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Communication Protocol with Faults
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Cowboy Shootout
The three may shoot as long as anyone else is
still alive. Due to differences in (re)loading
times, we assume they shoot in turns. That is,
The Good shoots first, then The Bad and finally
The Ugly.

The Good has a chance of a half of hitting
anyone. If he hits, he does so uniformly over the
living contestants.

The Bad has a chance of 0.9 of hitting anyone. If
The Ugly is alive, then he aims for him. If The
Ugly already died, then he aims at The Good.

The Ugly hits either no one or one of the living
contestants and he does so with a uniform
probability over these events.

module shootout
  cowboy: [1..3] init 1;
  good: bool init true;
  bad: bool init true;
  ugly: bool init true;
  [] cowboy=1 & good & bad & ugly   -> 1/2 :(cowboy'=2) +
                                       1/4 :(bad'=false) & (cowboy'=3) +
                                       1/4 :(ugly'=false) & (cowboy'=2);
  [] cowboy=1 & good & bad & !ugly  -> 1/2 :(cowboy'=2) +
                                       1/2 :(bad'=false) & (cowboy'=1);
  [] cowboy=1 & good & !bad & ugly  -> 1/2 :(cowboy'=3) +
                                       1/2 :(ugly'=false) & (cowboy'=1);
  [] cowboy=2 & good & bad & ugly   -> 0.1 :(cowboy'=3) +
                                       0.9 :(ugly'=false) & (cowboy'=1);
  [] cowboy=2 & good & bad & !ugly  -> 0.1 :(cowboy'=1) +
                                       0.9 :(good'=false) & (cowboy'=2);
  [] cowboy=2 & !good & bad & ugly  -> 0.1 :(cowboy'=3) +
                                       0.9 :(ugly'=false) & (cowboy'=2);
  [] cowboy=3 & good & bad & ugly  -> 1/3 :(cowboy'=1) +
                                      1/3 :(good'=false) & (cowboy'=2) +
                                      1/3 :(bad'=false) & (cowboy'=1);
  [] cowboy=3 & good & !bad & ugly -> 1/2 :(cowboy'=1) +
                                      1/2 :(good'=false) & (cowboy'=3);
  [] cowboy=3 & !good & bad & ugly -> 1/2 :(cowboy'=2) +
                                      1/2 :(bad'=false) & (cowboy'=3);
  []  good & !bad & !ugly -> true;
  [] !good &  bad & !ugly -> true;
  [] !good & !bad &  ugly -> true;
endmodule
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Recap: Constrained Reachability
Computing 

We have used a linear equation solver to compute the probability of satisfying the constrained
reachability problem.

Pr(M, ⊨ C U B)s0
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Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where 
The interpretation for each state : 

∀ and ∃ (φ)PrJ J ⊆ [0, 1]
s ∈ S Pr(M, s ⊨ φ) ∈ J
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PCTL - Syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

 XΦ

   U Φ1 Φ2

   U  Φ1  ≤n Φ2

a ∈ AP J ⊆ [0, 1]
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PCTL - Syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

Note: path-formulae ( ) may not be nested!

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

 XΦ

   U Φ1 Φ2

   U  Φ1  ≤n Φ2

a ∈ AP J ⊆ [0, 1]

φ
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PCTL - Satisfaction Relation
For a given state 

For paths :

s ∈ S

s ⊨ a 

s ⊨ ¬φ 

s ⊨ φ ∧ ψ 

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ φ,

iff s ⊨ φ and s ⊨ ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈ M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j.  π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n.  (π[j] ⊨ ψ ∧ (∀0 ≤ k < j.  π[k] ⊨ φ)
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachabililty:  ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ a)s0 F
<=k
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachabililty:  ?
Again: Simple Matrix-Vector-Multiplication(s)! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ a)s0 F
<=k
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Communication Protocol

A message is eventually delivered or lost and our abstraction does not allow faulty values:
"P>=1.0 [ F (delivered=1 | lost=1)] & P>=1.0 [G try<2 ]"
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Communication Protocol

A message is eventually delivered or lost and our abstraction does not allow faulty values:
"P>=1.0 [ F (delivered=1 | lost=1)] & P>=1.0 [G try<2 ]"

A message will almost surely be delivered eventually and trying to send a message implies that with a
probability greater or equal 0.99 the message will be sent within three time steps.
"P>=1.0 [ F (delivered=1)] & P>=1.0 [ G(!try=1| P>=0.99 [ (F<=3 delivered=1) ] ) ] "
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Probabilistic Model Zoo15



Probabilistic Model Zoo16



Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and  a labelling function.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a, ) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP
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Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and  a labelling function.

The decision  defines the distribution over the next state.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a, ) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

a
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Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast]  y<width  -> 0.9: (y'=y-1) + 0.1: true;
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Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast]  y<width  -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!
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Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast]  y<width  -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!
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Paths in an MDP
We extend our definition of a path for an MDP  as such:

, s.t. 

M

π = … ∈ (S × Acts0a0s1a1s2a2 )ω
P( , , ) > 0, ∀i ≥ 0si ai si+1
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Paths in an MDP
We extend our definition of a path for an MDP  as such:

, s.t. 

Reasoning about events in an MDP resorts to the resolution of any non-determinism
This is done by the use of schedulers (also called strategies/policies/adversaries).

M

π = … ∈ (S × Acts0a0s1a1s2a2 )ω
P( , , ) > 0, ∀i ≥ 0si ai si+1
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Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as reachability so called memoryless deterministic scheduler suffice:

This means that the scheduler  fixes an actions for each state.

We can then define the probability of prop under sched

σ : × S → Distr(Act)S
∗

σ : S → Act

σ

P (M, s ⊨ FB)r
σ
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Induced Markov Chain
Consider an MDP  and a memoryless deterministic scheduler:M

σ : S → Act
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Induced Markov Chain
Consider an MDP  and a memoryless deterministic scheduler:M

σ : S → Act

s0

s1

s1

↦  β

↦  α

↦  α
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Coding Example27



Coding Example

We introduce velocity and let the car decide whether to
switch lanes,

accelerate or

decelerate.
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Reachability in MDPs
We have introduced nondeterminism into probabilistic models

Schedulers might maximize oder minimize the probability to satisfy a given property
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Reachability in MDPs
We have introduced nondeterminism into probabilistic models

Schedulers might maximize oder minimize the probability to satisfy a given property

We describe this with
P (M, s ⊨ FB) = su P (M, s ⊨ FB)rmax pσ rσ

P (M, s ⊨ FB) = in P (M, s ⊨ FB)rmin fσ rσ
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Computing Maximum Reachability Probabilities in MDPs
We want to compute  using the following equation system:

If : 

If : 

If  and 

Such that  is minimal.

( ) = P (M, s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB

= max{ P(s, a, ) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

∑
x∈S

xs
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Value Iteration - Method I
Approximative method:

Compute the probability to reach  after  steps

Start with  and stop after some termination criterion is met

B n

n = 0
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Value Iteration - Method I
Approximative method:

Compute the probability to reach  after  steps

Start with  and stop after some termination criterion is met

More specifically:

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

=  1, ∀s ∈ B

=  0, ∀s ∈ S=0

=  0,

=   max{ P(s, a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

xs′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0
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Linear Program - Method II
We can also express the problem as a linear program:

Minimize , such that:
,

, if ,

, if ,

, for all actions , if  and 

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a, ) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B s ⊨ ∃FB
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Linear Program - Method II
We can also express the problem as a linear program:

Minimize , such that:
,

, if ,

, if ,

, for all actions , if  and 

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a, ) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B s ⊨ ∃FB
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Linear Program - Example
Minimize , such that:

,

, if ,

, if ,

, for all actions
, if  and 

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a, ) ⋅xs ∑ ∈Ss′ s′ xs′

a ∈ Act(s) s ∉ B s ⊨ ∃FB
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Linear Program - Example
var x0 >= 0;
var x1 >= 0;
var x2 >= 0;
var x3 >= 0;

minimize z:     x0+x1+x2+x3;
subject to c0: x0 >= 3/4*x2 + 1/4*x3;
subject to c1: x0 >= 1/2*x1 + 1/2*x2;
subject to c2: x2 = 1;
subject to c3: x3 = 0;
subject to c4: x1 >= 1/2*x0 + 1/2*x3;

subject to c20: x0 <= 1;
subject to c21: x1 <= 1;
subject to c22: x2 <= 1;
subject to c23: x3 <= 1;

end;
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PCTL Model Checking for MDPs
Syntax for PCTL does not need to be changed

The satisfaction relation for the probabilistic operator needs to be adapted:
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PCTL Model Checking for MDPs
Syntax for PCTL does not need to be changed

The satisfaction relation for the probabilistic operator needs to be adapted:
We need to consider all schedulers:

M, s ⊨ (φ) iff P (M, s ⊨ φ) ≤ pPr≤p rmax

M, s ⊨ (φ) iff P (M, s ⊨ φ) ≥ pPr≥p rmin
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PCTL* syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

  ∧φ1 φ2

 ¬φ

 Xφ

   U φ1 φ2

a ∈ AP J ⊆ [0, 1]
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PCTL* syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

We are now allowed to interchangly use state and path formulae as subformulae.

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

  ∧φ1 φ2

 ¬φ

 Xφ

   U φ1 φ2

a ∈ AP J ⊆ [0, 1]
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PCTL* syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

We are now allowed to interchangly use state and path formulae as subformulae.

P=? [ GF "return_to_start" ];
P=? [ G(! (try = 1) | lost_count<4 U delivered=1 ) | delivered_count=MAX_COUNT ]
Pmax=? [ FG "hatch_closed" ]
...

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

  ∧φ1 φ2

 ¬φ

 Xφ

   U φ1 φ2

a ∈ AP J ⊆ [0, 1]
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Checking Linear Time Properties
Last building block to model check PCTL*
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Checking Linear Time Properties
Last building block to model check PCTL*

Let  be a Markov Chain and  be an LTL formula.

We are interested in:

M φ

Pr(M, s ⊨ φ) = P {π ∈ Paths(M) ∣ π ⊨ φ}rs
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Computing Probabilities for LT-Properties
Recall that LT-properties can be expressed using automata.
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Computing Probabilities for LT-Properties
Recall that LT-properties can be expressed using automata.

We employ an automata-based approach:
Convert  into a deterministic Rabin automata .

Compute the Product Markov Chain .

Compute the probability to satisfy  using the product (more on that later).

φ A

M × A

φ
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Deterministic Rabin Automata
A , with

 a set of states and initial state ,

 an alphabet,

 a transition function and

.

An automaton  accepts a run  iff there exists a pair  s.t.:

deterministic Rabin automatonisatuple A = (Q, Σ, δ, , Acc)q0

Q q0

Σ

δ : Q × Σ → Q

Acc ⊆ ×2Q 2Q

A π = …q0q1q2 (L, K) ∈ Acc

(∃n ≥ 0.∀m ≥ n. ∉ L) ∧ ( n ≥ 0. ∈ K)qm ∃inf qn
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Product Markov Chain
Let  be a Markov chain and  be a DFA. The product  is a
Markov chain where:

 if ,

 is the initial state with  and

 if  and 0 otherwise.

M A M×A = (S × Q, , i, {accept}, )P
′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ( , L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s, )P
′ s′ q ′ s′ = δ(q, L( ))q ′ s′
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Product Markov Chain
Let  be a Markov chain and  be a DFA. The product  is a
Markov chain where:

 if ,

 is the initial state with  and

 if  and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done
in a similar way.

M A M×A = (S × Q, , i, {accept}, )P
′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ( , L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s, )P
′ s′ q ′ s′ = δ(q, L( ))q ′ s′
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Product Markov Chain
Let  be a Markov chain and  be a DFA. The product  is a
Markov chain where:

 if ,

 is the initial state with  and

 if  and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done
in a similar way.

Since  is deterministic it can be interpreted as a witness for its current state on the product trace:

M A M×A = (S × Q, , i, {accept}, )P
′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ( , L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s, )P
′ s′ q ′ s′ = δ(q, L( ))q ′ s′

A

= ⟨ , ⟩, ⟨ , ⟩, ⟨ , ⟩, …π+ s0 q1 s1 q2 s2 q3

50



Computing the Probability to Satisfy 
We want to use the product  and know

's acceptance condition:

for a pair .

φ
M×A

A

(∃n ≥ 0.∀m ≥ n. ∉ ) ∧ ( n ≥ 0. ∈ )qm Li ∃inf qn Ki

, ∈ AccLi Ki
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Computing the Probability to Satisfy 
We want to use the product  and know

's acceptance condition:

for a pair .

 we need to compute the probability to see infinitely many labels from  and only finitely many
labels from  for some .

φ
M×A

A

(∃n ≥ 0.∀m ≥ n. ∉ ) ∧ ( n ≥ 0. ∈ )qm Li ∃inf qn Ki

, ∈ AccLi Ki

⇒ Ki

Li i
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Bottom Strongly Connected Components
Consider the underlying directed graph  for a given Markov chain  and a component

.

 is strongly connected if :
s is reachable from t and

t is reachable from s.

G = (V , E) M

C ∈ V

C ∀s, t ∈ C
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Bottom Strongly Connected Components
Consider the underlying directed graph  for a given Markov chain  and a component

.

 is strongly connected if :
s is reachable from t and

t is reachable from s.

 is bottom strongly connected if no state outside of  is reachable from .

G = (V , E) M

C ∈ V

C ∀s, t ∈ C

C C C
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Bottom Strongly Connected Components
Consider the underlying directed graph  for a given Markov chain  and a component

.

 is strongly connected if :
s is reachable from t and

t is reachable from s.

 is bottom strongly connected if no state outside of  is reachable from .

For Markov chains we have that a bottom strongly connected component
cannot be left and

all states will be visited infinitely often with a probability of one.

G = (V , E) M

C ∈ V

C ∀s, t ∈ C

C C C
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Computing the Probability to Satisfy 
According to the acceptance condition  of :

Identify BSCCs  such that:
For some :

Let 

φ
Acc = {( , ), … ( , )}L0 K0 Lm Km A

Cj

i ∈ [0, m]

∩ (S × ) = ∅ and  ∩ (S × ) ≠ ∅Cj Li Cj Ki

U = ⋃j,   acceptingCj
Cj
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Computing the Probability to Satisfy 
According to the acceptance condition  of :

Identify BSCCs  such that:
For some :

Let 

We then have the following:

φ
Acc = {( , ), … ( , )}L0 K0 Lm Km A

Cj

i ∈ [0, m]

∩ (S × ) = ∅ and  ∩ (S × ) ≠ ∅Cj Li Cj Ki

U = ⋃j,   acceptingCj
Cj

Pr(M, s ⊨ φ) = Pr(M×A, ⟨s, ⟩ ⊨ FU)qi
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