
Probabilistic Model Checking
Stefan Pranger

17. 06. 2023

1

Communication Protocol with Faults

⋅ x = () → x = ()
⎡

⎣

⎢⎢

1

0

0

−1

1

−
1

2

0

−
1

10

1

⎤

⎦

⎥⎥

0

9

10

0

18

19

18

19

9

19

2

Cowboy Shootout
The three may shoot as long as anyone else is
still alive. Due to differences in (re)loading
times, we assume they shoot in turns. That is,
The Good shoots first, then The Bad and finally
The Ugly.

The Good has a chance of a half of hitting
anyone. If he hits, he does so uniformly over the
living contestants.

The Bad has a chance of 0.9 of hitting anyone. If
The Ugly is alive, then he aims for him. If The
Ugly already died, then he aims at The Good.

The Ugly hits either no one or one of the living
contestants and he does so with a uniform
probability over these events.

module shootout
 cowboy: [1..3] init 1;
 good: bool init true;
 bad: bool init true;
 ugly: bool init true;
 [] cowboy=1 & good & bad & ugly -> 1/2 :(cowboy'=2) +
 1/4 :(bad'=false) & (cowboy'=3) +
 1/4 :(ugly'=false) & (cowboy'=2);
 [] cowboy=1 & good & bad & !ugly -> 1/2 :(cowboy'=2) +
 1/2 :(bad'=false) & (cowboy'=1);
 [] cowboy=1 & good & !bad & ugly -> 1/2 :(cowboy'=3) +
 1/2 :(ugly'=false) & (cowboy'=1);
 [] cowboy=2 & good & bad & ugly -> 0.1 :(cowboy'=3) +
 0.9 :(ugly'=false) & (cowboy'=1);
 [] cowboy=2 & good & bad & !ugly -> 0.1 :(cowboy'=1) +
 0.9 :(good'=false) & (cowboy'=2);
 [] cowboy=2 & !good & bad & ugly -> 0.1 :(cowboy'=3) +
 0.9 :(ugly'=false) & (cowboy'=2);
 [] cowboy=3 & good & bad & ugly -> 1/3 :(cowboy'=1) +
 1/3 :(good'=false) & (cowboy'=2) +
 1/3 :(bad'=false) & (cowboy'=1);
 [] cowboy=3 & good & !bad & ugly -> 1/2 :(cowboy'=1) +
 1/2 :(good'=false) & (cowboy'=3);
 [] cowboy=3 & !good & bad & ugly -> 1/2 :(cowboy'=2) +
 1/2 :(bad'=false) & (cowboy'=3);
 [] good & !bad & !ugly -> true;
 [] !good & bad & !ugly -> true;
 [] !good & !bad & ugly -> true;
endmodule

3

Recap: Constrained Reachability
Computing

We have used a linear equation solver to compute the probability of satisfying the constrained
reachability problem.

Pr(M, ⊨ C U B)s0

4

Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where
The interpretation for each state :

∀ and ∃ (φ)PrJ J ⊆ [0, 1]
s ∈ S Pr(M, s ⊨ φ) ∈ J

5

PCTL - Syntax
Subdivision into state ()- and path-formulae ():

where and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

 XΦ

 U Φ1 Φ2

 U Φ1 ≤n Φ2

a ∈ AP J ⊆ [0, 1]

6

PCTL - Syntax
Subdivision into state ()- and path-formulae ():

where and .

Note: path-formulae () may not be nested!

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

 XΦ

 U Φ1 Φ2

 U Φ1 ≤n Φ2

a ∈ AP J ⊆ [0, 1]

φ

7

PCTL - Satisfaction Relation
For a given state

For paths :

s ∈ S

s ⊨ a

s ⊨ ¬φ

s ⊨ φ ∧ ψ

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ φ,

iff s ⊨ φ and s ⊨ ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈ M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

8

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

9

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

10

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachabililty: ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ a)s0 F
<=k

11

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachabililty: ?
Again: Simple Matrix-Vector-Multiplication(s)! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ a)s0 F
<=k

12

Communication Protocol

A message is eventually delivered or lost and our abstraction does not allow faulty values:
"P>=1.0 [F (delivered=1 | lost=1)] & P>=1.0 [G try<2]"

13

Communication Protocol

A message is eventually delivered or lost and our abstraction does not allow faulty values:
"P>=1.0 [F (delivered=1 | lost=1)] & P>=1.0 [G try<2]"

A message will almost surely be delivered eventually and trying to send a message implies that with a
probability greater or equal 0.99 the message will be sent within three time steps.
"P>=1.0 [F (delivered=1)] & P>=1.0 [G(!try=1| P>=0.99 [(F<=3 delivered=1)])] "

14

Probabilistic Model Zoo15

Probabilistic Model Zoo16

Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and a labelling function.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a,) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

17

Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and a labelling function.

The decision defines the distribution over the next state.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a,) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

a

18

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

19

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

20

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

⎡

⎣

⎢
⎢⎢
⎢⎢⎢
⎢
⎢

1

0

0

9

10

5

10

0

1

9

10

0

0

0

0

1

10

1

10

5

10

⎤

⎦

⎥
⎥⎥
⎥⎥⎥
⎥
⎥

21

Paths in an MDP
We extend our definition of a path for an MDP as such:

, s.t.

M

π = … ∈ (S × Acts0a0s1a1s2a2)ω
P(, ,) > 0, ∀i ≥ 0si ai si+1

22

Paths in an MDP
We extend our definition of a path for an MDP as such:

, s.t.

Reasoning about events in an MDP resorts to the resolution of any non-determinism
This is done by the use of schedulers (also called strategies/policies/adversaries).

M

π = … ∈ (S × Acts0a0s1a1s2a2)ω
P(, ,) > 0, ∀i ≥ 0si ai si+1

23

Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as reachability so called memoryless deterministic scheduler suffice:

This means that the scheduler fixes an actions for each state.

We can then define the probability of prop under sched

σ : × S → Distr(Act)S
∗

σ : S → Act

σ

P (M, s ⊨ FB)r
σ

24

Induced Markov Chain
Consider an MDP and a memoryless deterministic scheduler:M

σ : S → Act

25

Induced Markov Chain
Consider an MDP and a memoryless deterministic scheduler:M

σ : S → Act

s0

s1

s1

↦ β

↦ α

↦ α

⎡

⎣

⎢
⎢
⎢⎢⎢
⎢⎢
⎢

1

0

0

9

10

5

10

0

1

9

10

0

0

0

0

1

10

1

10

5

10

⎤

⎦

⎥
⎥
⎥⎥⎥
⎥⎥
⎥

26

Coding Example27

Coding Example

We introduce velocity and let the car decide whether to
switch lanes,

accelerate or

decelerate.

28

Reachability in MDPs
We have introduced nondeterminism into probabilistic models

Schedulers might maximize oder minimize the probability to satisfy a given property

29

Reachability in MDPs
We have introduced nondeterminism into probabilistic models

Schedulers might maximize oder minimize the probability to satisfy a given property

We describe this with
P (M, s ⊨ FB) = su P (M, s ⊨ FB)rmax pσ rσ

P (M, s ⊨ FB) = in P (M, s ⊨ FB)rmin fσ rσ

30

Computing Maximum Reachability Probabilities in MDPs
We want to compute using the following equation system:

If :

If :

If and

Such that is minimal.

() = P (M, s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB

= max{ P(s, a,) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

∑
x∈S

xs

31

Value Iteration - Method I
Approximative method:

Compute the probability to reach after steps

Start with and stop after some termination criterion is met

B n

n = 0

32

Value Iteration - Method I
Approximative method:

Compute the probability to reach after steps

Start with and stop after some termination criterion is met

More specifically:

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

xs′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

33

Linear Program - Method II
We can also express the problem as a linear program:

Minimize , such that:
,

, if ,

, if ,

, for all actions , if and

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a,) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B s ⊨ ∃FB

34

Linear Program - Method II
We can also express the problem as a linear program:

Minimize , such that:
,

, if ,

, if ,

, for all actions , if and

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a,) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B s ⊨ ∃FB

35

Linear Program - Example
Minimize , such that:

,

, if ,

, if ,

, for all actions
, if and

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a,) ⋅xs ∑ ∈Ss′ s′ xs′

a ∈ Act(s) s ∉ B s ⊨ ∃FB

36

Linear Program - Example
var x0 >= 0;
var x1 >= 0;
var x2 >= 0;
var x3 >= 0;

minimize z: x0+x1+x2+x3;
subject to c0: x0 >= 3/4*x2 + 1/4*x3;
subject to c1: x0 >= 1/2*x1 + 1/2*x2;
subject to c2: x2 = 1;
subject to c3: x3 = 0;
subject to c4: x1 >= 1/2*x0 + 1/2*x3;

subject to c20: x0 <= 1;
subject to c21: x1 <= 1;
subject to c22: x2 <= 1;
subject to c23: x3 <= 1;

end;

37

PCTL Model Checking for MDPs
Syntax for PCTL does not need to be changed

The satisfaction relation for the probabilistic operator needs to be adapted:

38

PCTL Model Checking for MDPs
Syntax for PCTL does not need to be changed

The satisfaction relation for the probabilistic operator needs to be adapted:
We need to consider all schedulers:

M, s ⊨ (φ) iff P (M, s ⊨ φ) ≤ pPr≤p rmax

M, s ⊨ (φ) iff P (M, s ⊨ φ) ≥ pPr≥p rmin

39

PCTL* syntax
Subdivision into state ()- and path-formulae ():

where and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

 ∧φ1 φ2

 ¬φ

 Xφ

 U φ1 φ2

a ∈ AP J ⊆ [0, 1]

40

PCTL* syntax
Subdivision into state ()- and path-formulae ():

where and .

We are now allowed to interchangly use state and path formulae as subformulae.

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

 ∧φ1 φ2

 ¬φ

 Xφ

 U φ1 φ2

a ∈ AP J ⊆ [0, 1]

41

PCTL* syntax
Subdivision into state ()- and path-formulae ():

where and .

We are now allowed to interchangly use state and path formulae as subformulae.

P=? [GF "return_to_start"];
P=? [G(! (try = 1) | lost_count<4 U delivered=1) | delivered_count=MAX_COUNT]
Pmax=? [FG "hatch_closed"]
...

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

∣

∣

 Φ

 ∧φ1 φ2

 ¬φ

 Xφ

 U φ1 φ2

a ∈ AP J ⊆ [0, 1]

42

Checking Linear Time Properties
Last building block to model check PCTL*

43

Checking Linear Time Properties
Last building block to model check PCTL*

Let be a Markov Chain and be an LTL formula.

We are interested in:

M φ

Pr(M, s ⊨ φ) = P {π ∈ Paths(M) ∣ π ⊨ φ}rs

44

Computing Probabilities for LT-Properties
Recall that LT-properties can be expressed using automata.

45

Computing Probabilities for LT-Properties
Recall that LT-properties can be expressed using automata.

We employ an automata-based approach:
Convert into a deterministic Rabin automata .

Compute the Product Markov Chain .

Compute the probability to satisfy using the product (more on that later).

φ A

M × A

φ

46

Deterministic Rabin Automata
A , with

 a set of states and initial state ,

 an alphabet,

 a transition function and

.

An automaton accepts a run iff there exists a pair s.t.:

deterministic Rabin automatonisatuple A = (Q, Σ, δ, , Acc)q0

Q q0

Σ

δ : Q × Σ → Q

Acc ⊆ ×2Q 2Q

A π = …q0q1q2 (L, K) ∈ Acc

(∃n ≥ 0.∀m ≥ n. ∉ L) ∧ (n ≥ 0. ∈ K)qm ∃inf qn

47

Product Markov Chain
Let be a Markov chain and be a DFA. The product is a
Markov chain where:

 if ,

 is the initial state with and

 if and 0 otherwise.

M A M×A = (S × Q, , i, {accept},)P
′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ(, L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s,)P
′ s′ q ′ s′ = δ(q, L())q ′ s′

48

Product Markov Chain
Let be a Markov chain and be a DFA. The product is a
Markov chain where:

 if ,

 is the initial state with and

 if and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done
in a similar way.

M A M×A = (S × Q, , i, {accept},)P
′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ(, L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s,)P
′ s′ q ′ s′ = δ(q, L())q ′ s′

49

Product Markov Chain
Let be a Markov chain and be a DFA. The product is a
Markov chain where:

 if ,

 is the initial state with and

 if and 0 otherwise.

Post-Lecture-Note: This is the definition of a product with a DFA, the product with a DRA can be done
in a similar way.

Since is deterministic it can be interpreted as a witness for its current state on the product trace:

M A M×A = (S × Q, , i, {accept},)P
′ L′

(⟨s, q⟩) = {accept}L′ q ∈ F

i = ⟨ , ⟩s0 q1 = δ(, L(s))q1 q0

(⟨s, q⟩, ⟨ , ⟩) = P(s,)P
′ s′ q ′ s′ = δ(q, L())q ′ s′

A

= ⟨ , ⟩, ⟨ , ⟩, ⟨ , ⟩, …π+ s0 q1 s1 q2 s2 q3

50

Computing the Probability to Satisfy
We want to use the product and know

's acceptance condition:

for a pair .

φ
M×A

A

(∃n ≥ 0.∀m ≥ n. ∉) ∧ (n ≥ 0. ∈)qm Li ∃inf qn Ki

, ∈ AccLi Ki

51

Computing the Probability to Satisfy
We want to use the product and know

's acceptance condition:

for a pair .

 we need to compute the probability to see infinitely many labels from and only finitely many
labels from for some .

φ
M×A

A

(∃n ≥ 0.∀m ≥ n. ∉) ∧ (n ≥ 0. ∈)qm Li ∃inf qn Ki

, ∈ AccLi Ki

⇒ Ki

Li i

52

Bottom Strongly Connected Components
Consider the underlying directed graph for a given Markov chain and a component

.

 is strongly connected if :
s is reachable from t and

t is reachable from s.

G = (V , E) M

C ∈ V

C ∀s, t ∈ C

53

Bottom Strongly Connected Components
Consider the underlying directed graph for a given Markov chain and a component

.

 is strongly connected if :
s is reachable from t and

t is reachable from s.

 is bottom strongly connected if no state outside of is reachable from .

G = (V , E) M

C ∈ V

C ∀s, t ∈ C

C C C

54

Bottom Strongly Connected Components
Consider the underlying directed graph for a given Markov chain and a component

.

 is strongly connected if :
s is reachable from t and

t is reachable from s.

 is bottom strongly connected if no state outside of is reachable from .

For Markov chains we have that a bottom strongly connected component
cannot be left and

all states will be visited infinitely often with a probability of one.

G = (V , E) M

C ∈ V

C ∀s, t ∈ C

C C C

55

Computing the Probability to Satisfy
According to the acceptance condition of :

Identify BSCCs such that:
For some :

Let

φ
Acc = {(,), … (,)}L0 K0 Lm Km A

Cj

i ∈ [0, m]

∩ (S ×) = ∅ and ∩ (S ×) ≠ ∅Cj Li Cj Ki

U = ⋃j, acceptingCj
Cj

56

Computing the Probability to Satisfy
According to the acceptance condition of :

Identify BSCCs such that:
For some :

Let

We then have the following:

φ
Acc = {(,), … (,)}L0 K0 Lm Km A

Cj

i ∈ [0, m]

∩ (S ×) = ∅ and ∩ (S ×) ≠ ∅Cj Li Cj Ki

U = ⋃j, acceptingCj
Cj

Pr(M, s ⊨ φ) = Pr(M×A, ⟨s, ⟩ ⊨ FU)qi

57

