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Figure 1.7. The evaluation of a logical formula under a given valuation.

plal-»|-a|lp—-qlqgv-p|p—-q = (qv-p
T|T|F | F| F T T
Tl F|T]| T F F
Flr|T|F| T T T
FlelT|T]| T T T

Figure 1.8. An example of a truth table for a more complex logical formula.

Finally, column 7 results from applying the truth table of — to columns 5
and 6.

1.4.2 Mathematical induction
Here is a little anecdote about the German mathematician Gauss who, as a
pupil at age 8, did not pay attention in class (can you imagine?), with the
result that his teacher made him sum up all natural numbers from 1 to 100.
The story has it that Gauss came up with the correct answer 5050 within
seconds, which infuriated his teacher. How did Gauss do it? Well, possibly
he knew that
n-(n+1)

L+2+43 444 dn=—p— (1.5)
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for all natural numbers n.? Thus, taking n = 100, Gauss could easily calcu-
late:

100 - 101
1—|—2+3+4—|—---+1OO:T:5050.

Mathematical induction allows us to prove equations, such as the one
n (1.5), for arbitrary n. More generally, it allows us to show that every
natural number satisfies a certain property. Suppose we have a property M
which we think is true of all natural numbers. We write M (5) to say that
the property is true of 5, etc. Suppose that we know the following two things
about the property M:

1. Base case: The natural number 1 has property M, i.e. we have a proof of
M(1).

2. Inductive step: If n is a natural number which we assume to have property
M (n), then we can show that n + 1 has property M (n + 1); i.e. we have a proof
of M(n) — M(n+1).

Definition 1.30 The principle of mathematical induction says that, on the
grounds of these two pieces of information above, every natural number n
has property M (n). The assumption of M (n) in the inductive step is called
the induction hypothesis.

Why does this principle make sense? Well, take any natural number k.
If k equals 1, then & has property M (1) using the base case and so we are
done. Otherwise, we can use the inductive step, applied to n = 1, to infer
that 2 =1+ 1 has property M(2). We can do that using —e, for we know
that 1 has the property in question. Now we use that same inductive step on
n = 2 to infer that 3 has property M (3) and we repeat this until we reach
n = k (see Figure 1.9). Therefore, we should have no objections about using
the principle of mathematical induction for natural numbers.

Returning to Gauss’ example we claim that thesum 1 +2+3+4+---+
n equals n - (n 4 1)/2 for all natural numbers n.

Theorem 1.31 The sum 14+2+3+4+---+n equalsn - (n+1)/2 for all
natural numbers n.

9 There is another way of finding the sum 142+ --- 4+ 100, which works like this: write the
sum backwards, as 100 + 99 + - - - 4+ 1. Now add the forwards and backwards versions, obtaining
101 + 101 + - -- 4+ 101 (100 times), which is 10100. Since we added the sum to itself, we now
divide by two to get the answer 5050. Gauss probably used this method; but the method of
mathematical induction that we explore in this section is much more powerful and can be
applied in a wide variety of situations.
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Figure 1.9. How the principle of mathematical induction works. By
proving just two facts, M(1) and M(n) — M(n + 1) for a formal (and
unconstrained) parameter n, we are able to deduce M (k) for each natural
number k.

PROOF: We use mathematical induction. In order to reveal the fine structure
of our proof we write LHS,, for the expression 1 4+2+3+4+---+n and
RHS,, for n- (n + 1)/2. Thus, we need to show LHS,, = RHS,, for all n > 1.

Base case: If n equals 1, then LHS; is just 1 (there is only one summand),
which happens to equal RHS; =1 (1 +1)/2.

Inductive step: Let us assume that LHS,, = RHS,,. Recall that this as-
sumption is called the induction hypothesis; it is the driving force of
our argument. We need to show LHS,;; = RHS, 1, i.e. that the longer
sum 14+2+3+4+---+(n+1) equals (n+1)-((n+1)+1)/2. The key
observation is that the sum 14+2+3+4+4---+ (n+ 1) is nothing but
the sum (1+2+3+4+4+---4+n)+ (n+1) of two summands, where the
first one is the sum of our induction hypothesis. The latter says that
1+2+3+4+4+---+mn equals n-(n+1)/2, and we are certainly entitled
to substitute equals for equals in our reasoning. Thus, we compute

LHSn—H
=14+24+34+4+---+(n+1)

= LHS,, + (n+ 1) regrouping the sum
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= RHS,, + (n + 1) by our induction hypothesis

=l | (n 4 1)

n-(n+1 2-(n+1
(v+1) | 2(nt1)

arithmetic

= w arithmetic

((n+1)4+1)-(n+1)
2

= RHS,.1.

arithmetic

Since we successfully showed the base case and the inductive step, we can
use mathematical induction to infer that all natural numbers n have the
property stated in the theorem above. a

Actually, there are numerous variations of this principle. For example, we
can think of a version in which the base case is n = 0, which would then
cover all natural numbers including 0. Some statements hold only for all
natural numbers, say, greater than 3. So you would have to deal with a
base case 4, but keep the version of the inductive step (see the exercises for
such an example). The use of mathematical induction typically suceeds on
properties M (n) that involve inductive definitions (e.g. the definition of k!
with [ > 0). Sentence (3) on page 2 suggests there may be true properties
M (n) for which mathematical induction won’t work.

Course-of-values induction. There is a variant of mathematical induction
in which the induction hypothesis for proving M (n + 1) is not just M (n), but
the conjunction M (1) A M(2) A--- A M(n). In that variant, called course-
of-values induction, there doesn’t have to be an explicit base case at all —
everything can be done in the inductive step.

How can this work without a base case? The answer is that the base
case is implicitly included in the inductive step. Consider the case n = 3:
the inductive-step instance is M (1) A M (2) A M(3) — M(4). Now consider
n = 1: the inductive-step instance is M (1) — M (2). What about the case
when n equals 07 In this case, there are zero formulas on the left of the —,
so we have to prove M (1) from nothing at all. The inductive-step instance
is simply the obligation to show M(1). You might find it useful to modify
Figure 1.9 for course-of-values induction.

Having said that the base case is implicit in course-of-values induction,
it frequently turns out that it still demands special attention when you get
inside trying to prove the inductive case. We will see precisely this in the
two applications of course-of-values induction in the following pages.
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Figure 1.10. A parse tree with height 5.

In computer science, we often deal with finite structures of some kind, data
structures, programs, files etc. Often we need to show that every instance of
such a structure has a certain property. For example, the well-formed for-
mulas of Definition 1.27 have the property that the number of ‘(" brackets
in a particular formula equals its number of ‘)’ brackets. We can use mathe-
matical induction on the domain of natural numbers to prove this. In order
to succeed, we somehow need to connect well-formed formulas to natural
numbers.

Definition 1.32 Given a well-formed formula ¢, we define its height to be
1 plus the length of the longest path of its parse tree.

For example, consider the well-formed formulas in Figures 1.3, 1.4
and 1.10. Their heights are 5, 6 and 5, respectively. In Figure 1.3, the
longest path goes from — to A to V to — to 7, a path of length 4, so
the height is 4 + 1 = 5. Note that the height of atoms is 1 + 0 = 1. Since
every well-formed formula has finite height, we can show statements about
all well-formed formulas by mathematical induction on their height. This
trick is most often called structural induction, an important reasoning tech-
nique in computer science. Using the notion of the height of a parse tree,
we realise that structural induction is just a special case of course-of-values
induction.
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Theorem 1.33 For every well-formed propositional logic formula, the num-
ber of left brackets is equal to the number of right brackets.

PRrROOF: We proceed by course-of-values induction on the height of well-
formed formulas ¢. Let M (n) mean ‘All formulas of height n have the same
number of left and right brackets.” We assume M (k) for each k < n and try
to prove M (n). Take a formula ¢ of height n.

¢ Base case: Then n = 1. This means that ¢ is just a propositional atom. So there
are no left or right brackets, 0 equals 0.

¢ Course-of-values inductive step: Then n > 1 and so the root of the parse tree
of » must be =, —, V or A, for ¢ is well-formed. We assume that it is —, the other
three cases are argued in a similar way. Then ¢ equals (¢1 — ¢2) for some well-
formed formulas ¢; and ¢o (of course, they are just the left, respectively right,
linear representations of the root’s two subtrees). It is clear that the heights
of ¢1 and ¢ are strictly smaller than n. Using the induction hypothesis, we
therefore conclude that ¢; has the same number of left and right brackets and
that the same is true for ¢o. But in (¢1 — ¢2) we added just two more brackets,
one ‘(" and one ‘). Thus, the number of occurrences of ‘(’ and ‘)’ in ¢ is the
same. 0O

The formula (p — (¢ A —r)) illustrates why we could not prove the above
directly with mathematical induction on the height of formulas. While this
formula has height 4, its two subtrees have heights 1 and 3, respectively.
Thus, an induction hypothesis for height 3 would have worked for the right
subtree but failed for the left subtree.

1.4.3 Soundness of propositional logic
The natural deduction rules make it possible for us to develop rigorous
threads of argumentation, in the course of which we arrive at a conclusion
1 assuming certain other propositions ¢1, @9, ..., ¢,. In that case, we said
that the sequent ¢1, ¢, ..., ¢, - ¢ is valid. Do we have any evidence that
these rules are all correct in the sense that valid sequents all ‘preserve truth’
computed by our truth-table semantics?

Given a proof of ¢1, ¢, ..., ¢, I 1, is it conceivable that there is a valu-
ation in which ¢ above is false although all propositions ¢1, ¢a, ..., ¢, are
true? Fortunately, this is not the case and in this subsection we demonstrate
why this is so. Let us suppose that some proof in our natural deduction cal-
culus has established that the sequent ¢1, @9, ..., ¢, F ¢ is valid. We need
to show: for all valuations in which all propositions ¢1, ¢, ..., ¢, evaluate
to T, ¥ evaluates to T as well.
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Definition 1.34 If, for all valuations in which all ¢1, ¢o, ..., ¢, evaluate to
T, ¢ evaluates to T as well, we say that

¢l»¢2»"'7¢n':77/)

holds and call F the semantic entailment relation.

Let us look at some examples of this notion.

1. Does p A g = p hold? Well, we have to inspect all assignments of truth values to
p and q; there are four of these. Whenever such an assignment computes T for
p A q we need to make sure that p is true as well. But p A ¢ computes T only if
p and q are true, so p A q F p is indeed the case.

2. What about the relationship p V q E p? There are three assignments for which
pV q computes T, so p would have to be true for all of these. However, if we
assign T to ¢ and F to p, then p V g computes T, but p is false. Thus, pV qF p
does not hold.

3. What if we modify the above to —¢,p V g E p? Notice that we have to be con-
cerned only about valuations in which —¢ and p V g evaluate to T. This forces ¢
to be false, which in turn forces p to be true. Hence —¢q,p V g E p is the case.

4. Note that p E ¢ V —q holds, despite the fact that no atomic proposition on the
right of E occurs on the left of F.

From the discussion above we realize that a soundness argument has to show:
if ¢1,¢2,...,¢n 1 is valid, then @1, ¢o, . .., ¢, E 9 holds.

Theorem 1.35 (Soundness) Let ¢1,¢pa,..., ¢, and 1p be propositional
logic formulas. If ¢1, ¢, ..., 0n F ¢ is valid, then ¢1, ¢, ..., ¢n F ¥ holds.

PROOF: Since ¢1, ¢, ..., ¢, F 1 is valid we know there is a proof of
from the premises ¢1, ¢s,...,d,. We now do a pretty slick thing, namely,
we reason by mathematical induction on the length of this proof! The length
of a proof is just the number of lines it involves. So let us be perfectly
clear about what it is we mean to show. We intend to show the assertion
M (k):

‘For all sequents ¢1, ¢, ..., ¢n 10 (n > 0) which have a proof of

length k, it is the case that ¢1,¢a, ..., ¢, E Y holds.’

by course-of-values induction on the natural number k. This idea requires



1.4 Semantics of propositional logic 47

some work, though. The sequent p A ¢ — r+ p — (¢ — r) has a proof

1 pANqg—T premise

2 p assumption
3 q assumption
4 PAgq AL 2,3

) T —e 1,4

6 q—r —13—-95

7 p—(g—r) —i2-6

but if we remove the last line or several of the last lines, we no longer
have a proof as the outermost box does not get closed. We get a complete
proof, though, by removing the last line and re-writing the assumption of
the outermost box as a premise:

1 pAq— r premise

2 P premise

3 q assumption
4 pAgq AL 2,3

) T —e 1,4

6 q—r —i13—5

This is a proof of the sequent p A ¢ — r, p F p — r. The induction hypothesis
then ensures that p A ¢ — r, p E p — r holds. But then we can also reason
that pA ¢ — rE p — (¢ — r) holds as well — why?

Let’s proceed with our proof by induction. We assume M (k') for each
k' < k and we try to prove M (k).

Base case: a one-line proof. 1If the proof has length 1 (k = 1), then it must
be of the form

1 ¢ premise

since all other rules involve more than one line. This is the case when n =1
and ¢1 and ¥ equal ¢, i.e. we are dealing with the sequent ¢ - ¢. Of course,
since ¢ evaluates to T so does ¢. Thus, ¢ E ¢ holds as claimed.
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Course-of-values inductive step: Let us assume that the proof of the se-
quent ¢1,d2,..., 0, F 1 has length k£ and that the statement we want to
prove is true for all numbers less than k. Our proof has the following struc-

ture:

1 ¢1 premise
2 ¢9 premise
n ¢n premise
k ¥ justification

There are two things we don’t know at this point. First, what is happening

in between those dots? Second, what was the last rule applied, i.e. what is

the justification of the last line? The first uncertainty is of no concern; this

is where mathematical induction demonstrates its power. The second lack
of knowledge is where all the work sits. In this generality, there is simply no
way of knowing which rule was applied last, so we need to consider all such

rules in turn.

1.

Let us suppose that this last rule is Ai. Then we know that ¢ is of the form
1 A o and the justification in line k refers to two lines further up which have
11, respectively 19, as their conclusions. Suppose that these lines are k1 and ko.
Since kq and ko are smaller than k, we see that there exist proofs of the sequents
@1, P2, ..., 0n F Y1 and @1, Pa, ..., dpn F Yo with length less than k — just take
the first k1, respectively ks, lines of our original proof. Using the induction
hypothesis, we conclude that ¢1,¢s, ..., dn F Y1 and @1, Po, ..., dpn F 19 holds.
But these two relations imply that ¢1, ¢s, ..., ¢, E 11 A 1)s holds as well — why?
If ¥ has been shown using the rule Ve, then we must have proved, as-
sumed or given as a premise some formula 7; V7y in some line k' with
k' < k, which was referred to via Ve in the justification of line k. Thus,
we have a shorter proof of the sequent ¢1,ds,...,¢, 171 V1o within that
proof, obtained by turning all assumptions of boxes that are open at
line &’ into premises. In a similar way we obtain proofs of the sequents
O1, P2, ..., 0n,m F Y and ¢1,02,...,0,,m2 F ¥ from the case analysis of Ve.
By our induction hypothesis, we conclude that the relations ¢1,¢s,..., 0, F
mVne, ¢1,02,...,00,m FY and ¢1,¢s,...,0,,m2 F 1 hold. But together
these three relations then force that ¢1,¢s,...,¢n F 1 holds as well —
why?

You can guess by now that the rest of the argument checks each possible proof
rule in turn and ultimately boils down to verifying that our natural deduction
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rules behave semantically in the same way as their corresponding truth tables
evaluate. We leave the details as an exercise. O

The soundness of propositional logic is useful in ensuring the non-ezistence of
a proof for a given sequent. Let’s say you try to prove that ¢1, ¢o, ..., ¢s - )
is valid, but that your best efforts won’t succeed. How could you be sure that
no such proof can be found? After all, it might just be that you can’t find
a proof even though there is one. It suffices to find a valuation in which ¢;
evaluate to T whereas v evaluates to F. Then, by definition of E, we don’t
have ¢1, 2, ..., ¢2 E 1. Using soundness, this means that ¢1, ¢o, ..., ¢a 1)
cannot be valid. Therefore, this sequent does not have a proof. You will
practice this method in the exercises.

1.4.4 Completeness of propositional logic
In this subsection, we hope to convince you that the natural deduction rules
of propositional logic are complete: whenever ¢1, @2, ..., ¢, E ¢ holds, then
there exists a natural deduction proof for the sequent ¢1, o, ..., o, F .
Combined with the soundness result of the previous subsection, we then
obtain

B1y o, ... b b is valid iff ¢1, o, . ... ¢n F ¢ holds.

This gives you a certain freedom regarding which method you prefer to
use. Often it is much easier to show one of these two relationships (al-
though neither of the two is universally better, or easier, to establish).
The first method involves a proof search, upon which the logic program-
ming paradigm is based. The second method typically forces you to com-
pute a truth table which is exponential in the size of occurring proposi-
tional atoms. Both methods are intractable in general but particular in-
stances of formulas often respond differently to treatment under these two
methods.

The remainder of this section is concerned with an argument saying that
if ¢1,¢9,...,0, E ¢ holds, then ¢1,¢s, ..., 0, F 1 is valid. Assuming that
d1, %2, ..., 0n E 1 holds, the argument proceeds in three steps:

Step 1: We show that F ¢1 — (¢2 — (#3 — (... (¢ — ¥)...))) holds.
Step 2: We show that F ¢1 — (d2 — (¢35 — (... (¢n — ) ...))) is valid.
Step 3: Finally, we show that ¢1, ¢a,..., Py F 9 is valid.

The first and third steps are quite easy; all the real work is done in the
second one.
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Figure 1.11. The only way this parse tree can evaluate to F. We repre-
sent parse trees for ¢1, ¢2, ..., ¢ as triangles as their internal structure
does not concern us here.

Step 1:

Definition 1.36 A formula of propositional logic ¢ is called a tautology iff
it evaluates to T under all its valuations, i.e. iff F ¢.

Supposing that ¢1, ¢o, ..., ¢, F ¢ holds, let us verify that ¢1 — (¢ —
(¢3 — (... (dn — ) ...))) is indeed a tautology. Since the latter formula is
a nested implication, it can evaluate to F only if all ¢1, ¢2, . , ¢, evaluate to T
and ) evaluates to F; see its parse tree in Figure 1.11. But this contradicts the
fact that ¢1,da,..., ¢, F1p holds. Thus, £ ¢ — (¢ — (¢35 — (... (¢n —
¥)...))) holds.

Step 2:

Theorem 1.37 If En holds, then =1 is valid. In other words, if n is a
tautology, then 1 is a theorem.

This step is the hard one. Assume that E 1 holds. Given that n contains
n distinct propositional atoms p1, po, ..., pn we know that n evaluates to T
for all 2" lines in its truth table. (Each line lists a valuation of 7.) How can
we use this information to construct a proof for 7 In some cases this can
be done quite easily by taking a very good look at the concrete structure of
1. But here we somehow have to come up with a uniform way of building
such a proof. The key insight is to ‘encode’ each line in the truth table of n
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as a sequent. Then we construct proofs for these 2™ sequents and assemble
them into a proof of 7.

Proposition 1.38 Let ¢ be a formula such that py,pa,...,pn are its only
propositional atoms. Let | be any line number in ¢’s truth table. For all
1<i<mn let p; be p; if the entry in line I of p; is T, otherwise p; is —p;.
Then we have

1. p1,P2,...,0n E @ is provable if the entry for ¢ in linel is T
2. P1,DP2,--.,Dn F @ is provable if the entry for ¢ in linel is F

PROOF: This proof is done by structural induction on the formula ¢, that
is, mathematical induction on the height of the parse tree of ¢.

1. If ¢ is a propositional atom p, we need to show that p - p and —p - —p. These
have one-line proofs.

2. 1If ¢ is of the form —¢; we again have two cases to consider. First, assume that ¢
evaluates to T. In this case ¢; evaluates to F. Note that ¢; has the same atomic
propositions as ¢. We may use the induction hypothesis on ¢; to conclude that
P1,D2,---,Pn | —¢1; but —¢y is just ¢, so we are done.

Second, if ¢ evaluates to F, then ¢ evaluates to T and we get p1,Pa, ..., Pn E P1
by induction. Using the rule =—i, we may extend the proof of p1,pa, ..., pn b ¢1
to one for Py, Po, ..., Pn F ——@1; but = is just —¢, so again we are done.

The remaining cases all deal with two subformulas: ¢ equals ¢1 o ¢, where
o is —, A or V. In all these cases let qi,...,q be the propositional
atoms of ¢ and rq,...,7r; be the propositional atoms of ¢9. Then we cer-
tainly have {qi,...,q}tU{r1,...,rc} ={p1,...,pn}. Therefore, whenever
qi,---,q F 1 and 7y, ..., 7, 1o are valid so is P1, ..., Pn F 1 A o using
the rule Ai. In this way, we can use our induction hypothesis and only owe
proofs that the conjunctions we conclude allow us to prove the desired con-
clusion for ¢ or —¢ as the case may be.

3. To wit, let ¢ be ¢1 — ¢o. If ¢ evaluates to F, then we know that ¢; evaluates
to T and ¢2 to F. Using our induction hypothesis, we have §i,...,q¢ F ¢1
and 7y,...,7 F 22, SO D1,...,DPnF @01 A ¢y follows. We need to show
Dls.-yDn (1 — ¢2); but using pi,...,Pn F @1 A —¢d2, this amounts to
proving the sequent ¢1 A —¢o - (1 — ¢2), which we leave as an exercise.

If ¢ evaluates to T, then we have three cases. First, if ¢; evaluates to F and
@2 to F, then we get, by our induction hypothesis, that ¢i,...,§ - —¢1 and
T1ye.., T b2, SO P1,...,Pn b 21 A o follows. Again, we need only to
show the sequent —¢1 A =2 - ¢1 — ¢, which we leave as an exercise. Second,
if ¢1 evaluates to F and ¢ to T, we use our induction hypothesis to arrive at
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P1s---5Pn b 01 A 2 and have to prove =1 A ¢ F ¢1 — ¢2, which we leave as
an exercise. Third, if ¢; and ¢5 evaluate to T, we arrive at p1,...,P, F @1 A ¢,
using our induction hypothesis, and need to prove ¢ A ¢ = ¢p1 — ¢, which
we leave as an exercise as well.

4. If ¢ is of the form ¢ A ¢o, we are again dealing with four cases in total. First, if
¢1 and ¢- evaluate to T, we get ¢1,...,4; - ¢1 and 71, ..., 7k F ¢2 by our induc-
tion hypothesis, so p1, ..., D, F @1 A ¢ follows. Second, if ¢; evaluates to F and
¢2 to T, then we get p1,...,D, F 21 A ¢2 using our induction hypothesis and
the rule Ai as above and we need to prove =¢1 A ¢o = =1(¢1 A ¢2), which we leave
as an exercise. Third, if ¢; and ¢ evaluate to F, then our induction hypothesis
and the rule Ai let us infer that p1,...,D, F —¢1 A 2¢2; so we are left with prov-
ing —¢1 A o F —(¢1 A ¢2), which we leave as an exercise. Fourth, if ¢; evalu-
ates to T and ¢9 to F, we obtain p1,...,P, F ¢1 A =¢2 by our induction hypoth-
esis and we have to show ¢1 A = b —(d1 A ¢2), which we leave as an exercise.

5. Finally, if ¢ is a disjunction ¢ V ¢, we again have four cases. First, if ¢1 and ¢9
evaluate to F, then our induction hypothesis and the rule Ai give us p1,..., 0, -
—¢1 A o and we have to show =1 A =g F —(h1 V ¢2), which we leave as an
exercise. Second, if ¢ and ¢5 evaluate to T, then we obtain p1,...,p, F @1 A ¢a,
by our induction hypothesis, and we need a proof for ¢ A ¢ = ¢ V ¢, which
we leave as an exercise. Third, if ¢, evaluates to F and ¢2 to T, then we arrive
at P1,...,0n F 2d1 A @2, using our induction hypothesis, and need to establish
g1 A o B @1 V o, which we leave as an exercise. Fourth, if ¢; evaluates to T
and ¢o to F, then p1,...,P, F ¢1 A —¢2 results from our induction hypothesis
and all we need is a proof for ¢; A =g F @1V ¢2, which we leave as an
exercise. O

We apply this technique to the formula F ¢1 — (d2 — (¢35 — (... (¢n —
¥)...))). Since it is a tautology it evaluates to T in all 2™ lines of its truth
table; thus, the proposition above gives us 2" many proofs of Py, pa, ..., Pn -
7, one for each of the cases that p; is p; or —=p;. Our job now is to assemble
all these proofs into a single proof for n which does not use any premises.
We illustrate how to do this for an example, the tautology p A ¢ — p.

The formula p A ¢ — p has two propositional atoms p and ¢. By the propo-
sition above, we are guaranteed to have a proof for each of the four sequents

p,g-pANg—p
p,gEpANg—p
p,gEpAg—p
“p,~qtpAqg—p.

Ultimately, we want to prove p A ¢ — p by appealing to the four proofs of
the sequents above. Thus, we somehow need to get rid of the premises on
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the left-hand sides of these four sequents. This is the place where we rely on
the law of the excluded middle which states r V —r, for any r. We use LEM
for all propositional atoms (here p and ¢) and then we separately assume all
the four cases, by using Ve. That way we can invoke all four proofs of the
sequents above and use the rule Ve repeatedly until we have got rid of all our
premises. We spell out the combination of these four phases schematically:

1 pV p LEM
2 p ass -p ass
3 qV —q LEM]|| qV —q LEM
4 q ass|| g ass q ass|[—q ass
5

6

7 PAg—Dp PAGg—p pPAg—D PAG—p

8 pAqg—p Ve pPAGg—D Ve

9 pAQg—p Ve

As soon as you understand how this particular example works, you will
also realise that it will work for an arbitrary tautology with n distinct atoms.
Of course, it seems ridiculous to prove p A ¢ — p using a proof that is this
long. But remember that this illustrates a uniform method that constructs
a proof for every tautology 7, no matter how complicated it is.

Step 3: Finally, we need to find a proof for ¢1, ¢, ..., ¢, F 1. Take the
proof for F ¢1 — (¢p2 — (¢35 — (... (¢ — ) ...))) given by step 2 and aug-
ment its proof by introducing ¢1, ¢2, ..., ¢, as premises. Then apply —e n
times on each of these premises (starting with ¢, continuing with ¢9 etc.).
Thus, we arrive at the conclusion ¢ which gives us a proof for the sequent
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Corollary 1.39 (Soundness and Completeness) Let ¢1,da, ..., dp, 0
be formulas of propositional logic. Then ¢1,¢a, ..., dn E Y is holds iff the
sequent ¢1, ¢, ..., on F Y is valid.

1.5 Normal forms

In the last section, we showed that our proof system for propositional logic is
sound and complete for the truth-table semantics of formulas in Figure 1.6.



