int num_1 = (sqrt - 1) * sqrt;

int num_m sqrt * sqrt;

int num_h (sqrt + 1) * sqrt;
print(num_1); print(num_m); print(num_h);
assert ((num_1 <= num) && (num_h >= num));

Figure 2: Example program computing the square root of a number

of the appropriate Z3 type. In the case of integers, they can be converted back
into C++ integers with e.g., z3: :expr: :get_numeral_int64.

5 Task 2: Single Static Assignment [20 Points]

In this task, you will use the Z3 solver for something more useful than games.
More precisely, we want to actually verify that simple programs are correct for
any input we give them. For this purpose, you have to symbolically execute the
program by replacing regular variables with Z3 variables and checking whether it
is possible to find an assignment to these variables that reaches a false assertion.
That is, you must construct a problem for Z3 in such a way, that when it has a
solution, we know that the given program has a bug, and the solution is actually
a counterexample. The greatest takeaway of this task should be the concept of
single static assignments and property checking. At the end, your verifier should
either print ”"Correct!” if the program cannot reach a false assertion, and print
"Found bug:”, followed by the counterexample. Below, we have prepared a
guide explaining the language in which the programs are written, as well as the
concept of single static assignment.

5.1 The Simplelang Language

In this task, you will have to verify programs in the custom simplelang




language. The language is implemented in a framework called PEGTL, and you
are already given both an interpreter and a parse-tree visualization tool. Your
task is to create a symbolic interpreter based on the SSA principle that is able
to verify programs in this custom language. However, we have designed the
language to be as simmilar to C as possible. For the details of the grammar,
you can take a look at the code in simplelang.h. Instead of giving a dry
list of grammar rules, we instead present a complex example in Figure [2| that
showcases what the language capabilities. Here is a short list of features:

e Defining variables: int low = 0;
o Assigning variables: high = mid;
¢ Reading input from stdin: int num = input();
o Printing values to stdout: print(sqrt);
e Code blocks are statements: { high = mid; }
o Repeating statemets: repeat (10)i = i + 1;
o If-then-else statements: if (cond)i = i + 1; else { low = mid; }
e Assumptions: assume(num >= 0);
o Assertions: assert(no_bug_pls);
Here is a short list of language level constraints:
e There is only one the signed 32-bit integer type: int

e There is no operator precedence, sub-expressions must be in parentheses:
num > (mid * mid) iS ok while num > mid * mid is not.

e Repeat loops are always finite, you can only provide an integer: repeat
(10){ i = i + 1; } is fine while repeat (n){ i = i + 1; } produces a parsing
error.

Here are also some of the interesting language semantics:

e The language supports scoping. If you have something like int a = 5; {
int a = a + a; }, then you are defining a new variable a in the inner scope
that shadows the outer one. After the block is executed, a will still have
the value 5.

e input() is a language builtin that asks the user for input while providing
the exact position in code where it is called. The same goes for print (expr
);, which tells you the exact code position of the call, as well as the value
of the provided expression expr.

e When an assume(expr); is evaluated, it checks the condition expr and prints
a warning of violation if it is 0. However, when an assertion with assert(
expr) ; evaluates expr to 0, it triggers a runtime error.
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int x = 0; 1 |int x_1 = 0; // x©_1 == 0

X = x + 3 2 |int x_2 = x_1 + 3; // 2 == z_1 + 3

x = (x * 4) - 5; 3 |int x_3 = (x_2 *x 4) - 5; // z_3 == (z_2 * 4) - 5;
(a) Code (b) Equivalent SSA program and solver constraints

Figure 3: Example showing a program, its SSA equivalent and solver constraints

5.2 Single Static Assignment

Single static assignment is a way of writing programs so that each variable is
only assigned one time and always to the same expression. This is something
we have to do (either implicitly or explicitly) whenever we want to verify a
program by turning it into a formula and checking for assertion violation with
a solver. In the exercise, the Symbolic SSA checker you will write interprets a
program using this principle. Whenever a variable is assigned, it treats it as the
definition a new variable with a different name. Any further references to the
same variable are adapted to reference the new one.

We illustrate this in Figure[3] In the exercise, we provide you with a function
to generate unique variable names for each of the assignments to the given
variable. Here, for brevity, we show off the same concept by rewriting a program
using the SSA principle, and use only the line numbers to get unique variable
names in all examples.

As can be seen in Figure [3] any time a variable would be reassigned, the
SSA equivalent program instead creates a new variable with a unique name. In
the example, any references to the variable x after line 2 do not use x_1, but
instead the new symbol x_2. The comments describe what an SSA-based checker
does implicitly. When evaluating the statement in line 1, it first creates a new
symbolic variable x_1 that is to be used whenever the program references the
variable x. Furthermore, the checker adds the constraint x_1 == 0 to the solver’s
formula. In line 2, the SSA checker sees that the variable x is reassigned, so it
creates a symbolic variable x_2 and adds the constraint x_2 == x_1 + 3. Moreover
it replaces the value of x with x_2 in all further references. The same thing
happens in line 3, where x_3 is created, the constraint x_3 == (x_2 * 4)- 5 is
added to the formula, and x is afterwards x_3.

One problem you will encounter when applying the SSA transformation are
if-then-else statements. In general, these can have an expression as the
branching condition, and you cannot know ahead of time which branch is ex-
ecuted in a real execution. Therefore, SSA performs both branches and then
merges the changes to the program state afterwards using the symbolic branch-
ing condition. Figure [4] shows an example of how this works.

Here, everything works as usual, until the program reaches an if. In line
4, the SSA checker creates a new variable for the condition called c_4 and as-
serts that its value is the value of the branching condition. Afterwards, both
the then and else blocks/statements are evaluated. Finally, in line 8, the two
possible states of the program are merged. We have represented this in C code
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int x = 7; 1 |int x_1 = input(); // z_1 == input_1
int y = 8; 2 |[int y_2 = input(); // y_2 == input_2
int z = y; 3 |int z_3 = y_2; // z2_3 == y_2
if (x < 7){ |4 |int c_4 = x_1 < 7; // e 4 == (z_1 < 7)
y = x; 5 [int y_5 = x_1; // y_ 5 == z_1
} else { 6 |// /7
x = -5; |7 |int x_7 = -5; // x_7 == -5
} 8 |int x_8 = ¢_3 ? x_1 : x_7; // 2_8 == dite(c_4, z_1, z_7)
9 |int y_ 8 = ¢c_.3 ? y .5 : y_2; // y_8 == ite(c_4, y_5, y_2)
(a) Code

(b) Equivalent SSA program and solver constraints

Figure 4: Example showing a program, its SSA equivalent and solver constraints

int x = 5; 1 |int x_1 = 5; // xz_1 == 5
repeat (3) { 2 |//
x = x * x; |3 |int x_3_0 = x_1 * x_1; // x_ 3 0 == x_1 * z_1
3 4 |int x_3_1 = x_3_0 * x_3_.0; // z_3_1 == z_3_0 * z_3_0
5 |int x_3_2 = x_3_1 * x_3_1; // .3 2 == .3 1 * z_3_1
(a) Code

(b) Equivalent SSA program and solver constraints

Figure 5: Example showing a program, its SSA equivalent and solver constraints

in Figure [4b| (the simplelang language has no ternary operators for simplicity).
The conditions added to the solver are also shown, where we use the z3::ite
construct that represents C-like ternary operator (we ignore type-casting here).
If the then branch would have been executed, the variable x would have the
symbolic value x_1 in line 8. Otherwise if the else branch was taken it would
have the value x_7. The same principle is used to merge the values of variable
y. Since z was not modified in either branch, it does not need to be merged in
line 8 of Figure

Repeat statements behave as if the code statement/block they reference
is just copy-pasted the appropriate number of times. In order to give each
variable assignment a unique name, the names are appended with the current
loop iteration in which they are set. This also works recursively with multiple
nested repeat statements. Figure [5|illustrates this.

Assumptions and assertions are very special language features. With assume,
the programmer puts forward assumptions about the program’s state that must
hold in order for the guarantees defined with assert to hold. Unlike other state-
ments, assumptions and assertions depend on the path the program took to
reach them. In other words, since both the then and else blocks are always exe-
cuted, assumptions and assertions are ammended to only trigger on the program
paths that reach them. When we want to verify that a program is correct, we
want to prove that there are no program executions where all assumptions are
fulfilled, but at least one assertion is not. Figure [6] shows an example of check-
ing a program that has assumptions and assertions. Whenever an assumption is
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int x = input(); // x_1 == input_1
int y = input(); // y_2 == input_2
assume(y != 0); // ¢_3 == implies(1, y_2 != 0)
if (x > y) { /) e 4 == z_1 >y 2

X =X - y; // x5 == z_1 - y_2

assert(x > 0); // c_6 == implies(c_4, z_5 > 0)
} // x_7 == ite(c_4, z_5, z_1)

// For assumes: c_3
// For asserts: !c_6

Figure 6: Example showing a program with assumptions and asserts

evaluated, a condition variable is created that contains an implication between
the conjunction of the current path conditions and the expression provided to
assume. The same thing also happens for assertions. Finally after the whole pro-
gram is evaluated, a logical conjunction of all assumption conditions is added
to the formula, as well as a negated logical conjunction of all assertions. If we
ask a solver to check the formula for satisfiability, it will only re The Symbol-
icInterpreter

6 Implementation

In the upstream repository, there is already a concrete interpreter, a parse-tree
visualisation tool and a hollow symbolic interpreter. Your task is to complete
the symbolic interpreter with all the SSA and verification capabilities men-
tioned above. Again, take note of the code labeled as @todo and try to keep
your changes confined to that part of code. Also, pay attention to the exact
requirements for variable names and program output, as well as the types of
expressions, because a wrong naming or gratuitous output can result in the
test system rejecting your implementation, and typing errors can lead to unex-
pected runtime exceptions being thrown. For hints on how to implement certain
functionality, please also consult the comments labeled with @details in the
codebase.

Regarding the concrete interpreter, you can run it with:

"./build/simplelang-concrete" my-program.cpp

Similarly, if at any point you are unsure of a program’s parse tree structure
given to the SymbolicInterpreter, there is an utility to view and debug them:

"./build/simplelang-dot" my-program.cpp my-program.dot

xdot my-program.dot

10
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