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Silicon PUF: An unique fingerprint of a chip

= PUF can be viewed as a unique fingerprint of a chip
= Comes from random process variations
= Various implementations and applications
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Variability is inherently presented in ICs

= Variability in transistors and interconnect
= In general undesired — except for PUFs

= Random dopant fluctuation

= Interconnect width is not always the same

Interconnect

MOSFET



More opportunities brought by scaling

= Even more challenging to manufacture identical devices in scaled technologies
= Moore’s Law
= 40nm - 28nm 2>16nm - 7nm - ...

= More variability comes from:
= More processing steps
= Decreased size (e.g. 2nm difference - 5% in 40nm and 30% in 7nm)

= New materials
Gate

Source

Source: imec

Planar FinFET Gate all-around
More variability

Transistor design roadmap to be expected
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Two designh methodologies
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Replacing secure non-volatile memory

= The root key is typically stored in secure NVMs:
= EEPROM/Flash

= Fuses/Anti-fuses integrated circuit (IC)
= Battery-backed SRAM
= Concerns: A
= Physical attacks Secret key

= Resource constraints (cost)
: : CRYPTO
= PUF - generates its own unique key




SRAM PUF - a classic weak PUF
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2D array of 1-bit memory cells

Variability: mismatch between the cross-coupled inverters
Volatile: data is cleared after power-off
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Transistor variations determines PUF bits

= Assume one of the transistors is much weaker than others
= Four extreme cases

bitline

.
Mg "
S
.

]
d

bitl
_
il
11[e]
bitline
ll}—\_,—P
T
il
11[e]
—_—

o
bitl
T T S
] L 5.
o
= ! =
Ii.
auljg~
: S




Variations do not always lead to desired results

If the variation is insignificant for a particular cell
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From process variation to a secret key
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Realizing an ideal authentication scheme

= Entity authentication based on challenge and response

1. Generate random

Cii | PUE | Ris challenges C;;and 1. Send stored challenge to the
> 1 > apply to PUF population entity needs authentication
<€
Ci2
Ci2 | PUE | Ri Database ~ >l PUF
? 2 ? 2. Store responses R;; (server) < h2 2
in CRP database ,
> R’ 2=R; 57
Ci’3i PUF Ri§3 2. Verify if the response is the same
3 as the stored one
Enrolment Authentication

Needs a huge amount of uncorrelated challenge-response pairs (CRPS)
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Arbiter PUF — based on timing differences
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Arbiter PUF Is not an ideal strong PUF

Linear additive structure: sum of delays

Similar challenges - similar responses
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Responses can be easily predicted

= CRPs are highly correlated: low entropy
—> Prone to machine learning (ML) attacks

Experimental results on 65 nm CMOS:
only a few 1000 CRPs are sufficient to
model the PUF with high accuracy

[Hospodar, WIFS 2012]
[Ruhrmair, ACM CCS 2010]




Make It less predictable by XORlng

=  XOR: non-linear operation {e
= CRPs less correlated
= > More CRPs for training ~ Le—

= More resilient to machine _
learning attacks ‘
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= Can we infinitely increase
the number of XORs to
make ML attacks infeasible?
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Assume flip 1 challenge bit = 5% probability to flip response bit
XOR by 3 =2 ~14%
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# of XORs Is limited by noise

= Non-linear operation > Noise amplification

BER: 6%

BER: 8% > > > BER: ~16%

BER: 4%

= Too many XORs - Too much noise
= Ends up behaving like RNGs

Is it possible to make an ideal strong PUF?
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Unigueness

= Two identically manufactured chips have different “fingerprint”
= Each chip has its uniqgue PUF response

Chip 1 Chip 2
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Estimate unigueness by inter-distance

= Hamming distance, HD(r1, r2)

= Fractional-HD = HD(r1, r2) /' n (n = # bits)

= |deal-case: binomial distribution with success probability 0.5
= Mean =n/2 (50%)

= Variance = n/4
0.12

= ' Binc')mial'diAs/tr'ibutic')n
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+4 +4 44 ¢ é 0.04}
= L 111 1 2 0.02f
Sum=HD(r1, r2) .
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Fractional HD
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Min-entropy of a secret key

128

= E.g. 128-bit AES

= Key length = 128 bits
= Min-entropy = 128 bit
= Uniform distribution

= An attacker guesses the key first time right with probability: 27
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Min-Entropy of a PUF 1024

= Nearly impossible to determine exhaustively
= Min-entropy tests require about 1M bits H.,
= Practically not feasible in a PUF, e.g., a 1024-bit SRAM PUF

= Can only get reasonably good estimation
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From PUF to Secret Key
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Reliability

= PUF responses are not exactly reproducible
= At different time
= |n different environment
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PUF response r,;=

#1: 10100100101010001...

#2:10110100001010001...
#3: 10100110101010001...

30



Short-term reliability (data stability)

= PUF response changed temporarily caused by:
= Environment change (external)
= |nternal fluctuation

External: _ Innoninang - Internal
- Temperature = @~ B - White noise
- Supply voltage = 4 V= - Flicker noise
- Humidity — @1’ — - Cross-talk
- Radiation =5 Av = - Glitch
S TIOOOOO00T ===~~~ "

How to improve the short-term reliability?
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Long-term reliability

= Nearly permanent change caused by aging
= Biased Temperature Instability (NBTI/PBTI)
= Hot-carrier Injection (HCI)
= Time-dependent dielectric breakdown (TDDB)

= Can be exploited to enhance the short-term reliability

Vstress

Example: BTI |

Cha‘rge capture and emission ©

in the oxide interface

—> V; shift caused by charge trapping
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Good reliability I1s crucial

= Error correction codes need to be stored > NVM needed
= Why not just store the key in NVM?

PUF-based key generator Key in NVM
N\ () rw ) integrated circuit (1C)
; NVM I
+— : i - =
@1) > 8 = i \ 4 9 %
— ) ! A =
\ D= H N ! o Secret key
~ x £ - Error PN I
— i 7 | —
| j T
! _ 1 No clear benefit
Make it Need to go! in terms of cost
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Methods to make PUF bits stable

= Error correction
= Standardized mathematic operations = Robust
= NVM is required

= Alternatives

= Temporary majority voting
= Dark-bit masking } Can achieve same robustness?

= Burn-in enhancement

35



Reducing the effect of noise by averaging

= Temporary majority voting (TMV):
= Measure response bits multiple (N) times and output the most occurring value
= Reducing the error rate

#1: 1010010010101... m

3¢4 733 28%  104%  216%  352%  42.5% = 48.5%
#2:1011011000101... N=5 15 123 863  58%  163% 317%  40.7%  48.1%
emmmme— -~
#3:1010011011101... N=11 <19 5896  3.0-4  12%  7.8% ,7247%  367%  47.3% ~
[
N=101 0 0 0 <1l 1395 M 2% 156%  420% .7
TMV;: 1010011010101... S ="

Not efficient for very noisy bits

= Need large N to ensure low error rate
= Large N - Large latency and needs more storage elements
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Discarding all the noisy bits

= Dark-bit masking
= |dentify noisy bits and marked as “do not use”

1024-bit PUF data Unstable bits

28

24

20

. - 1022-bit
Masked stable PUF data

12

12 16 20 24 28 4 8 12 16 20 24 28

= Two main concerns
= How to identify unstable bits?

= Still needs NVM to store mask information?
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Exploit time dependent variability

= Burn-in enhancement
= Apply intentional stress to age specific devices
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= BTI: Bias temperature instability is a degradation phenomenon affecting MOS
= Concerns: long stress time & recovery of degradation



Summary

= Silicon PUFs are unigque fingerprints for chips
= Benefits from process variation in silicon technology
= Secret key generation using weak PUFs
= SRAM PUF as a classic example
= Helper data algorithm is usually needed
= Entity authentication using strong PUFs
= Arbiter PUFs can be used but is not ideal
= Correlated CRPs are prone to ML attacks
= Uniqueness and reliability are the two key properties
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