TU

Grazm

Probabilistic Model ChecRing

Stefan Pranger

03. 06. 2024



TU

Grazm

Communication Protocol




TU

Grazm

Communication Protocol

But M, start = 4G —delivered ?
or M, start = VF delivered ?



TU

Grazm

Communication Protocol

delivered

1

L
Lo

But M, start = 4G —delivered ?
or M, start = VF delivered ?

Does not make sense with probabilities! — We need new descriptions for properties.

We have different models.



TU

Grazm

Markov Chains

Markov Chain M = (S,P, sq, AP, L)
« S a set of states and initial state s,

e P: S xS —|0,1],s.t.
ZS’ES P(s,s') =1Vse S

2AP

o AP set of atomic propositionsand L : S — a labelling function.



H What properties are we interested in?



TU

Grazm

What properties are we interested in?

« What is the probability to eventually send the message (within 7 steps)?



TU

Grazm

ﬂ What properties are we interested in?

« What is the probability to eventually send the message (within 7 steps)?

« What is the probability to reach the destination without every running into an unsafe area?



TU

Grazm

ﬁ What properties are we interested in?

« What is the probability to eventually send the message (within 7 steps)?
« What is the probability to reach the destination without every running into an unsafe area?

« What is the probability to send 6 messages successfully and only failing a maximum amount of 15
times?



TU

Grazm

But rst... How do we describe models?



TU

Grazm

But rst... How do we describe models?

» Describe states through variables:
o x € [0,20],y € [0,20],velocity € [0,1],...



TU

Grazm

But rst... How do we describe models?

» Describe states through variables:
o x € [0,20],y € [0,20],velocity € [0,1],...

o processor_one_idle, processor_two_idle, . ..



TU

Grazm

But rst... How do we describe models?

» Describe states through variables:
o x € [0,20],y € [0,20],velocity € [0,1],...

o processor_one_idle, processor_two_idle, . ..

o agent_is_on_slippery, ...

o e



TU

Grazm

But rst... How do we describe models?

» Describe states through variables:
o x € [0,20],y € [0,20],velocity € [0,1],...

o processor_one_idle, processor_two_idle, . ..

o agent_is_on_slippery, ...

o e

« For each possible state we describe the possible variable updates:
o Ifx > 10 & y < 10 & agent_is_on_slippery then the agent moves to one of its adjacent cells

each with probability 1/4.

o If processor_one_idle & processor_two_idle then the process will be processed by
processor one or two.



TU

Grazm

But rst... How do we describe models?

» Describe states through variables:
o x € [0,20],y € [0,20],velocity € [0,1],...

o processor_one_idle, processor_two_idle, . ..
o agent_is_on_slippery, ...
o LN ]

« For each possible state we describe the possible variable updates:
o Ifx > 10 & y < 10 & agent_is_on_slippery then the agent moves to one of its adjacent cells

each with probability 1/4.

o If processor_one_idle & processor_two_idle then the process will be processed by
processor one or two.

o If processor_one_idle & processor_two_idle then we can decide to use processor one or
two.



TU

Grazm

The PRI SM Modelling Language

e Modules: Group associated behaviour

module processorl ... endmodule
module processor2 ... endmodule




TU

Grazm

The PR ISM Modelling Language

e Modules: Group associated behaviour

module processorl ... endmodule
module processor2 ... endmodule

« Variables (Constants) : Either bool or integer (or double):

x : [0..2] init 0O;

b : bool init false;

global temperature : [0..100] init 32;
const double pi = 3.14;



TU

Grazm

The PRI SM Modelling Language

e Modules: Group associated behaviour

module processorl ... endmodule
module processor2 ... endmodule

« Variables (Constants) : Either bool or integer (or double):

x : [0..2] init 0O;

b : bool init ;

global temperature : [0..100] init 32;
const double pi = 3.14;

o Updating variables of a module is restricted to each module, e.g. private access.



TU

Grazm

The PRI SM Modelling Language

e Modules: Group associated behaviour

module processorl ... endmodule
module processor2 ... endmodule

« Variables (Constants) : Either bool or integer (or double):

x : [0..2] init 0O;

b : bool init ;

global temperature : [0..100] init 32;
const double pi = 3.14;

o Updating variables of a module is restricted to each module, e.g. private access.

e Commands:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: ;



TU

Grazm

The PR ISM Modelling Language

e Modules: Group associated behaviour

module processorl ... endmodule
module processor2 ... endmodule

« Variables (Constants) : Either bool or integer (or double):

x : [0..2] init 0O;

b : bool init ;

global temperature : [0..100] init 32;
const double pi = 3.14;

o Updating variables of a module is restricted to each module, e.g. private access.

e Commands:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: ;

o We use it to describe the set of possible states and transitions between them.



TU

Grazm

The PRI SM Modelling Language

e Formulas and Labels:

formula num_tokens = ql1+q2+q3+q+q5;
formula crash = x1=x2 & yl=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;



TU

Grazm

The PR ISM Modelling Language

e Formulas and Labels:

formula num_tokens = ql1+q2+q3+q+q5;
formula crash = x1=x2 & yl=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

e Turn-based behaviour:

[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.



TU

Grazm

The PR ISM Modelling Language

e Formulas and Labels:

formula num_tokens = ql1+q2+q3+q+q5;
formula crash = x1=x2 & yl=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...

e Turn-based behaviour:

[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.

e Rewards:

rewards

x>0 & x<10 : 2*Xx;
x=10 : 100;

[a] true : x;

[b] true : 2*x;
endrewards



TU

Grazm

The PRI SM Modelling Language

« Modelling language allows to design models in a code-like style

e Code de-duplication with formulas and labels



TU

Grazm

The PRI SM Modelling Language

« Modelling language allows to design models in a code-like style

e Code de-duplication with formulas and labels

Other concepts include:

e Module Renaming
module Proc2 = Procl [ idle2=idlel, ... ] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

Process Algebra Operators



TU

Grazm

Communication Protocol

dtmc



TU

Grazm

Communication Protocol

dtmc

Live Coding!



Communication Protocol

de

1

ivered

dtmc
label "success" = delivered=1;
label "lost" = lost=1;

module msg_delivery

start: [0..1] init
try: [0..1] init 0O;

ik

lost: [0..1] init 0O;
delivered: [0..1] init 0O;

[] start=1 ->
[] try=1 ->
[] lost=1 ->
[] delivered=1 ->

endmodule

1:
0.
0.
1:
1:

(start'=0) & (try'=1);

1: (try'=0) & (lost'=1) +

9: (try'=0) & (delivered'=1);
(lost'=0) & (try'=1);
(delivered'=0) & (start'=1);

TU

Grazm



TU

Grazm

Communication Protocol with Counting

module msg_delivery

endmodule

Live Coding!



Communication Protocol with Counting

delivered

dtmc

label "success" = delivered=1;
label "lost" = lost=1;

const int MAX_COUNT;

module msg_delivery
start: [0..1] init 1;
try: [0..1] init O;
lost: [0..1] init 0;
delivered: [0..1] init 0;
delivered_count: [0..MAX_COUNT] init O;
lost_count: [0..MAX_COUNT] init 0;

[] start=1 -> 1: (start'=0) & (try'=1);
[] try=1 -> 0.1: (try'=0) & (lost'=1) +
0.9: (try'=0) & (delivered'=1);

[]1 lost=1 & lost_count<MAX_COUNT -> 1:
[1 delivered=1 & delivered_count<MAX_COUNT -> 1:

[] lost=1 & lost_count=MAX_COUNT -> 1:
[1 delivered=1 & delivered_count=MAX_COUNT -> 1:

endmodule

TU

Grazm

(lost'=0) & (try'=1) & (lost_count'=lost_count+1);
(delivered'=0) &

(start'=1) &

(delivered_count'=delivered_count+1) &
(lost_count'=0);

(lost'=0) & (try'=1) & (lost_count'=lost_count);
(delivered'=0) &

(start'=1) &

(delivered_count'=delivered_count) &
(lost_count'=0);



Simulating Urban Environments

dtmc

module car
// x and y coordinates, velocity

endmodule

module pedestrian

ﬁ*—

)

]

// x and y coordinates, viewing direction in {left, right, north}

endmodule

TU

Grazm



TU

Grazm

Probabilistic Reachability

« We start with objectives similar to the ones discussed at the beginning of the semester:

What is the probability that our system reaches its goal state?




Before we talk about Algorithms...



TU

Grazm

Before we talk about Algorithms...

How can we represent a MC in code/memory?



TU

Grazm

Before we talk about Algorithms...

How can we represent a MC in code/memory?




TU

Grazm

Before we talk about Algorithms...

How can we represent a MC in code/memory?

001 0 0]

1 9

| > A = 00 w w

! 01 0 O

] 10 0 O]




TU

Grazm

Model ChecRing with Markov Chains

» Explicit CTL model checking allows qualitative model checking.

o M, start = 3G —delivered ?



TU

Grazm

Model ChecRing with Markov Chains

» Explicit CTL model checking allows qualitative model checking.

o M, start = 3G —delivered ?

 We want to do quantitative model checking.
o How likely is the system to fail?

P’P(M, S |: F Serror)

o Whats the probability of my message to arrive after infinitely many tries?

Pr(M,s = F delivered)



TU

Grazm

Paths

« Apathm = $98183... € 5V, s.t. P(s4,8;41) > 0,Vi > 0
 Paths(M) is the set of all paths in M and
o Pathsy;, (M) is the set of all finite path fragments in M.



TU

Grazm

Events and Paths

In order to talk about probabilities of certain paths we need to briefly touch probability spaces.
« Outcomes={HH,HT,TH,TT}
. Events = {HH}, {HTY,{TH},{TT}

We could, for example, be interested in the events where H is thrown first= {HH }, { HT'}.

What is a possible outcome in a specific Markov Chain M?



TU

Grazm

Events and Paths

In order to talk about probabilities of certain paths we need to briefly touch probability spaces.
« Outcomes={HH,HT,TH,TT}
. Events = {HH}, {HTY,{TH},{TT}

We could, for example, be interested in the events where H is thrown first= {HH }, { HT'}.
What is a possible outcome in a specific Markov Chain M?
— an infinite path 7 € Paths(M)!

« Outcomes = Paths(M)

- Events of interest are 7y, g, ... € Pathsy;, (M) that satisfy our property

e Formally we introduce the cylinder set of a prefix:

Cyl(w;) = {m € Paths(M) | &; € pref(m)}



TU

Grazm

Events and Paths

What is a possible outcome in a specific Markov Chain M?
— an infinite path 7 € Paths(M)!
« Outcomes = Paths(M)
« Events of interest are Ty, g, . .. € Pathsg, (M) that satisfy our property

« Formally we introduce the cylinder set of a prefix:

Cyl(m;) = {m € Paths(M) | m; € pref(m)}

« The probability of one event of interest is then:
Pr(Cyl(7;)) = Pr(Cyl(sos1---sn)) = [To<scn P(si) 5i21)



TU

Grazm

Reachability Probabilities

Let B C S be a set of states. We are interested in

P”"(M,SO ): FB)



TU

Grazm

Reachability Probabilities

Let B C S be a set of states. We are interested in

P?“(M, S0 ): FB)

We can characterize all path fragments 7 that satisfy F' B with the set
IIgp = PathSﬁn (M) M (S \ B)*B
All T € Ilpp are pairwise disjoint, hence:

Pr(M, sy = FB) = 3, p,,, Pr(Cyl(#))



TU

Grazm

Computing Pr(M, sy = C U B)

« We know that FB = C' U B, with C = S or simply 'true U B'
o Develop algorithm for arbitrary C'



TU

Grazm

Computing Pr(M, sy = C U B)

« We know that FB = C' U B, with C = S or simply 'true U B'
o Develop algorithm for arbitrary C'

2-step algorithm:

1) Identify three disjoint subsets of S
= S_;: The set of states with probability of 1
to reach B.

= S_y: The set of states with probability of 0
to reach B.

= 57: The set of states with probability
€ (0,1) toreach B.



TU

Grazm

Computing Pr(M, sy = C U B)

« We know that FB = C' U B, with C = S or simply 'true U B'
o Develop algorithm for arbitrary C'

2-step algorithm:

1) Identify three disjoint subsets of S
= S_;: The set of states with probability of 1
to reach B.

= S_y: The set of states with probability of 0
to reach B.

= 57: The set of states with probability
€ (0,1) toreach B.

2) Compute the probabilities for all s € S-.



TU

Grazm

Computing S—_; and S_,

We can use DFS to compute these sets:




TU

Grazm

Computing S—_; and S_,

We can use DFS to compute these sets:







TU

Grazm

Computing S5

We are left with computing the probabilities for s € S»




TU

Grazm

Computing S5

We are left with computing the probabilities for s € S»



TU

Grazm

Computing S5

We are left with computing the probabilities for s € S»

« The probability to reach S_; in one step:

Zueszl P(Sv u)

« and the probability to reach S—_; via a path
fragment (st ... u): Y, ¢ P(s,t) -z

o Together

Ty = ZP(S,t) - Ty + Z P(s,u)

tesS, u€S_;




TU

Grazm

Computing S5

Let us rewrite this into matrix notation:

° A? — (P(Svt))s,tES?
° I = («’133)3657

« b= (Zueszl P(Svu))SES?



TU

Grazm

Computing S5

Let us rewrite this into matrix notation:

« Ay = (P(s, t))s tesSs

¢ ( )sESv

(Zues 1 (57 u))sES?

ZIP’st wt+z (s,u) »x=A,-x+b=(I—A42)-z=0D

tesS, uesS_



TU

Grazm

Communication Protocol




Communication Protocol

Ar =

delivered

TU

Grazm



Done



Transient State Probabilities

We will consider a slightly different algorithm:

contains the probability to be in state ¢ after n steps in entry A" (s, t).

We call

)1 (t) =) A"(s,t)

seS

the transient state probability for state ¢.

TU

Grazm



TU

Grazm

Transient State Probabilities

Let's consider (@ﬁ/t (t)) scS, the vector of transient state probabilities for the nth step.
We can compute Pr(M, s, = F="B) in a modified Markov chain:
Mp = (S, s9,Pp, AP, L)
where:
- Pp(s,t) =P(s,t)ifs ¢ B
« Pp(s,s) =1lifs € B
« Pp(s,t) =0ifs € Bandt ¢ B

i.e. all s € B become sinks and B cannot be left anymore.



TU

Grazm

Transient State Probabilities

« Pg(s,t) = P(s,t)ifs ¢ B
« Pp(s,s) =1lifs € B
« Pg(s,t) =0ifs € Bandt ¢ B

i.e. all s € B become sinks and B cannot be left anymore.
We then have
Pr(M,s = F<"B) = Pr(Mp,s = F"B)

and therefore

Pr(M,s = F<"B) = ) 0,"%(t)

teB



TU

Grazm

6; ‘ Computing Pr(M, s = F=" B) via Transient State
Probabilities

We have the following algorithm to compute Pr(M, s = F="B):

. ©)(t) = e;, i.e. the unit vector with 1 at the ith position and 0 else.

« Fork=0upton—1:0" (t) = A-OM(t)

k+1

« Pr(M,s E F="B) =3, , 02" (t)



