
FPGA Bitstream Encryption

Martin Krenn

November 29th, 2023

1



Agenda

Introduction

What is the bitstream?

Why is bitstream encryption needed?

How does bitstream encryption work?

Attacks on bitstream encryption

“Case Study”: The Unpatchable Silicon by Ender, Moradi, and Paar [2]

Lessons learned

2



Introduction



What is the bitstream?

The “binary” of the FPGA [1], [2]

• The “fabric data”

• “Logic”: Content of look-up tables, ...

• “Wiring”: Configuration of switch-boxes, ...

• Block-RAM configuration and initial values

• General configuration of the FPGA

• Instructions for the configuration engine

3



Why is bitstream encryption needed?

• Bitstream contains confidential information

• Intellectual Property (IP)

• Keys

• Most FPGAs are SRAM-based

• Bitstream stored in non-volatile memory (NVM) at rest

• Bitstream loaded to SRAM upon startup

• Threats

• Cloning

• Reverse engineering

• Tampering (e.g. insert Trojans)

4



How does bitstream encryption work?

• Keys securely stored in FPGA

• BBRAM/eFuse

• Encrypted bitstream transferred &

stored on NVM

• Configuration engine of FPGA

Loads

Authenticates

Decrypts

 the bitstream
Figure 1: Simplified bitstream encryption [3]

5



Attacks on bitstream encryption



Attacks on bitstream encryption

• Side-channel attacks (e.g. differential power analysis (DPA))

• Fault attacks (e.g. power glitching)

• Protocol attacks

6



“Case Study”: The Unpatchable

Silicon by Ender, Moradi, and

Paar [2]



Adversary model

• Access to the encrypted bitstream

• Limited knowledge about plaintext

• FPGA with loaded AES-key

• Access to configuration interface

Figure 2: The adversary [4]

7



Bitstream encryption of the Xilinx 7-Series

• On-chip decryption engine

• CBC-AES-256 for confidentiality

• HMAC-SHA-256 for authenticity

• AES key is set using configuration

interface (e.g. JTAG)

SYNC

config header

HMAC header

config header

fabric data

config footer

HMAC footer

config footer

Figure 3: Simplified bitstream format of the

Xilinx 7-series - gray parts encrypted [2], [5]

8



Attacking the encryption

Two vulnerabilities:

1. CBC-mode is malleable during
decryption

• Flipped bits ∆ in Ci results in

garbled P ′
i

• but in the same bits flipped in

Pi+1⊕∆

→ Used for known plaintext attack to

insert instructions into the bitstream

Dec

C0

k

P0

Dec

C1 ⊕∆

k

P ′1

Dec

C2

k

P2 ⊕∆

IV

· · · Dec

Pn

k

Cn

· · · Dec

Pn

k

Cn

Figure 4: CBC malleability illustrated [2], [6]

9



Attacking the encryption

Two vulnerabilities:

1. CBC-mode is malleable during

decryption

2. HMAC is last to be checked

• Forged bitstream gets decrypted

• Instructions are executed

• Authenticity check fails afterwards

• Reset is triggered

→ Use FPGA as decryption oracle

SYNC

config header

HMAC header

config header

fabric data

config footer

HMAC footer

config footer

Figure 5: Simplified bitstream format - red

part contains authentication-tag [2], [5]

10



The final ingredient

How do we read-back the decrypted data?

• Exploit a special configuration register:

WBSTAR (warm-boot start-address register)

• Used for MultiBoot [7]

• Not cleared during reset

11



Put all pieces together

1. Craft a malicious bitstream containing

• The fabric block to decrypt

• An instruction to write to the WBSTAR

2. Download malicious bitstream

• FPGA decrypts & executes the bitstream

and eventually resets due to authentication error

3. Use a “readout” bitstream to obtain the content of WBSTAR

4. Rinse

5. Repeat

12



What else

The attack can be used to break authenticity as well

• Take arbitrary Cn,Cn−1, results in quasi-random Pn = DECK (Cn)⊕ Cn−1

• Find C ′n−1 which generates the desired P ′n inside the FPGA

→ Set C ′n−1 = Pn ⊕ Cn−1 ⊕ P ′n (acc. CBC malleability)

• Repeat steps with arbitrary Cn−2 and obtained C ′n−1, etc.

• Set IV to C ′0 in the end

Dec

C0

k

P0

Dec

C1

k

P1

Dec

C2

k

P2

IV

· · ·

Cn−1

Dec

Pn

k

Cn

· · ·

Cn−1

Dec

Pn

k

Cn

Figure 6: CBC mode of operation [6]
13



Lessons learned



Lessons learned

• Use state-of-the-art protocols/crypto

• Authenticate well before use

• Minimize the unpatchable part and

use reconfigurable logic for the rest [8]

Figure 7: Xilinx UltraScale(+) bitstream

encryption using RSA [9]

14



Thank you for your attention

Questions?

15



References i

References

[1] A. Duncan, F. Rahman, A. Lukefahr, F. Farahmandi, and M. M. Tehranipoor, FPGA bitstream

security: A day in the life, in IEEE International Test Conference, ITC 2019, Washington, DC,

USA, November 9-15, 2019, IEEE, 2019, pp. 1–10.

[2] M. Ender, A. Moradi, and C. Paar, The unpatchable silicon: A full break of the bitstream

encryption of xilinx 7-series fpgas, in 29th USENIX Security Symposium, USENIX Security 2020,

August 12-14, 2020, S. Capkun and F. Roesner, Eds., USENIX Association, 2020, pp. 1803–1819.

[3] H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J.-P. Seifert, Key extraction using thermal laser

stimulation: A case study on xilinx ultrascale fpgas, Cryptology ePrint Archive, Paper 2018/717,

https://eprint.iacr.org/2018/717, 2018. [Online]. Available:

https://eprint.iacr.org/2018/717.

16

https://eprint.iacr.org/2018/717
https://eprint.iacr.org/2018/717


References ii

[4] CC BY-NC 4.0. [Online]. Available: https://pngimg.com.

[5] S. M. Trimberger and J. J. Moore, FPGA Security: Motivations, Features, and Applications,

Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–1265, 2014. doi:

10.1109/JPROC.2014.2331672.

[6] J. Jean, TikZ for Cryptographers, https://www.iacr.org/authors/tikz/, 2016.

[7] Xilinx Inc., MultiBoot with 7 Series FPGAs and SPI,, 2017. [Online]. Available:

https://docs.xilinx.com/v/u/en-US/xapp1247-multiboot-spi.

[8] F. Unterstein, N. Jacob, N. Hanley, C. Gu, and J. Heyszl, Sca secure and updatable crypto

engines for fpga soc bitstream decryption: Extended version, Journal of Cryptographic

Engineering, vol. 11, no. 3, pp. 257–272, 2021. [Online]. Available:

https://doi.org/10.1007/s13389-020-00247-2.

17

https://pngimg.com
https://doi.org/10.1109/JPROC.2014.2331672
https://www.iacr.org/authors/tikz/
https://docs.xilinx.com/v/u/en-US/xapp1247-multiboot-spi
https://doi.org/10.1007/s13389-020-00247-2


References iii

[9] Xilinx Inc., Developing Tamper-Resistant Designs with UltraScale and UltraScale+ FPGAs,,

2021. [Online]. Available:

https://docs.xilinx.com/v/u/en-US/xapp1098-tamper-resist-designs.

18

https://docs.xilinx.com/v/u/en-US/xapp1098-tamper-resist-designs

	Introduction
	What is the bitstream?
	Why is bitstream encryption needed?
	How does bitstream encryption work?

	Attacks on bitstream encryption
	"Case Study": The Unpatchable Silicon by ender2020theunpatchable ender2020theunpatchable
	Lessons learned
	References

