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Digitization

Source

Raw random numbers produced in this way are generally not lID, i.e.,
independent and identically distributed.

e Bits are biased

e and contain correlation

Could we mitigate or remove statistical defects in raw random data?



Postprocessing (conditioning) of Raw Random Bits

‘Postprocessing’ is an application of a deterministic algorithm to remove or mitigate
statistical defects from TRNG-produced raw random data (which contains defects).

* Increases randomness per bit by performing data compression.

 Some entropy is always lost due to data compression

* |tdoesn’t produce any ‘new’ randomness



Postprocessing (conditioning) of Raw Random Bits

‘Postprocessing’ is an application of a deterministic algorithm to remove or mitigate
statistical defects from TRNG-produced raw random data (which contains defects).

* Increases randomness per bit by performing data compression.

 Some entropy is always lost due to data compression

* |t doesn’t produce any ‘new’ randomness

There are two ways of postprocessing raw random bits:

1. Arithmetic postprocessing = do not rely on cryptographic primitives

2. Cryptographic postprocessing =2 rely on cryptographic primitives



Arithmetic postprocessing: Parity filter or XOR processing (1)

e Raw random bits are split into blocks of length n; bits and
* Then the bits within each chunk are XORed

Example:

Raw bit sequence: 11011

10011
i md b o |

100100111019Q.. with n, = 2

S B B

XORed bitsequence: 0 1 1 1 0 0 1 1



Arithmetic postprocessing: Parity filter or XOR processing (2)

* Raw random bits are split into blocks of length n; bits and
* Then the bits within each chunk are XORed

Example:

Raw bit sequence: 11011

| 10011
i md b o |

100100111019Q.. with n, = 2

S B B

XORed bitsequence: 0 1 1 1 0 0 1 1

Data compression factor is n..

If the raw data has a bias €rqw

then the postprocessed data has a bias: € = 2”«‘“_16?({1”



Arithmetic postprocessing: Von Neuman Processing (1)

This method removes bias completely.

Steps:

1. Partition the input bit string into 2-bit blocks.

2. Discard all ’'00’ and ‘11’ blocks.

3. Ifablockis ‘01’ then the output bit is 1; If a block is ‘10’ then the output bit is O.

Example:

Raw bit sequence: 1 10 1 100 1
‘—r”-r’ ‘—r"—r’
X .

Output bit sequence: - 1 O 1

0111010
e
X | ‘

- 00

o Xds



Arithmetic postprocessing: Von Neuman Processing (2)

This method removes bias completely.

Steps:

1. Partition the input bit string into 2-bit blocks.

2. Discard all ’'00’ and ‘11’ blocks.

3. Ifablockis ‘01’ then the output bit is 1; If a block is ‘10’ then the output bit is O.

Example: o SR T

Raw bit sequence: 1101100100111010
i e ol ‘-r"-r"-r"-r' ‘-r”-r'
X | XX

Output bit sequence: - 1 0 1 - - 00

Output is produced at a variable rate.
If input has a throughput T,  then the average throughput of outputis T, -p,-(1 - p,).



Arithmetic postprocessing: Resilient Function [SMS07]

Definition [SMSO07]: An (n, m, t)-resilient function is a function

F(X1, Xo0 oo Xp) = (Y1, Yo» -5 Yin)

from Z0' to Z)" enjoying the property that for any t coordinates iy, ..., i;, for any
constants a,, ..., @, from Z, and any element y of the codomain

Pr(F(X)=y | Xy =ay, ..., X, =a,) = 1/2m,

[SMS07] B. Sunar, W.J. Martin, and D.R. Stinson. “A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks”.
IEEE Trans. on Comp., Vol. 56, No. 1, 2007.



Arithmetic postprocessing: Resilient Function [SMS07]

An (n, m, t)-resilient
function F()

a
»

Coordinates (Yq, Yo, ---, Yin)
2™ points

Coordinates (Xy, Xy, ..., X,)
2" points

Knowledge of any <t coordinates of input doesn’t give any advantage in predicting output.



Arithmetic postprocessing: Resilient Function [SMS07]

An (n, m, t)-resilient
function F()

a
>

If we know that at most t out of n bits are
deterministic, then we can apply an (n, m, t)-resilient
function and obtain m-bits of true randomness.

Coordinates (X;, x5, -
2" points

Example: Use an (L, m, L/10)-resilient
function if 10% of the bits are deterministic.

Knowledge of any <t coordinates of input doesn’t give any advantage in predicting output.



Arithmetic postprocessing: Example of a Resilient Function

[SMSO07] used a linear error correcting code C = [n, m, d] to implement a
[N, m, d-1] resilient function.
-

f(x)= x- G

This code can correct up to (d -1) “errors”



Arithmetic postprocessing: Example of a Resilient Function

[SMSO07] used a linear error correcting code C = [n, m, d] to implement a
[N, m, d-1] resilient function.
-

f(x)= x- G

[SPV06] used a cyclic code for compact implementation on hardware platforms.

( o 0 . 0 \ T
g1 go 0
On—m—1 On—m-—2 .o do
G - 0 dn—m—1 ‘o a1

\ 0 0 Jn—m—1 )

[SPV06] D. Schellekens, B. Preneel, |. Verbauwhede. "FPGA Vendor Agnostic True Random Number Generator". IEEE FPL 2006.



Summary: Postprocessing (conditioning) of Raw Random Bits

‘Postprocessing’ is an application of a deterministic algorithm to removes or mitigates
statistical defects from TRNG-produced raw random data (which contains defects).

* Increases randomness per bit by performing data compression.

 Some entropy is always lost due to data compression

* |t doesn’t produce any ‘new’ randomness

There are two ways of postprocessing raw random bits:

1. Arithmetic postprocessing = do not rely on cryptographic primitives

2. Cryptographic postprocessing =2 rely on cryptographic primitives



Cryptographic postprocessing

A cryptographic postprocessing uses a cryptographic primitive to process the raw
random bits and then produce uniformly distributed random bits.

NIST recommended keyed algorithms for cryptographic postprocessing:
1. HMAC with any standardized hash function

2. CMAC with AES block cipher

3. CBC-MAC with AES block cipher

NIST recommended un-keyed algorithms for cryptographic postprocessing:
1. Any standardized hash function

2. Hash_df with any standardized hash function

3. Block Cipher_df with AES block cipher

(Note: df stands for derivative function)




Cryptographic postprocessing: Example using CBC-MAC

Partition raw random bits into 128-bit blocks and use each block as a message-block.

ml m?2 mx
0o—H - - -
Y Y
k— E k— E k— E
result

E is AES-128.
The number of blocks > 2.



Cryptographic postprocessing

Detailed technical information available on the NIST special publication SP 800-90A

NIST Special Publication 800-90A
Revision 1

Recommendation for Random
Number Generation Using
Deterministic Random Bit Generators

Elaine Barker
John Kelsey
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