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Cowboy Shootout

e The three may shoot as long as anyone elseis  module shootout
cowboy: [1..3] init 1;

still alive. Due to differences in (re)loading good: bool init true;
times, we assume they shoot in turns. That is, ooly: beol Tait thss
The Good shoots first, then The Bad and finally !} cowbov=t & 9ood & bad &gty == B/ (E0nb0y )+ cowboy'=3) +
The Ug]'y [] cowboy=1 & good & bad & !'ugly -> 1721 Egg\}:g;;figei @ (conboy'=2);

1/2 :(bad'=false) & (cowboy'=1);

P [] cowboy=1 & good & !bad & ugly -> 1/2 :(cowboy'=3)
e The Good has a chance of a half .of hitting oy go0d & gy = L f ooty falae) & (cowboy'=1);
anyone. If he hits, he does so uniformly over the [J cowboy=2 & good & bad & ugly  -> 0.1 :(couboy '=3) + -
o .9 :(ugly'=false) & (cowboy'=1);
].lVlng contestants. [] cowboy=2 & good & bad & 'ugly ->

[] cowboy=2 & !good & bad & ugly ->

0.9
0.1 :(cowboy'=1) +
0.9 :(good'=false) & (cowboy'=2);
0.1 :(cowboy'=3) +
0.9 :(ugly'=false) & (cowboy'=2);
[] cowboy=3 & good & bad & ugly -> 1/3 :(cowboy'=1) +

e The Bad has a chance of 0.9 of hitting anyone. If

The Ugly is alive, then he aims for him. If The 1/3 :(good'=false) & (cowboy'=2) +
. . 1/3 :(bad'=false) & (cowboy'=1);
Ugly already died, then he aims at The Good. [] cowboy=3 & good & !bad & ugly -> 1/2 :(cowboy'=1) +

1/2 :(good'=false) & (cowboy'=3);
. . .. [] cowboy=3 & !good & bad & ugly -> 1/2 :(cowboy'=2) +
e The Ugly hits either no one or one of the living 1/2 :(bad'=false) & (cowboy'=3);

: . d & !bad & lugly -> true;
contestants and he does so with a uniform ood & bad 8 1udly 2 true

]
] 'good & bad & !'ugly -> true;

R K [} | =% .
probability over these events. A 4 e Sy = s

odule

Qr—r—r
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Recap: Constrained Reachability

e Computing Pr(M, sy = C U B)

« We have used a linear equation solver to compute the probability of satisfying the constrained
reachability problem.
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Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

» Boolean state representation.

« V and 7 are replaced by Pr; (), where J C [0, 1]
o The interpretation for each state s € S: Pr(M,s = ¢) € J
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PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

® 1= true @ =X
a | ¢, U P,
(I)l/\q)2 ‘(I)lUSn‘I)2
e
P
1()

wherea € APand J C [0, 1].
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PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

® 1= true @ =X
a | @, U &,
(I)l/\q)2 ’q)lUSn(I)2
e
P
1()

wherea € APand J C [0, 1].

» Note: path-formulae (¢) may not be nested!
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ﬂ PCTL - Satisfaction Relation

For a given state s € S
= a iff a € L(s),
= - iff s o,

= @ A Y iff s = ¢ and s = 1,

= I?Ir(go) iff Pr(s =) € J

»w »w »w

For paths m € M:
T = X iff w[l] =

TEeUY iff 35> 0. (n[j] Ey A (V0O < k< nlk] & ¢)
m = o U < iff 30<j<n. (nj] EYA N <Ek<j xlk] =)
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ﬁ Model ChecRing a PCTL Formula

e Checking the propositional part of PCTL is easy
 How to compute Pr(M, sy = C U B) ?

o We solve a linear equation system. v

« How to compute Pr(M, sy E Xa) ?
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Model ChecRing a PCTL Formula

e Checking the propositional part of PCTL is easy
 How to compute Pr(M, sy = C U B) ?

o We solve a linear equation system. v

« How to compute Pr(M, sq = Xa) ?
o Also easy: Simple Matrix-Vector-Multiplication! v
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy
How to compute Pr(M,sqy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = Xa) ?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachabililty: Pr(M, sy = F<=*a)?
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy
How to compute Pr(M,sqy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = Xa) ?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachabililty: Pr(M, sy = F<=*a)?
o Again: Simple Matrix-Vector-Multiplication(s)! v
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Communication Protocol

delivered "
10

« A message is eventually delivered or lost and our abstraction does not allow faulty values:
"P>=1.0 [ F (delivered=1 | lost=1)] & P>=1.0 [G try<2 ]"
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Communication Protocol

delivered

« A message is eventually delivered or lost and our abstraction does not allow faulty values:
"P>=1.0 [ F (delivered=1 | lost=1)] & P>=1.0 [G try<2 ]"

« A message will almost surely be delivered eventually and trying to send a message implies that with a
probability greater or equal 0.99 the message will be sent within three time steps.

"P>=1.0 [ F (delivered=1)] & P>=1.0 [ G('try=1| P>=0.99 [ (F<=3 delivered=1) ] ) ] "
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Probabilistic Model Zoo

POSG

/

Stochastic games
POPTA

7
PTA \
“\\\\\\\ ////; POMDP
CTMDP IMC MDP/PA \
N / \ Hidden
Markov
Models

LTS
cTMC Kripke Structure DTMC

Markov Automaton

Timed automata (TA)
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Probabilistic Model Zoo

POSG

/

Stochastic games
POPTA

m/ \
e,

CTMDP IMC MDP/PA
Hidden
Markov
Models

LTS
cTMC Kripke Structure DTMC

Markov Automaton

Timed automata (TA)



TU

Grazm

Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

« S a set of states and initial state s,

« Act a set of actions,

e P: S x Act x § — [0,1], s.t.

N P(s,0,5') =1V(s,0) € § x Act

e AP set of atomic states and L : S — 247 alabelling function.



TU

Grazm

Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

« S a set of states and initial state s,

« Act a set of actions,

e P: S x Act x § — [0,1], s.t.

N P(s,0,5') =1V(s,0) € § x Act

e AP set of atomic states and L : S — 247 alabelling function.

The decision ¢ defines the distribution over the next state.
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MarRov Decision Processes in Code and Memory

e« Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;
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MarRov Decision Processes in Code and Memory

e Commands:

[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

o Guards do not need to be mutually exclusive anymore!
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MarRov Decision Processes in Code and Memory

e Commands:

[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1:

o Guards do not need to be mutually exclusive anymore!

«,0.9

Bl Sle|l ol —
o o |gel~ o
Sle Bl 8~ lo o
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Paths in an MDP

« We extend our definition of a path for an MDP M as such:

« T = 80Gp810a1 8203 ... € (S X Act)¥,s.t. P(s;,a;,8;,1) > 0,Vi >0
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Paths in an MDP

« We extend our definition of a path for an MDP M as such:
« T = 80Gp810a1 8203 ... € (S X Act)¥,s.t. P(s;,a;,8;,1) > 0,Vi >0

« Reasoning about events in an MDP resorts to the resolution of any non-determinism
o This is done by the use of schedulers (also called strategies/policies/adversaries).
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Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

« For simple properties such as reachability so called memoryless deterministic scheduler suffice:
o:85 — Act

o This means that the scheduler o fixes an actions for each state.

o We can then define the probability of prop under sched
Pr’(M,s = FB)
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Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act
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Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act

So — ﬁ v, (.9
S1 — «

N o
o 0. 0.1
e o 0.9

Sl glel oo =
o o |8le|l= o
sl gl lel=lo o
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Coding Example

« We introduce velocity and let the car decide whether to
o switch lanes,

o accelerate or

o decelerate.
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Reachability in MDPs

 We have introduced nondeterminism into probabilistic models

o Schedulers might maximize oder minimize the probability to satisfy a given property
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Reachability in MDPs

 We have introduced nondeterminism into probabilistic models

o Schedulers might maximize oder minimize the probability to satisfy a given property

e We describe this with
o Prm*(M,s = FB) = sup,Pr°(M,s = FB)

o Prn(M,s = FB) = inf,Pr°(M,s &= FB)
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8 (omputing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:
e Ifse B:x, =1
e Ifs¥ JFB:xz, = 0

« If s ¢ Band s = JFB
o ¢y = max{) . . P(s,a,5') zy|a € Act(s)}

e Suchthat ) _¢ s is minimal.
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Value Iteration - Method |

« Approximative method:
o Compute the probability to reach B after n steps

o Start with n = 0 and stop after some termination criterion is met
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Value Iteration - Method |

« Approximative method:
o Compute the probability to reach B after n steps

o Start with n = 0 and stop after some termination criterion is met

More specifically:

azgo) = 1,Vs e B

acg") — O,VS c S:()

wgo) = 0, Vs € §\ S_g
LD

T = maJx{Zs6 (s,a,8) -zy|la € Act(s)}, Vs € S\ S_g
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Linear Program - Method |

We can also express the problem as a linear program:

» Minimize ) ,_ <5 Ts, such that:
o 0 < x, <1,

o x, = 1,ifs € B,
°© Ty = O, ifS}ﬁ HFB,
o £y > Y . .sP(s,a,s) xy, forallactionsa € Act(s),ifs ¢ Band s = JFB
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Linear Program - Method Il

We can also express the problem as a linear program:

» Minimize ) ,_ <5 Ts, such that:
o 0 < x, <1,

o x, = 1,ifs € B,
°© Ty = O, ifS}ﬁ HFB,
o £y > Y . .sP(s,a,s) xy, forallactionsa € Act(s),ifs ¢ Band s = JFB
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Linear Program - Example

e Minimize ) __ . 5 Ts, such that:
o 0 <z, <1,

ox, = 1,if s € B,
o x, = 0,if s ¥ JF' B,

o g > Y ., .gP(s,a,s) - zy, forall actions
a € Act(s),ifs € Band s = JFB




Linear Program - Example

var x0
var x1
var x2
var x3

minimize z:

subject
subject
subject
subject
subject

subject
subject
subject
subject

end;

>= 0;
>= 0;
>= 0;

>= 0;

to
to
to
to
to

to
to
to
to

co:
cl:
c2:
c3:
c4:

c20:
c21:
c22:
c23:

x0
X0
X0
X2
x3
x1

X0
x1
X2
X3

+X1+X2+X3;

>= 3/4*x2 + 1/4*x3;
>= 1/2*x1 + 1/2*x2;
:1;

:0;

>= 1/2*x0 + 1/2*x3;

<= 1;
<= 1;
<= 1;
<= 1;
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PCTL Model Cheching for MDPs

» Syntax for PCTL does not need to be changed

» The satisfaction relation for the probabilistic operator needs to be adapted:
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PCTL Model Cheching for MDPs

» Syntax for PCTL does not need to be changed

» The satisfaction relation for the probabilistic operator needs to be adapted:
o We need to consider all schedulers:

o M,s = Prey(p) iff Pr™es(M, s = o) < p
o M,s |= Pray(p) it Prmin(M, s b= @) > p



PCTL>* syntax

Subdivision into state (®)- and path-formulae (¢):

P ::=true

a

¢, A Py
—P

Pr(y)

wherea € APand J C [0, 1].

V1 N\ P2
2

©1 U @
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PCTL>* syntax

Subdivision into state (®)- and path-formulae (¢):

P ::=true

a

¢, A Py
—P

Pr(y)

wherea € APand J C [0, 1].

V1 N\ P2
2

©1 U @

We are now allowed to interchangly use state and path formulae as subformulae.
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PCTL>* syntax

Subdivision into state (®)- and path-formulae (¢):

® ::=true Q=
a ©1 N\ P2
¢, N\ Py '
- X
ff]r(w) 1 U @2

wherea € APand J C [0, 1].
We are now allowed to interchangly use state and path formulae as subformulae.

P=? [ GF "return_to_start" ];
P=? [ G(! (try = 1) | lost_count<4 U delivered=1 ) | delivered_count=MAX_COUNT ]
Pmax=? [ FG "hatch _closed" ]
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Checking Linear Time Properties

 Last building block to model check PCTL*
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Checking Linear Time Properties

 Last building block to model check PCTL*

Let M be a Markov Chain and ¢ be an LTL formula.

We are interested in:

Pr(M,s = ¢) = Pry{m € Paths(M) | T = ¢}
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Computing Probabilities for LT-Properties

» Recall that LT-properties can be expressed using automata.
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Computing Probabilities for LT-Properties

» Recall that LT-properties can be expressed using automata.

« We employ an automata-based approach:
o Convert ¢ into a deterministic Rabin automata A.

o Compute the Product Markov Chain M x A.
o Compute the probability to satisfy ¢ using the product (more on that later).



TU

Grazm

Deterministic Rabin Automata

A deterministic Rabin automatonisatuple A = (Q, %, 9, qo, Acc), with

. Q a set of states and initial state qg,
e X an alphabet,

e §:(Q x X — (@ atransition function and

e Acc C 29 x 29,

An automaton A accepts a run T = qoq1qz2 - - - iff there exists a pair (L, K) € Accs.t.:

(3n > 0.Vm > n.qn ¢ L) A (F™n > 0.q, € K)
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Product Markov Chain

Let M be a Markov chain and A be a DFA. The product M x A = (S x Q,P', 1, {accept}, L") is a
Markov chain where:

« L'((s,q)) = {accept} ifq € F,

« i = (89, qq) is the initial state with ¢; = §(qo, L(s)) and

- P'((s,q),(s',q")) = P(s,s")ifq’" = 6(q, L(s")) and 0 otherwise.
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Product Markov Chain

Let M be a Markov chain and A be a DFA. The product M x A = (S x Q,P', 1, {accept}, L") is a
Markov chain where:

« L'((s,q)) = {accept} ifq € F,

« i = (89, qq) is the initial state with ¢; = §(qo, L(s)) and

- P'((s,q),(s',q")) = P(s,s")ifq’" = 6(q, L(s")) and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done
in a similar way.
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Product Markov Chain

Let M be a Markov chain and A be a DFA. The product M x A = (S x Q,P', 1, {accept}, L") is a
Markov chain where:

« L'((s,q)) = {accept} ifq € F,

« i = (89, qq) is the initial state with ¢; = §(qo, L(s)) and

- P'((s,q),(s',q")) = P(s,s")ifq’" = 6(q, L(s")) and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done
in a similar way.

Since A is deterministic it can be interpreted as a witness for its current state on the product trace:

= <307Q1>,<81,Q2>,<32,Q3>,---
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Computing the Probability to Satisfy ¢

« We want to use the product M x A and know

« A's acceptance condition:

(In > 0.Vm > n.qm € L) A (Fn > 0.¢, € K;)

o for apair L;, K; € Acc.
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Computing the Probability to Satisfy ¢

We want to use the product M x A and know

A's acceptance condition:

(In > 0.Vm > n.qm € L) A (Fn > 0.¢, € K;)

for a pair L;, K; € Acc.

= we need to compute the probability to see infinitely many labels from K; and only finitely many
labels from L; for some 2.
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Bottom Strongly Connected Components

« Consider the underlying directed graph G = (V, E) for a given Markov chain M and a component
CceV.

o (is strongly connectedif Vs,t € C"
o sisreachable from t and

o tisreachable from s.
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Bottom Strongly Connected Components

« Consider the underlying directed graph G = (V, E) for a given Markov chain M and a component
CceV.

o (is strongly connectedif Vs,t € C"
o sisreachable from t and

o tisreachable from s.

« (' is bottom strongly connected if no state outside of C is reachable from C'.
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Bottom Strongly Connected Components

Consider the underlying directed graph G = (V, F) for a given Markov chain M and a component
CceV.

C is strongly connected if Vs, t € C"
o sisreachable from t and

o tisreachable from s.

C'is bottom strongly connected if no state outside of C'is reachable from C.

For Markov chains we have that a bottom strongly connected component
o cannot be left and

o all states will be visited infinitely often with a probability of one.
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Computing the Probability to Satisfy ¢

According to the acceptance condition Acc = {(Lg, Ky), - - - (Lm, Km)} of A:

» Identify BSCCs C} such that:
o Forsomei € [0, m):

Cjﬂ(SxLi):Q)andeﬂ(SXKi)#@

-LetU:U Cj

J, C; accepting
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Computing the Probability to Satisfy ¢

According to the acceptance condition Acc = {(Lg, Ky), - - - (Lm, Km)} of A:

» Identify BSCCs C} such that:
o Forsomei € [0, m):

Cjﬂ(SxLi):Q)andeﬂ(SXKi)#@

-LetU:U Cj

J, C; accepting

« We then have the following:

Pr(M,s = ¢) = Pr(M x A, (s,q) = FU)



