Bettina Kénighofer

bettina.koenighofer@iaik.tugraz.at

Logic and Computability

Temporal Logic

Stefan Pranger

stefan.pranger@iaik.tugraz.at

https://xkcd.com/1393/

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

T

00000p000p 09°-+- | | FORREST GUrP CAME OUT | | To0AYS NEW PARENTS WERE | | THE STAARAART OF MY’
TiIME (s PASsI1NG: | | CLOSER ToTHE VIENAM AR | (7EN WHEN EMINEM GOT BIG. | | AAUNTVG IS NOW FORTHER
J Uen THAN 0 THE PRESENT DAAAY. DHﬂP..qHHD MpUUsIC | | ALY THAN YOUR DEAATHS!
TMEGHOST: THEY REMEMBER SIMPSMG 7 WL YOU STD—
h'ﬂ | HUH? SERSON 508 6 AT THE EARUEST | JHAT?
HEEEM % HOW LONG HRS IT )
THE FACTODS. ARGH! BEEN COWG THIS? 'awﬁ'ﬂﬂ‘ﬂ'ﬂ“ (

T




KB \Varm Up — Modelling sentences .
Translate the following sentences in propositional logic: 4K\
= “If there is coffee and cake, then the workshop is a success.

" p... there is coffee, g... there is cake, r... the workshop is a success
"pAQ T



BB \\arm Up — Modelling sentences .
Translate the following sentences in propositional logic: K\
= “If there is a request, the arbiter gives a grant in the next time step. “
" p...there is arequest, q... arbiter gives a grant in the next time step

"P—q

= “If there is a request, the arbiter gives a grant within the next two time steps. “
" p...there is a request, q... arbiter gives a grant within the next two time steps

"P—q

= “If there is a request, the arbiter gives a grant eventually. “
" p...there is arequest, q... the arbiter gives a grant eventually

"P—q



n Motivation

= We want to specify properties of hardware and software

= E.g.: The system has to satisfy a property eventually.
= A certain signal has to be high in the next 5 time steps.
»= Event A can only happen 10 minutes after Event B.

"= Temporal Logic allows reasoning over system’s executions.
= Introduce temporal operators, used additionally to logical operators

= Model Checking

* Checks whether a model of a system meets a given specification
= Specification typically expressed in temporal logic.



Outline

= Temporal Logic Formulas

= Semantics of temporal operators
= |ntuitive explanation

* Model natural language sentences via temporal logic formulas

= Evaluating System’s Executions
= Definition of Kripke structures
" Checking execution paths w.r.t. temporal logic formulas

= Evaluating Systems

= Semantics of path operators
" |ntuitive explanation

" Checking Kripke structures w.r.t. temporal logic formulas



Learning Outcomes

After this lecture...
1.

students can explain the semantic of the temporal operators
(X,G,F, and U) and the path operators (A and E).

students can model natural language sentences via temporal logic.
students can define Kripke structures.

students can check whether an execution trace satisfies a temporal
logic formula.

students can check whether a Kripke structure satisfies a temporal
logic formula.



Temporal Operators

= Describe properties that hold along an execution path

P

Next Xp O @ O O » 0O O O
Always / Gloabally Gp @ —@ —@ —@ —— °* o o
Eventually Fp O O O O » 0O 0 O

* A state s satisfies the formula Xp if p is true in the next state.
* A state s satisfies the formula Gp if p is true in every state along the trace.

* A state s satisfies the formula Fp if p is true in s or in a subsequent state along
the trace.



KB Translate in Temporal Logic

" r...there is a request, g... arbiter gives grant

Temporal Operators
X... next
G... globally
F... eventually

= “If there is a request, the arbiter gives a grant in the next time step. “

" G(r - Xg)

" “If there is a request, the arbiter gives a grant within the next 2 time steps.”

" G(r - (XgV XXg))

= “If there is a request, the arbiter gives a grant eventually. “
" G(r - Fg)




N Temporal Operators

= Describe properties that hold along an execution path

Next Xp - @
Always / Gloabally Gp

0
0

0
é

Eventually Fp O
Until pUq @ @ @

0 0



Temporal Operators
X... next
G... globally
F... eventually
U... Until

Translate in Temporal Logic

" “The request is high until the arbiter gives a grant.”

" r..requestis high, g... the system gives a grant

" G(rUg)

= “The system is in the error state until the temperature is low or
the system is turned off.”

" e...system isin error state, l... temperature is low, o... system is turned off

* G(eU (1V0))



Temporal Operators
X... next
G... globally
F... eventually
U... Until

Translate in Temporal Logic

" “The system gives a grant infinitely often.”
= ¢g...the system gives a grant

" GF(g)

" “The system sends a request finitely often.”
" r...system sends a request

- FG(—lr)

NV

~ b
X

&



Outline

" Temporal Logic Formulas

= Semantics of temporal operators
" |ntuitive explanation

= Model natural language sentences via temporal logic formulas

= Evaluating System’s Executions
= Definition of Kripke structures
= Checking execution paths w.r.t. temporal logic formulas

= Evaluating Systems

= Semantics of path operators
" |ntuitive explanation

= Checking Kripke structures w.r.t. temporal logic formulas



£ Kripke Structures

" Transition system with labelling function
= Assigns set of atomic propositions to each state

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)



Kl Kripke Structures

= A Kripke Structure is a tuple K = (S, Sy, R, L)
= Finite Set of States S
= Set of Initial States Sy € §
» Transition RelationR S S X S .
= Labeling function: L : § — 24F

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)



HKripke Structure - Example

= AP = {p,q}and K = (5, Sy, R, L) with
" 5 ={s1,52,53}
" So = {51}
= R = {(s1,52), (52,51), (S2,53), (53,53)}
= L = {(s1,{p,q}), (s2,{q}), (s3, {p})}

= How does the graph look like?

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)




Kl paths and Words over Kripke Structures

= Given a Kripke Structure K = (§,Sy, R, L)

= A pathis aisasequence of statesp = 54,55, 53 ...
s.t. for each i > 0, R(s;, s;+1) hold

= The word of a path p Is a sequence of sets

of atomic propositions w = L(s,), L(s,), L(s3), ...

{p.a}



Paths and Words over Kripke Structures

Example:
= Givenapath p = s¢,5,,5¢,53,53,53,53, -
= What is the execution word w over p?

= w={p,q}, {q}, {p, a}, {a}, {p}, {p}. {p} ..

\'/@Jb

~ -~
—_ —
-~ ~

= \ 51
' [p.al



£l Temporal Operators

= Describe properties that hold along an execution path of a Kripke structure

Next Xp O @ O O O 0 O
Always / Gloabally Gp @ @ @ —@ " ° o o
Eventually Fp O O O O 0O 0 O
Until pUq @ —@ —@ O 0 0 O

* A state s satisfies the formula pUgq if either g is true in s or
p holds in every state (starting from s) until g holds.



Evaluating Traces — Example 1

Given:

* Trace p = 51595953515254545454 ...

* Temporal logic formula = XavaUb
Does the trace p satisfy the formula ¢?

Step 1: Compute the word w of p

W= {} {a}, {a}, {b}, 0, {a}, (@, b}, (@, b}{a, b} .. 6

Step 2: Using w, evaluate ¢ over p

B8

we say that the trace satisfies ¢ (i.e.,p = @).

If the first state s of the trace p satisfies ¢ (i.e.s & @), @




Evaluating Traces — Example 1

Given:
= Word w = {} {a}, {a}’ {b}, {}, {a}, {a, b}w {a, b}? ... {a, b} il?finitely
* Formulagp =XavaUb many tmes

= Evaluate each subformula for each step (=state along the trace)

Step 0 1 2 3 4 5 W
a 0 1 1 0 0 1 |
b 0 0 0 1 0 0 |
Xa 1 1 0 0 1 1 1
al/b 0 1 1 1 0 1 1
XaVvaUb 1 1 1 1 1 1 1

Since the first state s of p satisfies @ (s & @), it holds that p satisfies ¢ (p E @).



Evaluating Traces — Example 2

Given:

» Trace p = 515,5,54"

* Temporal logic formula ¢ = Ga — Fb
= Does the trace p satisfy the formula ¢?

Step 1: Compute the word w of p

w = {} {a}, {a}, ta, b}®

Step 2: Using w, evaluate ¢ over p

If the first state s of the trace p satisfies ¢ (i.e.s & @),
we say that the trace satisfies ¢ (i.e.,p = @).

)



Evaluating Traces — Example 2

Given:
= Word w = {}{a}, {a}, {a,b}* {a, b}* ... {a, b} infinitely
* Formulag = Ga - Fb many times

= Does w satisfy ¢?

Step 0 1 2 W
a 0 1 1 1
b 0 0 0 1
Ga 0 1 1 1
Fb 1 1 1 1
Ga - Fb 1 1 1 1

Since the first state s of p satisfies ¢ (s E @), it holds that p satisfies ¢ (p E @).



Outline

" Temporal Logic Formulas

= Semantics of temporal operators
" |ntuitive explanation

= Model natural language sentences via temporal logic formulas

= Evaluating System’s Executions
= Definition of Kripke structures
" Checking execution paths w.r.t. temporal logic formulas

= Evaluating Systems

= Semantics of path operators
" |ntuitive explanation

= Checking Kripke structures w.r.t. temporal logic formulas



Kl Evaluating Systems

* Check whether a Kripke structure K satisfies a formula ¢

= K satisfies ¢, if all initial states of sg € S, satisfy ¢
" K=@ifandonlyifVs € Sy:s F @

" We need path quantifiers to reason about execution paths of systems.



k2 Computation Tree Logic — CTL*

= Extends propositional logic with
= Temporal Operators, and

= Path Quantifiers

= A for all paths starting from s have property @
= E there exists a path starting from s have property ¢



k3 Computation Tree Logic — CTL*

= Extends propositional logic with
= Temporal Operators, and
= Path Quantifiers

Temporal Operators
X... next

G... globally

F... eventually

U... until

Path Quantifiers

A for all paths

E there exists a path

= Kripke structure K satisfies a CTL* formula ¢,

if all its initial states sy € S satisfy @.
" K E (piffVSO (S S():SO E @




Evaluating Kripke Structures — Example 1

= Does the Kripke structure K satisfy ¢, = EXX(a A Db)?

Unwinding of K into

Kripke structure K, infinite computation tree
labeled with AP = {a, b, c} Q (gives all possible

execution paths)

!
Q Q so E EXX (a A b).
Thus,

Q I K = EXX (a A b).
% @ A “%}b

A



Evaluating Kripke Structures — Example 1

" Does the Kripke structure K one of the following formulas?
" @1 =EXp
" @y =AXp

So K £ AXp



= Example — Mutual Exclusion

* Two processes P;and P, with a joint semaphor signal sem

» Each process P; has a variable v; describing its state:
= p; =N Non-critical
= p; =T Trying
= p; =C Critical

= Each process runs the following program
while (true) {

Atomic/if (Vi == N) V, = T;

— v elseif (v,==T && sem) {v,=C; sem=0; }

action \else if (vi==C) {v,=N;sem=1;}
}






S Example — Mutual Exclusion

= Simpler Representation



=3 Example — Mutual Exclusion TR CE

X... next

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path

* Doesitholdthat K = ¢? \/

ey * Property 1: ¢ := AG—(C,AC,)

[l
g



= Example — Mutual Exclusion

Temporal Operators
X... next

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path




= Example — Mutual Exclusion i mporal Operators

X... next

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path

* Does it hold that K = ¢? \/

@) * Property 3: ¢ := EG—(T,AT,)

~ rd
— p—
-~ ~

=



= Example — Mutual Exclusion mporal Operators

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path

" DoesitholdthatK E ¢?
" Property 4: ¢ := AG EF (T,)

No matter where you are 1t 1s always possible to reach the state labeled

49



= Example — Mutual Exclusion mporal Operators

X... next

G... globally

F... eventually

U... until

Path quantifiers

A for all paths

E there exists a path

» Doesit hold that K = ¢?
" Property 4: ¢ := AG EF (T)

N/
-~
—

~ b
2



Thank You

https://xkcd.com/1033/



