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Introduction



What is the bitstream?

The “binary” of the FPGA [1], [2]

• The “fabric data”

• “Logic”: Content of look-up tables, ...

• “Wiring”: Configuration of switch-boxes, ...

• Block-RAM configuration and initial values

• General configuration of the FPGA

• Instructions for the configuration engine

3



Why is bitstream encryption needed?

• Bitstream contains confidential information

• Intellectual Property (IP)

• Keys

• Most FPGAs are SRAM-based

• Bitstream stored in non-volatile memory (NVM) at rest

• Bitstream loaded to SRAM upon startup

• Threats

• Cloning

• Reverse engineering

• Tampering (e.g. insert Trojans)
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How does bitstream encryption work?

• Keys securely stored in FPGA

• BBRAM/eFuse

• Encrypted bitstream transferred &

stored on NVM

• Configuration engine of FPGA

Loads

Authenticates

Decrypts

 the bitstream
Figure 1: Simplified bitstream encryption [3]
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Attacks on bitstream encryption



Attacks on bitstream encryption

• Side-channel attacks (e.g. differential power analysis (DPA))

• Fault attacks (e.g. power glitching)

• Protocol attacks
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“Case Study”: The Unpatchable

Silicon by Ender, Moradi, and

Paar [2]



Adversary model

• Access to the encrypted bitstream

• Limited knowledge about plaintext

• FPGA with loaded AES-key

• Access to configuration interface

Figure 2: The adversary [4]
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Bitstream encryption of the Xilinx 7-Series

• On-chip decryption engine

• CBC-AES-256 for confidentiality

• HMAC-SHA-256 for authenticity

• AES key is set using configuration

interface (e.g. JTAG)

SYNC

config header

HMAC header

config header

fabric data

config footer

HMAC footer

config footer

Figure 3: Simplified bitstream format of the

Xilinx 7-series - gray parts encrypted [2], [5]
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Attacking the encryption

Two vulnerabilities:

1. CBC-mode is malleable during
decryption

• Flipped bits ∆ in Ci results in

garbled P ′
i

• but in the same bits flipped in

Pi+1⊕∆

→ Used for known plaintext attack to

insert instructions into the bitstream
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Figure 4: CBC malleability illustrated [2], [6]
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Attacking the encryption

Two vulnerabilities:

1. CBC-mode is malleable during

decryption

2. HMAC is last to be checked

• Forged bitstream gets decrypted

• Instructions are executed

• Authenticity check fails afterwards

• Reset is triggered

→ Use FPGA as decryption oracle

SYNC

config header

HMAC header

config header

fabric data

config footer

HMAC footer

config footer

Figure 5: Simplified bitstream format - red

part contains authentication-tag [2], [5]
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The final ingredient

How do we read-back the decrypted data?

• Exploit a special configuration register:

WBSTAR (warm-boot start-address register)

• Used for MultiBoot [7]

• Not cleared during reset
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Put all pieces together

1. Craft a malicious bitstream containing

• The fabric block to decrypt

• An instruction to write to the WBSTAR

2. Download malicious bitstream

• FPGA decrypts & executes the bitstream

and eventually resets due to authentication error

3. Use a “readout” bitstream to obtain the content of WBSTAR

4. Rinse

5. Repeat
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What else

The attack can be used to break authenticity as well

• Take arbitrary Cn,Cn−1, results in quasi-random Pn = DECK (Cn)⊕ Cn−1

• Find C ′n−1 which generates the desired P ′n inside the FPGA

→ Set C ′n−1 = Pn ⊕ Cn−1 ⊕ P ′n (acc. CBC malleability)

• Repeat steps with arbitrary Cn−2 and obtained C ′n−1, etc.

• Set IV to C ′0 in the end
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Figure 6: CBC mode of operation [6]
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Lessons learned



Lessons learned

• Use state-of-the-art protocols/crypto

• Authenticate well before use

• Minimize the unpatchable part and

use reconfigurable logic for the rest [8]

Figure 7: Xilinx UltraScale(+) bitstream

encryption using RSA [9]
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Thank you for your attention

Questions?
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