

Automata and LTL Model Checking

Bettina Könighofer

Model Checking SS24

May 12th 2024

Plan for Today

- Part 1 LTL Model Checking
 - Generalized Büchi Automata
 - Translation of LTL to Büchi Automata
- Part 2 Reactive Synthesis
 - Safety Games
 - Reachability Games
 - Büchi Games

Recall LTL Semantics

Recap – LTL Model Checking

• \mathcal{A} does not satisfy \mathcal{S} if $\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S})$

TODAY

Model Checking of LTL

given an LTL property φ and a Kripke structure M check whether $M \models \varphi$

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \omega}$
- 3. Translate M to an automaton \mathcal{A} .
- 4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$

0

- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies φ
- 6. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - lacktriangle a computation in M that does not satisfy $oldsymbol{arphi}$

Homework - Intersection of Büchi Automata

Question

■ How do we define the transition relation for B, if x is over {0,1} only?

With x over $\{0,1,2\}$ we had:

 $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:

- $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
- $\mathbf{Q}^0 = \mathbf{Q}_1^0 \times \mathbf{Q}_2^0 \times \{\mathbf{0}\}$
- $\mathbf{F} = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{2\}$

Else, x'=x

Homework - Intersection of Büchi Automata

- Question
 - How do we define the transition relation for B, if x is over {0,1} only?
- Answer
 - For Δ
 - (2) If x=0 and $q_1 \in \mathbf{F}_1$ then x'=1If x=1 and $q_2 \in \mathbf{F}_2$ then x'=0Else, x'=x
 - For F
 - $\mathbf{F} = \mathbf{F_1} \times \mathbf{Q}_2 \times \{0\}$

Homework - Counterexamples

Question

• Show that if a certain LTL property φ can only be falsified by infinite counterexamples, then it also has a counterexample that is lasso shaped.

Homework - Counterexamples

Question

• Show that if a certain LTL property φ can only be falsified by infinite counterexamples, then it also has a counterexample that is lasso shaped.

Answer

- Is the case for Liveness properties: e.g., Fa
- We consider Büchi automata with a finite state space
- Let n = |Q|
- Since the automaton has only n states, an infinite long run must contain a loop
- An infinite counterexample is thus lasso shaped

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Generalized Büchi automata
- Translation of LTL to Büchi automata

Automata on **Infinite** Words (Büchi)

$$\mathcal{B} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$$

- ρ is accepting \Leftrightarrow inf(ρ) \cap $F \neq \emptyset$
- Language of Büchi automaton:

 $\mathcal{L}(\mathcal{B}) = \{ \text{words with an} \}$

In LTL: GF(a)

Generalized Büchi automata

- Have several sets of accepting states
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ is a generalized Büchi automaton:
 - $\mathbf{F} = \{F_1, \dots, F_k\}$, where for every $1 \le i \le k$, $F_i \subseteq Q$
- A run ρ of \mathcal{B} is accepting if for each $F_i \in F$, $\inf(\rho) \cap F_i \neq \emptyset$

Generalized Büchi automata

• A run ρ of \mathcal{B} is accepting if for each $F_i \in F$, $\inf(\rho) \cap F_i \neq \emptyset$

- Is the infinite work b^{ω} accepted?
- Is the infinite work a^{ω} accepted?
- Is the infinite work $(ab)^{\omega}$ accepted?

Generalized Büchi automata

- A run ρ of \mathcal{B} is accepting if for each $F_i \in F$, $\inf(\rho) \cap F_i \neq \emptyset$
- Is the infinite work b^{ω} accepted? \times
- Is the infinite work a^{ω} accepted? \checkmark
- Is the infinite work $(ab)^{\omega}$ accepted? \checkmark

Translation from Generalized Büchi to Büchi

• Given $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ with $\mathbf{F} = \{F_1, \dots, F_k\}$

How does it work to construct a Büchi automaton B' that accepts the same language?

Translation from Generalized Büchi to Büchi

- Given $\mathbf{\mathcal{B}} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$ with $\mathbf{F} = \{F_1, \dots, F_k\}$
- How does it work to construct a Büchi automaton B' that accepts the same language?
- Idea:
 - Introduce counter from $0 \dots k \rightarrow k + 1$ copies of the state space
 - Redirect outgoing edges from accepting states to next copy
 - → Each cycle will contain accepting states from each set F₁, ..., F_k

17

Translation from Generalized Büchi to Büchi

- $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ with $\mathbf{F} = \{F_1, \dots, F_k\}$
- $\mathbf{B}' = (\mathbf{\Sigma}, \mathbf{Q} \times \{0,1,...,k\}, \mathbf{\Delta}', \mathbf{Q}^0 \times 0, \mathbf{Q} \times k)$ with:
- The transition relation Δ ': $((q, x), a, (q', y)) \in \Delta$ ' when $(q, a, q') \in \Delta$ and x and y are as follows:
 - If $q' \in F_i$ and x = i, then y = i + 1 for i < k
 - If x = k, then y = 0.
 - Otherwise, x = y.

Size of \mathcal{B} ' = (size of \mathcal{B}) × (k+1)

Translation from Generalized Büchi to Büchi

- $\mathbf{\mathcal{B}} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F}) \text{ with } \mathbf{F} = \{F_1, \dots, F_k\}$
- $\mathcal{B}' = (\Sigma, \mathbb{Q} \times \{0,1,...,k\}, \Delta', \mathbb{Q}^0 \times 0, \mathbb{Q} \times k)$ with:
- The transition relation Δ ': $((q, x), a, (q', y)) \in \Delta$ ' when $(q, a, q') \in \Delta$ and x and y are as follows:
 - If $q' \in F_i$ and x = i, then y = i + 1 for i < k
 - If x = k, then y = 0.
 - Otherwise, x = y.

Can we safe a copy?

Translation from Generalized Büchi to Büchi

- $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ with $\mathbf{F} = \{F_1, \dots, F_k\}$
- $\mathbf{B}' = (\mathbf{\Sigma}, \mathbf{Q} \times \{1, ..., k\}, \mathbf{\Delta}', \mathbf{Q}^0 \times 1, \mathbf{F}_{\mathbf{k}} \times \mathbf{k})$ with:
- The transition relation Δ ':

$$((q,x),a,(q',y)) \in \Delta'$$
 when $(q,a,q') \in \Delta$ and x and y are as follows:

- If $q' \in F_i$ and x = i, then y = i + 1 for i < k
- If x = k, then y = 1.
- Otherwise, x = y.

Size of $\mathcal{B}' = (\text{size of } \mathcal{B}) \times k$

What is the language of **B**?

Translate **B** to a Büchi automaton **B**'

- Translate B to a Büchi automaton B'
 - Two copies because we have two accepting sets

- Translate B to a Büchi automaton B'
 - Choose once copy as initial one

- Translate B to a Büchi automaton B'
 - Redirect outgoing edges from accepting states

- Translate B to a Büchi automaton B'
 - Redirect outgoing edges from accepting states

- Translate B to a Büchi automaton B'
 - Only one copy is accepting

- Translate B to a Büchi automaton B'
 - Remove unreachable states

- Translate **B** to a Büchi automaton **B**'
 - And here is our beautiful Büchi automaton.
 - What is the language of B'?

Outline

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Generalized Büchi automata
- Translation of LTL to Büchi automata

Translation of LTL to Büchi automata

- We discuss simple algorithm from Vardi and Wolper (book p. 98)
- Size of automaton always exponential in the size of the specification
 - M.Y. Vardi, and P. Wolper.

 An automata-theoretic approach to automatic program verification.
 In Logic in Computer Science (LICS), pages 332-344, 1986
- More efficient algorithm by Gerth, Peled, Vardi and Wolper (book page 101)
 - R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper.

 Simple on-the-fly automatic verification of linear temporal logic.

 In Protocol Specification Testing and Verification, pages 3-18, 1995

Translation of LTL to Büchi automata

Input: LTL specification φ

Output: Büchi automaton \mathcal{A}_{φ}

• \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ

Steps of the Algorithm:

- 1. Rewriting of φ
- 2. Translate φ into generalized Büchi Automaton
- 3. Translate generalized Büchi to Büchi automaton

Translation of LTL to Büchi automata

Input: LTL specification φ

Output: Büchi automaton \mathcal{A}_{φ}

• \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ

Steps of the Algorithm:

- 1. Rewriting of φ
 - Algorithm only handles ¬,∧,∨, X, U
 - Use rewriting rules
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi$

From LTL formula φ to GBA \mathcal{A}_{φ}

- Step 1: Based on φ , we define the **state space** of \mathcal{A}_{φ}
- Each state of the automata is labelled with a set of sub-formulas that should be satisfied on paths starting at that state.
 - Thus, we only consider consistent subsets

Form State Space of \mathcal{A}_{φ}

- Build the closure $cl(\varphi)$ of φ
 - ... subformulas of φ and their negation

Form State Space of ${\cal A}_{arphi}$

- Build the closure $cl(\varphi)$ of φ
 - ... subformulas of φ and their negation
- Formally:
 - $\varphi \in cl(\varphi)$.
 - If $\varphi_1 \in cl(\varphi)$, then $\neg \varphi_1 \in cl(\varphi)$.
 - If $\neg \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 \vee \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.
 - If $X \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 U \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.

Form State Space of ${\cal A}_{arphi}$

- Build the closure $cl(\varphi)$ of φ
 - ... subformulas of φ and their negation
- Compute the **good** sets in $cl(\phi)$
 - $S \subseteq cl(\varphi)$ is **good** in $cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**
 - For all $\varphi_1 \in cl(\varphi)$: $\varphi_1 \in S \Leftrightarrow \neg \varphi_1 \notin S$,
 - For all $\varphi_1 \lor \varphi_2 \in cl(\varphi)$: $\varphi_1 \lor \varphi_2 \in S \Leftrightarrow$ at least one of φ_1, φ_2 is in S.

Form State Space of \mathcal{A}_{φ}

- Build the closure $cl(\varphi)$ of φ
 - ... subformulas of φ and their negation
- Compute the **good** sets in $cl(\phi)$
 - $S \subseteq cl(\varphi)$ is **good** in $cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**
- The set of all **good** sets of $cl(\varphi)$ defines the state space of \mathcal{A}_{φ}

Form State Space of ${\cal A}_{arphi}$

- Closure $cl(\varphi)$: subformulas of φ and their negation
- Good Sets: $S \subseteq cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**

- Given: $\varphi := \neg h \cup c$. What is the state space of \mathcal{A}_{φ} ?
 - $cl(\varphi) \coloneqq \{h, \neg h, c, \neg c, \neg h \cup c, \neg(\neg h \cup c)\}$
 - $Q = \{\{h, c, \varphi\}, \{\neg h, c, \varphi\}, \{h, c, \varphi\}, \{\neg h, \neg c, \varphi\}, \{h, c, \neg \varphi\}, \{\neg h, c, \neg \varphi\}, \{h, c, \neg \varphi\}, \{\neg h, \neg c, \neg \varphi\}\}\}$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.
- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - $\sigma = q' \cap AP$
 - For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
 - For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

Each state of \mathcal{A}_{φ} is labelled with a set of properties that should be satisfied on all paths starting at that state

$$\varphi = (\neg h \cup C)$$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

$$\varphi = (\neg h \cup C)$$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

$$\varphi = (\neg h \cup C)$$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

 $\varphi = (\neg h \cup C)$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

 $\varphi = (\neg h \cup c)$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

$$\varphi = (\neg h \cup c)$$

Draw the transitions of \mathcal{A}_{φ}

 q_4 has no outgoing edges since $\varphi_1 \notin q_4$

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

$$\varphi = (\neg h \cup c)$$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

$$\varphi = (\neg h \cup c)$$

Draw the transitions of \mathcal{A}_{φ}

 q_3 has no edge to φ_8 since $\varphi_1 U \varphi_2 \notin q_8$

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

 $\neg h$) U c

 $(\neg h) \mathbf{U} c$

h, *c*

 $(\neg h) \mathbf{U} c$

 $\varphi = (\neg h \cup c)$

Draw the transitions of \mathcal{A}_{φ}

• $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

$$\varphi = (\neg h \cup c)$$

Draw the transitions of \mathcal{A}_{φ}

 q_3 has no edge to φ_6 since $\varphi_1 U \varphi_2 \notin q_6$

For
$$q, q' \in Q$$
 and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

 $\varphi = (\neg h \cup c)$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

 $\varphi = (\neg h \cup c)$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

$$\varphi = (\neg h \cup c)$$

Draw the transitions of \mathcal{A}_{φ}

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$$

- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$
 - For all $\neg(\varphi_1 U \varphi_2) \in cl(\varphi)$:
 - $\neg (\varphi_1 \cup \varphi_2) \in q \Leftrightarrow \text{either } \neg \varphi_2 \in q \text{ and either } \neg \varphi_1 \in q \text{ or } \neg (\varphi_1 \cup \varphi_2) \in q'$

Initial States & Sets of Accepting States of \mathcal{A}_{φ}

$$\mathcal{A}_{\varphi} = (\mathcal{P}(AP), \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.
- Δ : Slide before

- What is the set of initial state?
- What are the sets of accepting states?

Initial States of ${\cal A}_{\varphi}$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(AP), \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}\left(cl(\varphi)\right) \cup \{\iota\}$ is the set of all the good sets in $cl(\varphi) \cup \{\iota\}$.
- Δ : Slide before + $(\iota, \sigma, q) \in \Delta \Leftrightarrow \varphi \in q$ and $\sigma = q \cap AP$

HAIK 57

Set of Accepting States of \mathcal{A}_{φ}

$$\mathcal{A}_{\varphi} = (\mathcal{P}(AP), \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}\left(cl(\varphi)\right) \cup \{\mathbf{l}\}\$ is the set of all the good sets in $cl(\varphi) \cup \{\mathbf{l}\}\$.
- Δ : Slide before + (ι , σ ,q) $\in \Delta \Leftrightarrow \varphi \in q$ and $\sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, F includes the set
 - $F_{\varphi_1} \cup \varphi_2 = \{q \in \mathbb{Q} \mid \varphi_2 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q\}.$

What are the sets of accepting states?

Secure & Correct Systems

Set of Accepting States of \mathcal{A}_{φ}

$$\mathcal{A}_{\varphi} = (\mathcal{P}(AP), \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}\left(cl(\varphi)\right) \cup \{\iota\}$ is the set of all the good sets in $cl(\varphi) \cup \{\iota\}$.
- Δ : Slide before + (ι , σ ,q) $\in \Delta \Leftrightarrow \varphi \in q$ and $\sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, F includes the set
 - $F_{\varphi_1 \cup \varphi_2} = \{ q \in Q \mid \varphi_2 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q \}.$

 $F = \{\{1, 2, 5, 6, 7, 8\}\}\$

