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Temporal Logic
2

▪ Used to specify the dyamic behavior of systems.

▪ E.g., A temporal logic formula can express that… 

▪ …a property has to hold in the next time step.

▪ …a  property has to hold always.

▪ …a property has to hold eventually. 

▪ …

▪ MC Question
▪ Does the model of the system satisfy a temporal logic formula?

▪ System model
▪ Kripke structure (today)

▪ I/O Automaton

▪ Markov Decision Process / Stochastic Multiplayer Game, ….



3 Plans for the Next 4 Weeks

▪ Topic: Model Checking of Temporal Logic Formulas

1. Intro to Temporal Logics: CTL*, LTL, CTL

2. CTL Model Checking – Part 1

3. CTL Model Checking – Part 2

4. LTL Model Checking

▪ Next: Model Checking of Probabilistic Systems

(Stefan’s Part)



Plan for Today4

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics 

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL
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• “If a sentence as a truth value, then it is a declarative sentence.”

• “A model is an assignment that makes a formula either true or 

false.”

Warm Up

Model sentences in propositional logic.
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• “If a sentence as a truth value, it is a declarative sentence.”

• “A model is an assignment that makes a formula either true or that 

makes the formula false.”

Warm Up

Model sentences in propositional logic.

p… sentence has a truth value, q… sentence is a declarative sentence

𝑝 → 𝑞

p… assignment that makes the formula true, 

q… assignment that makes the formula false

𝑝 ⊕ 𝑞



Properties of Kripke Structures
7

a b

x
c

• For any execution, it is always the case 

that if the robot visits A, it 

visits C within the next two steps.

• There exists an execution, in which the 

robot always visits C within the next two 

steps after visiting A.

Write properties as formulas:

For detailed modelling, we need…

• temporal operators, and

• path quantifiers!

Properties



Propositional Temporal Logic8

AP – a set of atomic propositions, 𝑝, 𝑞𝐴𝑃

Temporal operators

▪ Describe properties along a given path/execution

▪ 3 operators to start with:

Xp

Gp

Fp

pUq

pRq

Path quantifiers: A for all paths

E there exists a path



Properties of Kripke Structures
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• For any execution, it is always the case 

that if the robot visits A, it 

visits C within the next two steps.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F…  eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)



Properties of Kripke Structures
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• For any execution, it is always the case 

that if the robot visits A, it 

visits C within the next two steps.

• There exists an execution in which it is 

always the case that if the robot visits 

A, it visits C within the next two steps.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F…  eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)

𝐸 𝐺 (𝑎 → 𝑋𝑐 ∨ 𝑋𝑋𝑐)



Properties of Kripke Structures
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• For any execution it holds that

the robot never visits X.

• There exists an execution in which 

it holds that the robot never visits X.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F…  eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 𝐺 (¬𝑥)

𝐸 𝐺 (¬𝑥)



Properties of Kripke Structures
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22.04.2024

• There exists an execution in which 

it holds that the robot visits A infinitely 

often and C infinitely often.

• For any execution, it holds that the 

robot visits A infinitely often, 

but C only finitely often. 

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F…  eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐸 (𝐺𝐹 𝑎 ∧ 𝐺𝐹 𝑐)

𝐴 (𝐺𝐹 𝑎 ∧ 𝐹𝐺¬𝑐)



Properties of Kripke Structures
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• For any execution, it holds that if the 

robot visits A infinitely often, 

it also visits C finitely often.

Write properties as formulas:Properties

Temporal Operators

X… next

G… globally

F…  eventually

Path quantifiers

A for all paths

E there exists a path

a b

x
c

𝐴 (𝐺𝐹 𝑎 → 𝐹𝐺¬𝑐)



Plan for Today14

▪ Motivating Example and Intuitive Explanation of 

Temporal Operators

▪ CTL*

▪ Informal Explanation of Syntax and Semantics 

▪ Syntax

▪ Semantics

▪ LTL

▪ CTL



Computation Tree Logic - CTL*15

▪ Defines properties of Computation Trees of Kripke structures.

▪ Computation Tree 

▪ Shows all possible executions starting form initial state.

▪ All branches of the tree are infinite.

a,b

b,c c

Kripke structure 𝑀,

labeled with 𝐴𝑃 = {𝑎, 𝑏, 𝑐}
a,b

b,c c

cca,b

Unwinding of 𝑀 into 

infinite computation tree



Paths16

▪  = 𝑠0, 𝑠1, … is an infinite path in 𝑀 if

▪ 𝑠0 is an initial state, and

▪ for all 𝑖  0,  (𝑠𝑖, 𝑠𝑖+1)  𝑅

a,b

b,c c

a,b

b,c c

cca,b

𝝅𝟏 𝝅𝟐



Propositional Temporal Logic17

Path quantifiers: A, E

▪ A specifies that all paths starting from s have property 𝝋.

▪ E specifies that some paths starting from s have property 𝝋.

▪ Use combination of A and E to describe 

branching structure in tree.

a,b

b,c c

a,b

b,c c

cca,b

𝝅𝟏 𝝅𝟐



Propositional Temporal Logic18

Temporal operators:

▪ Describe properties that hold along an infinite path 𝜋

Xp

Gp

Fp

pUq

pRq

pRq “p release q”:

pRq requires that q holds along 𝜋 up to and including the first

state where p holds. However, p is not required to hold eventually.  
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▪ Path Formulas:

▪ On 𝜋1, 𝑏 holds at every state. → 𝜋1 ⊨ 𝐺𝑏

▪ On 𝜋2, 𝑏 does not hold at every state. → 𝜋2 ⊭ 𝐺𝑏

▪ State Formulas:

▪ There is a path from 𝑠0 that satisfies 𝐺𝑏 →𝑠0 ⊨ EG b

▪ Not all paths from 𝑠0 satisfy 𝐺𝑏 →𝑠0 ⊭ AG b

Informal Semantics of State and Path Formulas 

▪ Illustrate CTL* Semantics on Example

𝝅𝟏 𝝅𝟐
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▪ Does 𝑠0 satisfy the following formula?

▪ 𝑠0 ⊨ EXX (a ∧ 𝑏)

▪ 𝑠0 ⊭ EXAX (a ∧ 𝑏)

𝝅𝟏 𝝅𝟐

Informal Semantics of State and Path Formulas 



Plan for Today21

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics 

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL



Syntax of CTL*22

Two types of formulas in the inductive definition

▪ State formulas (true in a specific state)

▪ Path formulas  (true along a specific path)

CTL* formulas are the set of all state formulas



Syntax of CTL*: State Formulas23

Inductive definition of state formulas:

▪ If 𝑝 ∈ 𝐴𝑃, then 𝑝 is a state formula.

▪ If 𝑓1 and 𝑓2 are state formulas, so are  𝑓1, 𝑓1𝑓2, and 𝑓1𝑓2.

▪ If 𝑔 is a path formula, then 𝑬𝑔, 𝑨𝑔 are state formulas.

Inductive definition of path formulas:

▪ If 𝑓 is a state formula, then 𝑓 is also a path formula.

▪ If 𝑔1, 𝑔2 are path formulas, then ¬𝑔1, 𝑔1 ∨ 𝑔2, 𝑔1 ∧ 𝑔2,
𝑿𝑔1, 𝑮𝑔1, 𝑭𝑔1, 𝑔1𝑼 𝑔2, 𝑔1𝑹 𝑔2

are path formulas. 

CTL* is the set of all state formulas!



Plan for Today24

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics 

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL



Semantics of CTL*25

▪ Kripke Structure 𝑀 = 𝑆, 𝑆0, 𝑅, 𝐴𝑃, 𝐿

▪  = s0, s1, … is an infinite path in 𝑀

▪ i – the suffix of , starting at 𝑠𝑖

▪ For state formulas:

▪ 𝑴, 𝒔 ⊨ 𝒇 … the state formula 𝑓 holds in state 𝑠 of 𝑀

▪ For path formulas:

▪ 𝑴, 𝝅 ⊨ 𝒈 … the path formula 𝑔 holds along 𝜋 in 𝑀



Semantics of CTL*26

▪ Let 𝒈𝟏 and 𝒈𝟐 be path formulas and 𝒇𝟏 and 𝒇𝟐 be state 
formulas.

▪ ⊨ is inductively defined via the structure of the formula.

State formulas:

▪ 𝑴, 𝒔 ⊨ 𝒑  𝒑  𝑳(𝒔) for 𝒑  𝑨𝑷

▪ 𝑴, 𝒔 ⊨ E 𝒈𝟏  there is a path  from 𝒔 s.t. M,  ⊨ 𝒈𝟏

▪ 𝑴, 𝒔 ⊨ A 𝒈𝟏  for every path  from 𝒔 s.t. M, ⊨ 𝒈𝟏

▪ Boolean combination (, , ) – the usual semantics



Let 𝒈𝟏 and 𝒈𝟐 be path formulas and 𝒇𝟏 and 𝒇𝟐 be state 

formulas.

Path formulas:

▪ 𝑴, 𝝅 ⊨ 𝒇𝟏  𝒔 is the first state of 𝝅 and 𝑴, 𝒔 ⊨ 𝒇𝟏

▪ M, ⊨ X 𝒈𝟏  M, 𝝅𝟏 ⊨ 𝒈𝟏

▪ M, ⊨ G 𝒈𝟏  for every 𝑖  0, M, 𝝅𝒊 ⊨ 𝒈𝟏

▪ M, ⊨ F𝒈𝟏  there exists 𝑘  0, M, 𝝅𝒌 ⊨ 𝒈𝟏

▪ M, ⊨ 𝒈𝟏 U 𝒈𝟐  there exists 𝑘  0, M, 𝝅𝒌 ⊨ 𝒈𝟐

and for every 0 𝑗 < 𝑘, M, 𝝅𝒋 ⊨ 𝒈𝟏

Semantics of CTL*27

M ⊨ 𝒇𝟏  for all initial states s0  S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏



28 Properties of CTL*

The operators  , , X, U, E  are sufficient to express 

any CTL* formula:

▪ 𝑓1  𝑓2  (𝑓1  𝑓2 )

▪ 𝑭 𝑔1  𝑡𝑟𝑢𝑒 𝑼 𝑔1

▪ 𝑮 𝑔1   𝑭 𝑔1

▪ 𝑨 𝑓   𝑬 𝑓

▪ 𝑔1 𝑹 𝑔2  (𝑔1 𝑼 𝑔2 ) or 

𝑔1 𝑹 𝑔2  𝑔2 𝑼 𝑔1 ∧ 𝑔2 ∨ 𝐺 𝑔2

▪ Intuitively, once g1 becomes true, it “releases” g2.

If g1 never becomes true then g2 stays true forever

▪ Rewrite it using the operators U, F, G, or X 



29 Negation Normal Form (NNF)

▪ Formulas in Negation Normal Form (NNF) are formulas in 

which negations are applied only to atomic propositions

▪ Every CTL* formula is equivalent to a CTL* formula in NNF

▪ Negations can be “pushed” inwards. 

▪  E f  A f

 G f  F f

 X f  X f

 ( f U g )  ( f R g )



Example 1: Semantics of CTL*30

▪ Does M ⊨ EX 𝑝 or M  ⊨ ¬EX 𝑝 ?

s0 s1

p ¬ p

M ⊨ 𝒇𝟏  for all initial states s0  S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏



Example 1: Semantics of CTL*31

▪ Does M ⊨ EX 𝑝 or M  ⊨ ¬EX 𝑝 ?

s0 s1

p ¬ p

M ⊨ 𝒇𝟏  for all initial states s0  S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

Solution:

M ⊨ EX 𝑝



Example 2: Semantics of CTL*32

▪ Does M ⊨ EX 𝑝 or M  ⊨ ¬EX 𝑝 ?

M ⊨ 𝒇𝟏  for all initial states s0  S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

s0 s1

p ¬ p



Example 2: Semantics of CTL*33

▪ Does M ⊨ EX 𝑝 or M  ⊨ ¬EX 𝑝 ?

M ⊨ 𝒇𝟏  for all initial states s0  S0: 𝑀, 𝑠0 ⊨ 𝒇𝟏

s0 s1

p ¬ p

Neither
Note, such a situation never

happens when 𝑀 has

a single initial state. 
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Question:

▪ Given a, b  AP 

How does a path satisfying F(a U b) look like?

F (a U b)

Example 3: Semantics of CTL*
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Question:

For p  AP, what is the meaning of the following 

formulas? 

▪  ⊨ GF p

▪  ⊨ FG p

Infinitely often p along 

Finitely often ¬p along 

Example 4: Semantics of CTL*
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Question:

For p  AP, what are the meaning of the following 

formulas? 

▪ s ⊨ EGF p         

▪ s ⊨ EG EF p

There exists a path with satisfies infinitely often p

There exists a path in which we can
reach p from all states

Example 5: Semantics of CTL*



Plan for Today37

▪ Motivating Example

▪ CTL*

▪ Informal Explanation of Syntax and Semantics 

▪ Syntax

▪ Semantics

▪ Sublogics: CTL, LTL



38 Useful sublogics of CTL*

▪ CTL and LTL are the two most used sub-logics of CTL*

▪ Differ on how temporal operators and path quantifiers can be 

combined.

▪ CTL* allows any combination of temporal operators and path 

quantifiers. It includes both LTL and CTL.



39 Linear Temporal Logic (LTL)

LTL consists of state formulas of the form 

A 𝑔, where 𝑔 is a path formula, containing no path quantifiers.

▪ Describes the paths in the computation tree, using only one, 

outermost universal quantification.

▪ Typically when writing formulas in LTL, the path quantifier is 

omitted. 

▪ Examples:

▪ 𝐺𝐹 𝜑

▪ 𝐺 𝜑 → 𝐹 𝜓

▪ 𝐺 𝜑 → 𝑋𝑋𝑋 𝜓

▪ …



40 LTL - Syntax

LTL is the set of all state formulas.

State formulas:

▪ A𝑔 where 𝑔 is a path formula

Path formulas:

▪ 𝑝 𝐴𝑃

▪ 𝑔1, 𝑔1𝑔2, 𝑔1𝑔2, 𝑿𝑔1, 𝑮𝑔1, 𝑭𝑔1, 𝑔1𝑼𝑔2, 𝑔1𝑹𝑔2

where 𝑔1 and 𝑔2 are path formulas.



41 Computation Tree Logic (CTL) 

CTL consists of state formulas, where path quantifiers and temporal 

operators appear in pairs: AG, AU, AX, AF, AR, EG, EU, EX, EF, ER

▪ Examples:

▪ 𝐸(𝜑𝑈𝜓)

▪ 𝐸𝐹 𝜑 ∧ 𝐸𝐺𝜓

▪ 𝐴𝐹 𝐴𝐺 𝜑 …



42 CTL - Syntax

CTL is the set of all state formulas, defined below

(by means of state formulas only):
▪ 𝑝 𝐴𝑃

▪ 𝑓1, 𝑓1𝑓2, 𝑓1𝑓2

▪ 𝑨𝑿 𝑓1, 𝑨𝑮 𝑓1, 𝑨𝑭 𝑓1, 𝑨 (𝑓1 𝑼 𝑓2), 𝑨 (𝑓1 𝑹 𝑓2)

▪ 𝑬𝑿 𝑓1, 𝑬𝑮 𝑓1, 𝑬𝑭 𝑓1, 𝑬 𝑓1 𝑼 𝑓2 , 𝑬 (𝑓1 𝑹 𝑓2)

where 𝑓1 and 𝑓2 are state formulas



43 LTL/CTL/CTL*

▪ Linear Temporal Logic (LTL) consists of state formulas of the 

form A𝑔, where 𝑔 is a path formula, containing no path quantifiers.

▪ CTL consists of state formulas, where path quantifiers and 

temporal operators appear in pairs: AG, AU, AX, AF, AR, EG, EU,

EX, EF, ER
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