
Sujoy Sinha Roy

sujoy.sinharoy@iaik.tugraz.at

Physically Unclonable Function
(PUF)

Based on the tutorial by Dr. Kent Chuang at COSIC Course 2019

mailto:sujoy.sinharoy@iaik.tugraz.at

Outline

▪ Introduction to PUFs

▪ Basic implementations

▪ Important PUF properties

▪ Design example

▪ Summary

2

Silicon PUF: An unique fingerprint of a chip
▪ PUF can be viewed as a unique fingerprint of a chip

▪ Comes from random process variations

▪ Various implementations and applications

4

“0” “1” “1” “0”

498.2 MHz 501.1 MHz

“1” “0”

···

“0” “1”

01011 ... 010

Digital ID

Key generation

Anti-counterfeit

IP protection

Entity authentication
Chip fingerprint

Variability is inherently presented in ICs
▪ Variability in transistors and interconnect

▪ In general undesired – except for PUFs

▪ Random dopant fluctuation

▪ Interconnect width is not always the same

5

MOSFET
Interconnect

More opportunities brought by scaling
▪ Even more challenging to manufacture identical devices in scaled technologies

▪ Moore’s Law

▪ 40nm → 28nm →16nm → 7nm → ...

▪ More variability comes from:

▪ More processing steps

▪ Decreased size (e.g. 2nm difference → 5% in 40nm and 30% in 7nm)

▪ New materials

FinFET

Source: imec

Planar

Gate
Source

Drain

Gate all-around

Source: imec

6

Transistor design roadmap

More variability

to be expected

Outline

▪ Introduction to PUFs

▪ Basic implementations

▪ Important PUF properties

▪ Design example

▪ Summary

7

Two design methodologies

8

Weak PUF Strong PUF

elements

#
o
u
tc

o
m

e
s

linear

elements

#
o
u
tc

o
m

e
s

exponential

r11 r12 r13

r21 r22 r23

r31 r32 r33

c1 r1

Replacing secure non-volatile memory

▪ The root key is typically stored in secure NVMs:

▪ EEPROM/Flash

▪ Fuses/Anti-fuses

▪ Battery-backed SRAM

▪ Concerns:

▪ Physical attacks

▪ Resource constraints (cost)

▪ PUF – generates its own unique key

9

integrated circuit (IC)

NVM

CRYPTO

Secret key

SRAM PUF – a classic weak PUF
▪ 2D array of 1-bit memory cells

▪ Variability: mismatch between the cross-coupled inverters

▪ Volatile: data is cleared after power-off

wor e

e

e

6T-SRAM cell

I1 I2

“1” “0”

“0” “1”

Bi-stable states

I1

I2

I2

I1

Two possible outcomes

after power-up

Transistor variations determines PUF bits

▪ Assume one of the transistors is much weaker than others

▪ Four extreme cases

wor e

e

e

“1” “0”

wor e

e

e

“0” “1”

wor e

e

e

“0” “1”

wor e

e

e

“1” “0”

Variations do not always lead to desired results

▪ If the variation is insignificant for a particular cell

12

wor e

e

e

identical

identical
No preferred state

PUF bits

determined by noise

(RNG-like)

STM32-
F100R8

PIC16F1825

[Van Herrewege,
TrustED 2013]

white = 0
black = 1

▪ If the variation is not completely random

From process variation to a secret key

13

R
e
a
d
o
u
t

In
te

rf
a
c
e

Helper Data

Algorithm

NVM

(ROM/Flash)

Error

Correction

E
n
tr

o
p
y

E
x
tr

a
c
ti
o
n

One-time

Enrollment

(off-chip)

n-bit

128-bit

n-bit

golden data 128-bit Key stored

in server

k-bit

Post-processing

128-bit

AES Key
noisy

- High entropy

- Stable

Realizing an ideal authentication scheme
▪ Entity authentication based on challenge and response

14

PUF

1

Ci,1 Ri,1

PUF

2

Ci,2 Ri,2

PUF

3

Ci,3 Ri,3

1. Generate random

challenges Ci,j and

apply to PUF population

2. Store responses Ri,j

in CRP database

Database

(server)
PUF

2

Ci,2

R’i,2

R’i,2=Ri,2?

1. Send stored challenge to the

entity needs authentication

2. Verify if the response is the same

as the stored one

Enrolment Authentication

Needs a huge amount of uncorrelated challenge-response pairs (CRPs)

Arbiter PUF – based on timing differences

15

[Gassend, 2004]

[Lee, VLSIC 2004]

···
Arbiter

0/1

“1” “0” “0” “1”

0

1

1

0

N-bit challenge

→ 2
N

possible CRPs

(Strong PUF)

Challenge

Response

Arbiter PUF is not an ideal strong PUF
▪ Linear additive structure: sum of delays

▪ Similar challenges → similar responses

16

“1” “0”

···

“0” “1”

Arbiter

0/1

Δt1,1 Δt2,0 ΔtN-1,0 ΔtN,0+ + + + =

C1:

Δt1,1 Δt2,0 ΔtN-1,1 ΔtN,0+ + + + Δt1 - ΔtN-1,0 + ΔtN-1,1=

Addition of N elements >> Difference of one element

Not likely to

change sign

“1” “0” “1” “1”C2:
Change only

one bit

Δt1

Responses can be easily predicted
▪ CRPs are highly correlated: low entropy

→ Prone to machine learning (ML) attacks

17

[Hospodar, WIFS 2012]

[Ruhrmair, ACM CCS 2010]

Experimental results on 65 nm CMOS:
only a few 1000 CRPs are sufficient to

model the PUF with high accuracy

Make it less predictable by XORing

18

···
Arbiter

···
Arbiter

···
Arbiter

“1” “0” “0” “1”

0/1

▪ XOR: non-linear operation

▪ CRPs less correlated

▪ → More CRPs for training

▪ More resilient to machine

learning attacks

▪ Can we infinitely increase

the number of XORs to

make ML attacks infeasible?

Assume flip 1 challenge bit → 5% probability to flip response bit

XOR by 3 ➔ ~14%

of XORs is limited by noise
▪ Non-linear operation → Noise amplification

19

BER: 6%

BER: 8%

BER: 4%

BER: ~16%

▪ Too many XORs → Too much noise

▪ Ends up behaving like RNGs

Is it possible to make an ideal strong PUF?

Outline

▪ Introduction to PUFs

▪ Basic implementations

▪ Important PUF properties

▪ Uniqueness

▪ Reliability (stability)

▪ Design example

▪ Summary

20

Uniqueness

▪ Two e ca y ma ufac ure ch ps have ffere “f gerpr ”

▪ Each chip has its unique PUF response

21

PUF response r1=

1010010010101001...

PUF response r2=

0110001010110100...

r1≠r2

Chip 1 Chip 2

Estimate uniqueness by inter-distance
▪ Hamming distance, HD(r1, r2)

▪ Fractional-HD = HD(r1, r2) / n (n = # bits)

▪ Ideal-case: binomial distribution with success probability 0.5

▪ Mean = n/2 (50%)

▪ Variance = n/4

22

r1= 1010110010101001...

r2= 0110101010110100...

1 1 1 1 1 1 1 1

Sum=HD(r1, r2)

Fractional HD

N
o
rm

a
liz

e
d
 C

o
u
n
t Binomial distribution

Min-entropy of a secret key

▪ E.g. 128-bit AES

▪ Key length = 128 bits

▪ Min-entropy = 128 bit

▪ Uniform distribution

▪ An attacker guesses the key first time right with probability: 2
-128

25

0

128

Min-Entropy of a PUF

▪ Nearly impossible to determine exhaustively

▪ Min-entropy tests require about 1M bits

▪ Practically not feasible in a PUF, e.g., a 1024-bit SRAM PUF

▪ Can only get reasonably good estimation

26

0

H∞

1024

From PUF to Secret Key

28

0

1024

128

0

PUF:
- Non-uniform
- Noisy

Key:
- Uniform
- Stable

Helper Data Algorithm

Entropy loss

R
e
a

d
o

u
t

In
te

rf
a

c
e

NVM

(ROM/Flash)

Error

Correction

E
n

tr
o

p
y

E
x
tr

a
c
ti
o

n

n-bit k-bit

PUF-based key generator

128-bit

Outline

▪ Introduction to PUFs

▪ Basic implementations

▪ Important PUF properties

▪ Uniqueness

▪ Reliability (stability)

▪ Design example

▪ Summary

29

Reliability

▪ PUF responses are not exactly reproducible

▪ At different time

▪ In different environment

30

#1: 10100100101010001...

#2: 10110100001010001...

#3: 10100110101010001...

PUF response r1=

Short-term reliability (data stability)

▪ PUF response changed temporarily caused by:

▪ Environment change (external)

▪ Internal fluctuation

31

External:

- Temperature

- Supply voltage

- Humidity

- Radiation

- ...

Internal

- White noise

- Flicker noise

- Cross-talk

- Glitch

- ...

How to improve the short-term reliability?

Long-term reliability

▪ Nearly permanent change caused by aging

▪ Biased Temperature Instability (NBTI/PBTI)

▪ Hot-carrier Injection (HCI)

▪ Time-dependent dielectric breakdown (TDDB)

▪ Can be exploited to enhance the short-term reliability

32

Charge capture and emission

in the oxide interface

→ VT shift caused by charge trapping

Example: BTI
Vstress

Good reliability is crucial
▪ Error correction codes need to be stored → NVM needed

▪ Why not just store the key in NVM?

33

128-bit

Make it

stable

R
e
a
d
o
u
t

In
te

rf
a
c
e

NVM

(ROM/Flash)

Error

Correction

E
n
tr

o
p
y

E
x
tr

a
c
ti
o

n

n-bit k-bit

PUF-based key generator

integrated circuit (IC)

NVM

CRYPTO

Secret key

Key in NVM

No clear benefit

in terms of costNeed to go!

Outline

▪ Introduction to PUFs

▪ Basic implementations

▪ Important PUF properties

▪ Design example

▪ Methods to improve data stability

▪ Summary

34

Methods to make PUF bits stable

▪ Error correction

▪ Standardized mathematic operations → Robust

▪ NVM is required

▪ Alternatives

▪ Temporary majority voting

▪ Dark-bit masking

▪ Burn-in enhancement

35

Can achieve same robustness?

Reducing the effect of noise by averaging

▪ Temporary majority voting (TMV):

▪ Measure response bits multiple (N) times and output the most occurring value

▪ Reducing the error rate

36

Error rate 1% 5% 10% 20% 30% 40% 45% 49%

N=3 3e-4 7.3e-3 2.8% 10.4% 21.6% 35.2% 42.5% 48.5%

N=5 1e-5 1.2e-3 8.6e-3 5.8% 16.3% 31.7% 40.7% 48.1%

N=11 <1e-9 5.8e-6 3.0e-4 1.2% 7.8% 24.7% 36.7% 47.3%

N=101 0 0 0 <1e-11 1.3e-5 2.1% 15.6% 42.0%

Not efficient for very noisy bits

▪ Need large N to ensure low error rate

▪ Large N → Large latency and needs more storage elements

#1: 1010010010101...

#2: 1011011000101...

#3: 1010011011101...

TMV3: 1010011010101...

Discarding all the noisy bits
▪ Dark-bit masking

▪ I e fy o sy s a marke as “ o o use”

37

1024-bit PUF data Unstable bits

Masked

▪ Two main concerns

▪ How to identify unstable bits?

▪ Still needs NVM to store mask information?

1022-bit

stable PUF data

Exploit time dependent variability
▪ Burn-in enhancement

▪ Apply intentional stress to age specific devices

38

wor e

e

e

weaknBTI

Becomes weaker with time

→ Less difference

wor e

e

e

0 VDD0VDD
power-up program

weak

nBTI

Make it even weaker

→ More difference

Don’t keep the

power-up pattern

▪ BTI: Bias temperature instability is a degradation phenomenon affecting MOS

▪ Concerns: long stress time & recovery of degradation

Summary

▪ Silicon PUFs are unique fingerprints for chips

▪ Benefits from process variation in silicon technology

▪ Secret key generation using weak PUFs

▪ SRAM PUF as a classic example

▪ Helper data algorithm is usually needed

▪ Entity authentication using strong PUFs

▪ Arbiter PUFs can be used but is not ideal

▪ Correlated CRPs are prone to ML attacks

▪ Uniqueness and reliability are the two key properties

39

	Slide 1
	Slide 2: Outline
	Slide 4: Silicon PUF: An unique fingerprint of a chip
	Slide 5: Variability is inherently presented in ICs
	Slide 6: More opportunities brought by scaling
	Slide 7: Outline
	Slide 8: Two design methodologies
	Slide 9: Replacing secure non-volatile memory
	Slide 10: SRAM PUF – a classic weak PUF
	Slide 11: Transistor variations determines PUF bits
	Slide 12: Variations do not always lead to desired results
	Slide 13: From process variation to a secret key
	Slide 14: Realizing an ideal authentication scheme
	Slide 15: Arbiter PUF – based on timing differences
	Slide 16: Arbiter PUF is not an ideal strong PUF
	Slide 17: Responses can be easily predicted
	Slide 18: Make it less predictable by XORing
	Slide 19: # of XORs is limited by noise
	Slide 20: Outline
	Slide 21: Uniqueness
	Slide 22: Estimate uniqueness by inter-distance
	Slide 25: Min-entropy of a secret key
	Slide 26: Min-Entropy of a PUF
	Slide 28: From PUF to Secret Key
	Slide 29: Outline
	Slide 30: Reliability
	Slide 31: Short-term reliability (data stability)
	Slide 32: Long-term reliability
	Slide 33: Good reliability is crucial
	Slide 34: Outline
	Slide 35: Methods to make PUF bits stable
	Slide 36: Reducing the effect of noise by averaging
	Slide 37: Discarding all the noisy bits
	Slide 38: Exploit time dependent variability
	Slide 39: Summary

