Temporal Logic +

CTL Model Checkin
- 9

Model Checking SS24 April 29, 2024
Bettina Konighofer

Plan for Today

= Presentation of Homework and Recap of Temporal Logic
= Properties of CTLand LTL
= CTL Model Checking

SCOS

Secure & Correct Systems

Ty

Propositional Temporal Logic
Path quantifiers: A, E

= A specifies that all paths starting from s have property ¢.
= E specifies that some paths starting from s have property .

l

‘ SONS
ARG

SCOS

Secure & Correct Systems

Ty

Propositional Temporal Logic

Temporal operators:
= Describe properties that hold along an infinite path

Xp O @ O O » 0 0 O
Gp @ —@ —@ —@ —— ° ° o
Fp O O @ O » 0 0 O
plg @ —e@—@ O » 0 0 0
PR @ —@ —@ O >0 0 0

oRq “p release g”:
PRq requires that g holds along 7 up to and including the first
state where p holds. However, p is not required to hold eventually.

SCOS

Secure & Correct Systems

Ty

Linear Temporal Logic (LTL) - Syntax

LTL is the set of all state formulas.

State formulas:
= Ag where g is a path formula

Path formulas:
= pe€ AP

" —9v 91V9» 91792 X9, GG Fgi, 9.Ug, 9:Rg,
where g, and g, are path formulas.

SCOS

Secure & Correct Systems

Ty

ﬁ Computational Tree Logic (CTL) - Syntax

CTL iIs the set of all state formulas, defined below
(by means of state formulas only):
= pe€AP

= fy fivfe FinS
= AXf,AGf,AF f,A(f,Uf,),A(f1Rf;)

* EXf, EGf, EFf, E(fiUf,), E(fiRf,)
where f, and f, are state formulas

SCOS
Secure & Correct Systems

re & Correct System

lllustration of CTL Semantics

50

EFg

“exists
reachable
state such

' @@ @0

SCOS

Secure & Correct Systems

Ty,

lllustration of CTL Semantics

EFg & }{" AFg
“exists y
reachable R R R
state such

' @ @ @ @ ©000

SCOS

ure & Correct System

Ty,

H lllustration of CTL Semantics

EFg & }\5" AFg
“exists y
reachable R R R
state such

' @ @ @ @ ©000

seco

SCOS

ure & Correct System

lllustration of CTL Semantics

S
EFg 0 }\ ﬁﬁﬁﬁﬁ
“exists
reachable
state such

' @ @ @ @ . . 0 0

ﬁ\ .
reachable
states..

SCOS

ure & Correct System

Homework

1. “At any time, one can select ten cups of coffee and
once selected, ten cups will always eventually be
served unless an error occurs.”

SCOS

Secure & Correct Systems

Homework

1. “At any time, one can select ten cups of coffee and
once selected, ten cups will always eventually be
served unless an error occurs.”

AG (ten = AF (served V error))

SCOS

Secure & Correct Systems

Homework

2. “At any time, it is possible to eventually reach an
error.”

SCOS

Secure & Correct Systems

Homework

2. "At any time, it Is possible to eventually reach an
error.”

@ = AG EF error

SCOS

Secure & Correct Systems

Homework

3. “Always, it will happen eventually that the coffee
machine remains turned off forever.”

SCOS

Secure & Correct Systems

Homework

3. “Always, it will happen eventually that the coffee
machine remains turned off forever.”

@ = AFG of f

SCOS

Secure & Correct Systems

Homework

4. “All reachable states can result in 10 cups of coffee.”

SCOS

Secure & Correct Systems

Homework

4. “All reachable states can result in 10 cups of coffee.”

@ = AG EF (cof fee)

SCOS

Secure & Correct Systems

Homework

5. It Is never possible that the machine brews 5 cups of
coffee In the current time step, and serves 5 more cups
within the next 2 seconds.

SCOS

Secure & Correct Systems

Homework

5. It Is never possible that the machine brews 5 cups of
coffee in the current time step, and serves 5 more cups
within the next 2 seconds.

@ = AG—(5cups A X S5cups A XX5cups)

SCOS

Secure & Correct Systems

Homework

6. The selected amount of coffee will be served within
6 seconds.

SCOS

Secure & Correct Systems

Homework

6. The selected amount of coffee will be served within
6 seconds.

@ = AG(selected - (Xserved V ---V XXXXXXserved))

SCOS

Secure & Correct Systems

TU

Grazm
A ((F serve) U (G —on))
on, 5__cups on, H_cups on, 10_cups on, 10_cups
medium medium strong
on, 5_cups on, 5_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium. brew strong, brew
on, S.cups on, 5.cups on, 10_cups on, 10_cups

medium, serve strong, serve redium, serve strong, serve

TU

Grazm
0 —
1. @ := A((F serve)U (G —|on))
on, 5_cups on, H_cups on, 10_cups on, 10_cups
medium medium strong
on, 5_cups on, 5_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium. brew strong, brew
on, H_cups on, H-cups on, 10_cups on, 10_cups

medium, serve strong, serve redium, serve strong, serve

TU

Grazm

Homework
2. ¢ := AG(serve — (X=0n) V (XX=0n) vV (XXX=0n))

on, 5_cups on, 5_cups on, 10_cups on, 10_cups
medium medium strong

on, H_cups o1, J_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium, brew strong, brew

on, S.cups on, S.cups on, 10_cups on, 10_cups
medium, serve strong, serve redium, serve strong, serve

TU

Grazm

Homework
2. ¢ := AG(serve — (X=0n) V (XX=0n) vV (XXX=0n))

NO

on, S_cups on, S_cups on, 10_cups on, 10_cups
medium medium strong

on, H_cups on, H_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium, brew strong, brew

on, S.cups on, S.cups on, 10_cups on, 10_cups
medium, serve strong, serve 1edium, serve strong, serve

TU

Grazm
0 —
3. ¢ := EF'(F' error — EF (10cups A Serve))
on, S_cups on, S_cups on, 10_cups on, 10_cups
medium medium strong
on, H_cups on, H_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium, brew strong, brew
on, S.cups on, S.cups on, 10_cups on, 10_cups
medium, serve strong, serve 1edium, serve strong, serve

TU

Grazm
0 —
3.9 := EF (F error — EF (10cups A Serve))
on, 5__cups on, H_cups on, 10_cups on, 10_cups
medium medium strong
on, 5_cups o1, J_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium, brew strong, brew
on, S.cups on, S.cups on, 10_cups on, 10_cups

medium, serve strong, serve redium, serve strong, serve

TU

Grazm
0 —
4. := AF(serve) — (EF GF(—on))
on, 5__cups on, 5_cups on, 10_cups on, 10_cups
medium medium strong
on, 5_cups on, 5_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium. brew strong, brew
on, S.cups on, 5.cups on, 10_cups on, 10_cups

medium, serve strong, serve redium, serve strong, serve

TU

Grazm
0 —
4. := AF(serve) — (EF GF(—on))
on, 5__cups on, 5_cups on, 10_cups on, 10_cups
medium medium strong
on, 5_cups on, 5_cups on, 10_cups on, 10_cups
medium, brew strong, brew medium. brew strong, brew
on, H_cups on, H-cups on, 10_cups on, 10_cups

medium, serve strong, serve redium, serve strong, serve

Plan for Today

= Properties of CTL and LTL
= L TLvs CTL
= Counterexamples
= Safety and Liveness Properties

» CTL Model Checking

SCOS

Secure & Correct Systems

LTL/CTL/CTL*

= Linear Temporal Logic (LTL) consists of state formulas of the
form Ag, where g is a path formula, containing no path quantifiers.

= CTL consists of state formulas, where path quantifiers and
temporal operators appear in pairs: AG, AU, AX, AF, AR, EG, EU,

EX, EF, ER

CTL*

E(GF ¢)

G(¢,— F ¢,)
or resp.
AG(¢, — AF ¢,)

SCOS

Secure & Correct Systems

LTL vs CTL
5 1oDo

= EXxercise:

= Does the LTL formula AF G p has an equivalent in CTL?
= AFG p = "“for all paths, eventually p always holds”

SCOS

Secure & Correct Systems

LTL vs CTL

= EXxercise:

= Does the LTL formula AF G p has an equivalent in CTL?
= AFG p = "“for all paths, eventually p always holds”

= Solution: No
= But what about: AFAGp?

= AFAGp = "for all paths, there is a point from which all reachable
states satisfy p”

SCOS

Secure & Correct Systems

LTL vs CTL

= EXxercise:

= Does the LTL formula AF G p has an equivalent in CTL?
= AFG p = "“for all paths, eventually p always holds”

= Solution: No
= But what about: AFAGp?

= AFAGp = "for all paths, there is a point from which all reachable
states satisfy p”
S

= Consider the given model: So S1 2
= Does AFGp hold? M

= Does AFAGp hold?

SCOS

Secure & Correct Systems

LTL vs CTL

= EXxercise:

= Does the LTL formula AF G p has an equivalent in CTL?
= AFG p = "“for all paths, eventually p always holds”

= Solution: No
= But what about: AFAGp?

= AFAGp = "for all paths, there is a point from which all reachable
states satisfy p”

= Consider the given model: Sg S S2
. AFGP holds M
= All paths satisfy FGp

" S0,S0,S0) -

" S0,S0)-+-S0,51,52,52,S3,

SCOS

Secure & Correct Systems

LTL vs CTL

= EXxercise:

= Does the LTL formula AF G p has an equivalent in CTL?
= AFG p = "“for all paths, eventually p always holds”

= Solution: No
= But what about: AFAGp?

= AFAGp = "for all paths, there is a point from which all reachable
states satisfy p”
S

= Consider the given model: So S1 2
= AFGp holds M
= AFAGp does not hold

" So,Sp, So, ... dO€S not satisfy FAGp

SCOS

Secure & Correct Systems

LTL vs CTL

= EXxercise:

= Does the LTL formula AF G p has an equivalent in CTL?
= AFG p = "“for all paths, eventually p always holds”

.5 ToDo

= Solution: No
= \What about

Sg S/

Hint; %

SCOS

Secure & Correct Systems

LTLvs CTL

= EXxercise:

= Does the LTL formula AFG p has an equivalent in
CTL?

= Solution: No

* “in every path there is a point from which
where p globally holds”

So Sq

% All paths satisfy FEGp
- since s, sat EGp

SCOS

Secure & Correct Systems

LTLvs CTL

Exercise:

= Does the LTL formula AFG p has an equivalent in
CTL?

Solution: No

* “in every path there is a point from which
where p globally holds”

% All paths satisfy FEGp
- since s, sat EGp
But s,,54,54,54,S0,S4... does not satisfy FGp

SCOS

Secure & Correct Systems

LTL vs CTL
= 1oDo
= EXxercise:

* Does AG(EF p) has an LTL equivalent?

SCOS

Secure & Correct Systems

LTL vs CTL
= 1oDo

= EXxercise:

* Does AG(EF p) has an LTL equivalent?
» AG(EF p) = “From ... ”

SCOS

Secure & Correct Systems

LTL vs CTL
51000

= EXxercise:
* Does AG(EF p) has an LTL equivalent?

» AG(EF p) = “From all reachable states, it is possible to
reach a state that satisfies p”

SCOS

Secure & Correct Systems

LTL vs CTL
= 1oDo
= EXxercise:

* Does AG(EF p) has an LTL equivalent?

» AG(EF p) = “From all reachable states, it is possible to
reach a state that satisfies p”

= What about AGF p = “In all paths, p holds infinitely often™?
= Does AG(EFp) hold? :
(EFP) Hint:
= Does AGFp hold?
So S1

S wee

SCOS

Secure & Correct Systems

LTL vs CTL
= 1oDo
= EXxercise:

* Does AG(EF p) has an LTL equivalent?

» AG(EF p) = “From all reachable states, it is possible to
reach a state that satisfies p”

= What about AGF p = “In all paths, p holds infinitely often”

= AG(EFp) holds Hint:
= All reachable states (s, s;) satisfy EFp '
So Sq

S wee

SCOS

Secure & Correct Systems

LTL vs CTL
= 1oDo
= EXxercise:

* Does AG(EF p) has an LTL equivalent?

» AG(EF p) = “From all reachable states, it is possible to
reach a state that satisfies p”

= What about AGF p = “In all paths, p holds infinitely often”

= AG(EFp) holds Hint:
= All reachable states (s, s;) satisfy EFp '
So Sq

= AGFp does not hold
" So,Sp,Sp ... dO€s not satisfy GFp m

SCOS

Secure & Correct Systems

TU

Grazm

LTLvs CTL

The expressive powers of LTL and CTL are incomparable. That is,
= There is an LTL formula that has no equivalent CTL formula
= There is a CTL formula that has no equivalent LTL formula

CTL*

E(GF ¢)

G(¢,— F ¢,)
or resp.
AG(¢, — AF ¢,)

SCOS

Secure & Correct Systems

Plan for Today

Properties of CTL and LTL

= Counterexamples
= Safety and Liveness Properties

CTL Model Checking

SCOS

Secure & Correct Systems

Counterexamples

Given M and ¢ s.t. M ¥ o.
A counterexample is trace 7 of M violating ¢.

Counterexample generation is a central feature of MC

Used for debugging
= Should have finite representation
= Easy-to-understand by human

SCOS

Secure & Correct Systems

Ty

Examples of Counterexamples

= For :
A transition from an initial state to a

SCOS

Secure & Correct Systems

Ty,

Examples of Counterexamples

= For AXp:
A transition from an initial state to a state violating p
» Counterexample for AXp is a witness for EX— p

SCOS

Secure & Correct Systems

Ty

Examples of Counterexamples

= For AXp:
A transition from an initial state to a state violating p

» Counterexample for AXp is a witness for EX— p

= For AGp:
A finite path from an initial state to a state violating p

SCOS

Secure & Correct Systems

Ty

Examples of Counterexamples

For AXp:
A transition from an initial state to a state violating p

» Counterexample for AXp is a witness for EX— p

For AGp:
A finite path from an initial state to a state violating p

» Counterexample for AGp is a withess for EF— p

SCOS

Secure & Correct Systems

Ty,

Examples of Counterexamples

= For

'E)Do How does a counterexample for AFp look like?

SCOS

Secure & Correct Systems

Ty,

Examples of Counterexamples

= For AFp:
An infinite path, all of its states violating p (satisfying —p)
» Counterexample for AFp is a withess for EG— p

SCOS

Secure & Correct Systems

Ty,

Examples of Counterexamples

= For AFp:
An infinite path, all of its states violating p (satisfying —p)
» Counterexample for AFp is a withess for EG— p

SRS Exercise:

= How do we get a finite representation for the CE?

SCOS

Secure & Correct Systems

Ty,

Examples of Counterexamples

= For AFp:
An infinite path, all of its states violating p (satisfying —p)
» Counterexample for AFp is a withess for EG— p

= Afinite representation for violation of AFp:

» Alasso, which is a path of the form = = =, (7,)
" 71, and r, are finite paths
* o Iindicates infinitely many repetitions of r,

Gp == - = -

SCOS

Secure & Correct Systems

Plan for Today

= Properties of CTL and LTL

= Safety and Liveness Properties
» CTL Model Checking

SCOS

Secure & Correct Systems

Ty,

Safety and Liveness Properties

Informally,

= Safety properties guarantee that
“something bad will never happen”

= Typical example: AG—p

SCOS

Secure & Correct Systems

Ty,

ﬁ Safety and Liveness Properties

Informally,

= Safety properties guarantee that
“something bad will never happen”

= Typical example: AG—p

= Liveness properties guarantee that
“something good will happen eventually”

= Typical examples: AF p, A(pUq)

SCOS

Secure & Correct Systems

Ty,

Safety and Liveness Properties

Informally,

= Safety properties guarantee that
“something bad will never happen”

= Typical example: AG—p

-E)DO Exercise:

= How does a counterexample for a safety property look like?

SCOS

Secure & Correct Systems

Ty,

Safety and Liveness Properties

Informally,

= Safety properties guarantee that
“something bad will never happen”

= Typical example: AG—p

= EXercise:
= How does a counterexample for a safety property look like?

= A counterexample for a safety property is a
finite (loop-free) path

SCOS

Secure & Correct Systems

Ty,

Safety and Liveness Properties

Informally,

» Liveness properties guarantee that
“something good will happen eventually”

= Typical examples: AF p
e EXercise:
-E)DO = How does a counterexample for a liveness property look like?

SCOS

Secure & Correct Systems

Ty,

Safety and Liveness Properties

Informally,

» Liveness properties guarantee that
“something good will happen eventually”

= Typical examples: AF p
= EXercise:
= How does a counterexample for a liveness property look like?

= A counterexample is an infinite trace showing that this good
thing NEVER happened

T (s

p P P P p P

SCOS

Secure & Correct Systems

Plan for Today

» CTL Model Checking
= MC Problem Definition
= [llustrative Example for CTL Model Checking
= Algorithm for CTL MC

SCOS

Secure & Correct Systems

Ty,

e The Model Checking Problem

= Given a Kripke structure M and a CTL formula f

* Model Checking Problem:
* M E f,le., Misamodel for f

SCOS

Secure & Correct Systems

Ty,

The Model Checking Problem

Given a Kripke structure M and a CTL formula f
Model Checking Problem:

* M E f,le., Misamodel for f

Alternative Definition

= Compute [y, ={s €S |M,s = f}i.e., all states satisfying f
= Check S, € [f],, to conclude that M & f

SCOS

Secure & Correct Systems

Ty

T lllustrative Example: Mutual Exclusion

SCOS

Secure & Correct Systems

Ty,

e lllustrative Example: Mutual Exclusion

= Two processes with a joint semaphor signal sem
= Each process P, has a variable v, describing its state:

s Non-critical
s Trying
o Critical

SCOS

Secure & Correct Systems

Ty,

lllustrative Example: Mutual Exclusion

= Each process runs the following program:
P, :: while (true) {
Atomic/ if (v, ==N) v, =T,

action \' else if (v, ==T && sem) {v.=C; sem =0; }
elseif (v,==C) {v,=N;sem=1,}
}

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

‘0‘

SCOS
Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

SCOS
Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

D,
&= -u
e Col

= We define atomic propositions: AP = {C,,C,, T, T,)
= Astateis labeled with T, if v, =T
= Astate is labeled with C; if v, = C

SCOS

Secure & Correct Systems

lllustrative Example: Mutual Exclusion

= We define atomic propositions: AP = {C,,C,, T, T,)
= Astateis labeled with T, if v, =T
= Astate is labeled with C; if v, = C

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

* Does it hold that M = ?
= Property 1: f := AG—(C,AC,)
= Compute [fly={s e S|M,s =f}andcheck S, c [f],

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 1: f := AG—(C,AC,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

T lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 1: f := AG—(C,AC,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 1: f := AG—(C,AC,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 1: f := AG—(C,AC,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 1: f := AG—(C,AC,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Does it hold that M = {?
» Property 1: f i= AG—(CinC;) M = AG —(C,AC))

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

Does it hold that M = ?

= Property 2: f := AG—(TAT,)

SCOS

Secure & Correct Systems

Ty

w lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 2: f := AG—(TAT,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Does it hold that M = ?
= Property 2: f := AG—(TAT,)
2 = reachable states from an initial state after | steps

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

= Doesithold that M = {?
= Property 2: f := AG—(TAT,) M AG = (T,AT),)

SCOS

Secure & Correct Systems

Ty

w lllustrative Example: Mutual Exclusion

= Doesithold that M = {?
= Property 2: f := AG—(TAT,) M AG = (T,AT),)

= Model checker returns a counterexample

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

* Does it hold that M = ?
* Property 3: f := AG (T, » FC) A(T,— FC(,))
= |ncase M ¥ f, compute a counterexample

SCOS

Secure & Correct Systems

Ty

lllustrative Example: Mutual Exclusion

* Does it hold that M = ?
= Property 3: f := AG((T, » FC) A (T,— F(C),))
= |ncase M ¥ f, compute a counterexample
MEAG(T,>FC)A(T,>FC)))

SCOS

Secure & Correct Systems

lllustrative Example: Mutual Exclusion

* Does it hold that M = ?

* Property 4: f := AGEF (N; AN, AS,)
= How would you express Property 4 in natural language?
= |ncase M ¥ f, compute a counterexample

SCOS

Secure & Correct Systems

lllustrative Example: Mutual Exclusion

= Does it hold that M & {?
= Property 4:f:= AGEF (N;AN,AS)) M E AGEF (N, AN,AS))

there is always a way
to get to the initial state (restart)”

SCOS

Secure & Correct Systems

Plan for Today

» CTL Model Checking

= Algorithm for CTL MC

SCOS

Secure & Correct Systems

Ty,

CTL Model Checking Algorithm

Receives
= Given a Kripke structure M and a CTL formula f

MC Returns:
» Whether M = f, i.e., M is a model for f

SCOS

Secure & Correct Systems

CTL Model Checking Algorithm

Receives
= Given a Kripke structure M and a CTL formula f

MC Returns:
» Whether M = f, i.e., M is a model for f

Or (Alternative Definition):
» [fly={s€S|M,s = f}i.e., all states satisfying f
= M is omitted from [[f],, when clear from the context

SCOS

Secure & Correct Systems

CTL Model Checking M E f

lterative algorithm:
Compute [g],, for every subformula g of /

SCOS

Secure & Correct Systems

CTL Model Checking M & f

lterative algorithm:
Compute [g],, for every subformula g of /

Work iteratively on subformulas of f
= from simpler to complex subformulas

SCOS

Secure & Correct Systems

CTL Model Checking M & f

lterative algorithm:
Compute [g],, for every subformula g of /

Work iteratively on subformulas of f
= from simpler to complex subformulas

For checking AG(request — AF grant)

SCOS

Secure & Correct Systems

CTL Model Checking M & f

lterative algorithm:
Compute [g],, for every subformula g of /

Work iteratively on subformulas of f
= from simpler to complex subformulas

For checking AG(request — AF grant)
= Check grant, request

SCOS

Secure & Correct Systems

CTL Model Checking M & f

lterative algorithm:
Compute [g],, for every subformula g of /

Work iteratively on subformulas of f
= from simpler to complex subformulas

For checking AG(request — AF grant)
» Check grant, request
= Then check AF grant

SCOS

Secure & Correct Systems

CTL Model Checking M & f

lterative algorithm:
Compute [g],, for every subformula g of /

Work iteratively on subformulas of f
= from simpler to complex subformulas

For checking AG(request — AF grant)
» Check grant, request

= Then check AF grant

= Next check request —» AF grant

SCOS

Secure & Correct Systems

TU

Grazm

CTL Model Checking M & f

lterative algorithm:
Compute [g],, for every subformula g of /

Work iteratively on subformulas of f
= from simpler to complex subformulas

For checking AG(request — AF grant)
» Check grant, request

= Then check AF grant

= Next check request —» AF grant

» Finally check AG(request — AF grant)

SCOS

Secure & Correct Systems

CTL Model Checking M & f

= For each s, computes label(s), which is
the set of subformulas of f that are true in s

SCOS

Secure & Correct Systems

CTL Model Checking M & f

= For each s, computes label(s), which is
the set of subformulas of f that are true in s

For every subformula g of f:
= The algorithm adds g to label(s) for every state s that satisfies g
» gelabel(s) < M,s =g

SCOS

Secure & Correct Systems

CTL Model Checking M & f

= For each s, computes label(s), which is
the set of subformulas of f that are true in s

For every subformula g of f:

= The algorithm adds g to label(s) for every state s that satisfies g

» gelabel(s) ©M,sEg

M E fifand only if f € label(s) for all initial states s € S, of M

SCOS

Secure & Correct Systems

Ty,

Minimal set of operators for CTL

All CTL formulas can be transformed to use only the operators:
= —, v, EX, EU, EG

MC algorithm needs to handle AP (atomic propositions) and
-, Vv, EX, EU, EG

SCOS

Secure & Correct Systems

Ty

Model Checking AP, —,v- Formulas

Procedure for labeling the states:
= Forpe AP
= p € label(s) if and only if p € L(s)
_'_l

Defined by M

SCOS

Secure & Correct Systems

Ty
Model Checking AP, —,v- Formulas

Procedure for labeling the states:

= Forpe AP
= p € label(s) if and only if p € L(s)

» For subformulas f; and f, that have already been checked
(added to label(s), when needed)

SCOS

Secure & Correct Systems

Ty
Model Checking AP, —,v- Formulas

Procedure for labeling the states:

= Forpe AP
= p € label(s) if and only if p € L(s)

» For subformulas f; and f, that have already been checked
(added to label(s), when needed)
= —f add to label(s) if and only if f, ¢ label(s)

SCOS

Secure & Correct Systems

Ty
Model Checking AP, —,v- Formulas

Procedure for labeling the states:

= Forpe AP
= p € label(s) if and only if p € L(s)

» For subformulas f; and f, that have already been checked
(added to label(s), when needed)
= —f, add to label(s) if and only if f, ¢ label(s)

= f,vf, addto label(s) if and only if
f1€ labels(s) or f,e label(s)

SCOS

Secure & Correct Systems

Ty,

Model Checking AP, —,v- Formulas

Procedure for labeling the states:

= Forpe AP
* p € label(s) if and only if p € L(s)

» For subformulas f; and f, that have already been checked
(added to label(s), when needed)
= —f, add to label(s) if and only if f, ¢ label(s)

= f,vf, addto label(s)) if and only if
f1€ label(s) or f,e label(s)

1E)Do Give the procedures for labeling states satisfying EX f;

SCOS

Secure & Correct Systems

Ty
Model Checking AP, —,v- Formulas

Procedure for labeling the states:

= Forpe AP
* p € label(s) if and only if p € L(s)

» For subformulas f; and f, that have already been checked
(added to label(s), when needed)
= —f, add to label(s) if and only if f, ¢ label(s)

= f,vf, addto label(s)) if and only if
f1€ label(s) or f,e label(s)

1E)Do Give the procedures for labeling states satisfying EX f;

= Add EXf; to label(s) if and only if s has a successor t such that
f€ label(t)

SCOS

Secure & Correct Systems

Model Checkingg = EX [,

= Give the procedures for labeling states satisfying EX f;

= Add g to label(s) if and only if s has a successor t such
that f, e label(t)

SCOS

Secure & Correct Systems

Model Checkingg = EX [,

» Add EXf; to label(s) if and only if s has a successor t such that
f 1€ label(t)

procedure CheckEX (f,)
T:={t|f; e label(t) }
while T # & do
chooset eT, T:=T\({t};
for all s such that R(s,t) do
If EX f; ¢ label(s) then

label(s) : = label(s) v { EX f};

SCOS

Secure & Correct Systems

Ty,

Model Checking g = E(f1U f5)

5O Procedures for labeling states satisfying E(f,U f5)
= Think how you can rewrite the procedure CheckEX

procedure CheckEX (f,)
T:={t|f, e label(t) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
If EX f; ¢ label(s) then

label(s) : = label(s) U { EX f,};

procedure CheckEU (f,,f,)
T:=

for all teT do
label(t) :=

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do

SCOS

Secure & Correct Systems

Ty

Model Checking g = E(f1U f5)

» Procedures for labeling states satisfyingE (f,U f>)
= Rewriting the procedure CheckEX

procedure CheckEX (f,)
T:={t|f, e label(t) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
If EX f; ¢ label(s) then

label(s) : = label(s) U { EX f,};

procedure CheckEU (f,,f,)
T:={t|f, e label(t) }

for all teT do
label(t) :=

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do

SCOS

Secure & Correct Systems

Ty

Model Checking g = E(f1U f5)

» Procedures for labeling states satisfyingE (f,U f>)
= Rewriting the procedure CheckEX

procedure CheckEX (f,)
T:={t|f, e label(t) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
If EX f; ¢ label(s) then

label(s) : = label(s) U { EX f,};

procedure CheckEU (f,,f,)
T:={t|f, e label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do

SCOS

Secure & Correct Systems

Ty

Model Checking g = E(f1U f5)

» Procedures for labeling states satisfyingE (f,U f>)
= Rewriting the procedure CheckEX

procedure CheckEX (f,)
T:={t|f, e label(t) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
If EX f; ¢ label(s) then

label(s) : = label(s) U { EX f,};

procedure CheckEU (f,,f,)
T:={t|f, e label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T = < do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
if E(f, U f,) ¢ label(s) and f; e label(s) then
label(s) : = label(s) U {E(f, U f,) };

SCOS

Secure & Correct Systems

Ty

Model Checking g = E(f1U f5)

» Procedures for labeling states satisfyingE (f,U f>)
= Rewriting the procedure CheckEX

procedure CheckEX (f,)
T:={t|f, e label(t) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
If EX f; ¢ label(s) then

label(s) : = label(s) U { EX f,};

procedure CheckEU (f,,f,)
T:={t|f, e label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T = < do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
if E(f, U f,) ¢ label(s) and f; e label(s) then
label(s) : = label(s) U {E(f, U f,) };
T:=Tu/{s}

SCOS

Secure & Correct Systems

Ty

Example: Model Checking U Formulas

Does it hold that M = ?
* f:= E(aUb)

procedure CheckEU (f,,f,)
T:={t|f, label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T# & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
if E(f, U f,) ¢ label(s) and f; e label(s) then
label(s) : = label(s) U {E(f; U f,) };
T:=Tu/{s}

SCOS

Secure & Correct Systems

Ty

Example: Model Checking U Formulas

Does it hold that M & ?
* f:= E(aUb)

[[E(aUb)]] =10,3,5}

procedure CheckEU (f,,f,)
T:={t|f, label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
if E(f, U f,) ¢ label(s) and f; e label(s) then
label(s) : = label(s) U {E(f; U f,) };
T:=Tu/{s}

SCOS

Secure & Correct Systems

Ty

Example: Model Checking U Formulas

Does it hold that M & ?
* f:= E(aUb)

[[E(aUb)]] = {0,2,3,4,5}

procedure CheckEU (f,,f,)
T:={t|f, label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T# & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
if E(f, U f,) ¢ label(s) and f; e label(s) then
label(s) : = label(s) U {E(f; U f,) };
T:=Tu/{s}

SCOS

Secure & Correct Systems

Ty

Example: Model Checking U Formulas

Does it hold that M & ?
* f:= E(aUb)

v M E E(aUb)
[[E(aUb)]] = {0,1,2,3,4,5}

procedure CheckEU (f,,f,)
T:={t|f, label(t) }

for all teT do
label(t) := label(t) U { E(f, U f,) }

while T = & do
chooset eT; T:=T\({t};
for all s such that R(s,t) do
if E(f, U f,) ¢ label(s) and f; e label(s) then
label(s) : = label(s) U {E(f; U f,) };
T:=Tu/{s}

SCOS

Secure & Correct Systems

Model Checking g = EGf;

SEEGHT
if and only if
There is a path &, starting at s, suchthatnt = G f;

SCOS

Secure & Correct Systems

Model Checking g = EGf;

SEEGHT

if and only if

There is a path &, starting at s, suchthatnt = G f;
If and only if

There is a path from s to a :
where all states satisfy f,

SCOS

Secure & Correct Systems

Model Checking g = EGf;

= A Strongly Connected Component (SCC) in a graph
IS a subgraph C such that every node in C is reachable from any
other node in C via hodes in C

SCOS

Secure & Correct Systems

Model Checking g = EGf;

A Strongly Connected Component (SCC) in a graph
IS a subgraph C such that every node in C is reachable from any
other node in C via hodes in C

An SCC Cis maximal (MSCC) if it is not contained in any other
SCC in the graph

= Possible to find all MSCC in linear time O(|S|+|R])

SCOS

Secure & Correct Systems

Model Checking g = EGf;

A Strongly Connected Component (SCC) in a graph
IS a subgraph C such that every node in C is reachable from any
other node in C via hodes in C

An SCC Cis maximal (MSCC) if it is not contained in any other
SCC in the graph

= Possible to find all MSCC in linear time O(|S|+|R])

C is nontrivial if it contains at least one edge.
Otherwise, it is trivial.

SCOS

Secure & Correct Systems

Model Checking g = EGf;

= Reduced structure for M and f:
= Remove from M all states such that f; & labels(s)

SCOS

Secure & Correct Systems

Model Checking g = EGf;

= Reduced structure for M and f:
= Remove from M all states such that f; & labels(s)

= Resulting model: M' = (§',R’, L")
= S"={s|M,s E f;}
= R'=(S"XS)NR
= [/(s") =L(s") forevery s’ € §'

SCOS

Secure & Correct Systems

Model Checking g = EGf;

= Reduced structure for M and f:
= Remove from M all states such that f; & labels(s)

= Resulting model: M' = (§',R’, L")
= S"={s|M,s E f;}
= R'=(S"XS)NR
= [/(s") =L(s") forevery s’ € §'

» Theorem: M,s & EG f, if and only if

s € S’ and
there is a path in M' from s to some state t
In a nontrivial MSCC of M'.

SCOS

Secure & Correct Systems

Model Checking g = EGf;

procedure CheckEG (f,)
S :={s | f; € label(s) }
MSCC :={ C | Cis a nontrivial MSCC of M’ }
T:=Uc cuscc{s|s € C}

for all teT do
label(t) := label(t) v { EG f;}

SCOS

Secure & Correct Systems

TU

Grazm

Model Checking g = EGf;

procedure CheckEG (f,)
S :={s | f; € label(s) }
MSCC :={ C | Cis a nontrivial MSCC of M’ }
T:=Uc cuscc{s|s € C}

for all teT do
label(t) := label(t) v { EG f;}

while T & do
chooset eT; T:=T\({t};
for all s €S’ such that R’(s,t) do
If EG f; ¢ label(s) then
label(s) : = label(s) v {EG f,};
T.:=Tu({s}

SCOS

Secure & Correct Systems

Model Checking Complexity
Steps per Subformula

= MC Atomic Propositions

= MC —. v formulas

« MCg=EXf,

* MCg = E(f1iU 1)

" MCg — EGfl

SCOS

Secure & Correct Systems

Model Checking Complexity
Steps per Subformula

= MC Atomic Propositions
= O(|S]) steps
= MC —. v formulas

« MCg=EXf,

* MCg = E(f1iU 1)

" MCg — EGfl

SCOS

Secure & Correct Systems

Model Checking Complexity
Steps per Subformula

= MC Atomic Propositions
= O(|S]) steps

= MC —, v formulas
= O(|S]) steps

= MCg=EXf,

* MCg = E(f1iU 1)

" MCg — EGfl

SCOS

Secure & Correct Systems

‘lbDo Model Checking Complexity
Steps per Subformula

= MC Atomic Propositions
= O(|S]) steps
= MC —, v formulas
= O(|S]) steps
= MCg=EXf,
= Add g to label(s) iff s has a successor t such that f, e label(t)
" O(IS[+ [R])

" MCg = E(f1U f2)

- MCg — EGfl

SCOS

Secure & Correct Systems

‘lbDo Model Checking Complexity
Steps per Subformula

= MC Atomic Propositions
= O(|S]) steps
= MC —, v formulas
= O(|S]) steps
= MCg=EXf,
= Add g to label(s) iff s has a successor t such that f, e label(t)
" O(IS[+ [R])
" MCg = E(f1U f>)
" O(IS[+ [R])
= MCg = EGfy

SCOS

Secure & Correct Systems

Model Checking Complexity

Steps per Subformula

= Computing M" : O (|S| + |R])

= Computing MSCCs using Tarjan’s algorithm:
O (ISl + |R'])

= Labeling all states in MSCCs: O (|S'|)
» Backward traversal: O (|S'| + |R'|)

= => Qverall: O (|S| + |R])

SCOS

Secure & Correct Systems

Model Checking Complexity

Steps per Subformula

= MC Atomic Propositions
= O(|S]) steps

= MC —, v formulas
= O(|S]) steps

= MCg=EXf,
= Add g to label(s) iff s has a successor t such that f, e label(t)
= O(IS| +IRI)

" MCg = E(f1U f>)
= O(IS| +IRI)

= MCg = EGfy
= O(IS| +IRI])

SCOS

Secure & Correct Systems

Model Checking Complexity

Each subformula

= O(|S]+ |R]) = O(|M])

Number of subformulas in f:
= O([f])

Total

= O(IM] x [f])

For comparison
= Complexity of MC for LTL and CTL* is O(M| x 2Ifl)

SCOS

Secure & Correct Systems

TU

Grazm

o0, Microwave Example

= Use the proposed algorithm to compute if M =f?
= f:=—E (true U (Start A EG —Heat))

open cook

done

warmup

SCOS

Secure & Correct Systems

TU

Grazm

f := —FE (true U (Start A EG —Heat))

[start] = {2,5,6,7}
[—Heat]| ={1,2,3,5,6}

open cook

done

warmup

SCOS

Secure & Correct Systems

TU

Grazm

f := —FE (true U (Start A EG —Heat))

[start] = {2,5,6,7}
[—Heat]| ={1,2,3,5,6}

MSCC with —Heat
[(EG —Heat] =

close l

3

open cook
open

done
Close
close l Topen reset Start
5 6
Start
Close warmup

SCOS

Secure & Correct Systems

TU

Grazm

f := —FE (true U (Start A EG —Heat))

[start] = {2,5,6,7}
[—Heat] ={1,2,3,5,6}

MSCC with —Heat
[(EG —Heat]| = {1,2,3,5}

close l

3

open cook
open

done
Close
close l Topen reset Start
5 0
Start
Close warmup

SCOS

Secure & Correct Systems

TU

Grazm

f := —FE (true U (Start A EG —Heat))

[start] = {2,5,6,7} [Start A EG —Heat]| = {2, 5}

[—Heat] ={1,2,3,5,6}
[(EG —Heat]| ={1,2,3,5} 4

open cook

done

warmup

SCOS

Secure & Correct Systems

TU

Grazm

f := —FE (true U (Start A EG —Heat))

[Start A EG —Heat] = {2, 5}
[E (true U (Start A EG —Heat))]
- {172131415’617}

[start] = {2,5,6,7}
[—Heat] ={1,2,3,5,6}
[(EG —Heat]| ={1,2,3,5} 4

open cook

done

warmup

Institute for Applied Information Processing and Communications SC(.)S
29.04.2024

Secure & Correct Systems

TU

Grazm

f := —FE (true U (Start A EG —Heat))

[start] = {2,5,6,7}

[—Heat] = {1,2,3,5,6} [Start A EG —Heat | = {2, 5}
[(EG —Heat] = {1,2,3,5} [EU]={1,23,455,6,7}
[f]=O
open cook

done

warmup

SCOS

Secure & Correct Systems

TU

Grazm

Secure & Correct Systems

