
Logic and Computability

Theories in
Predicate Logic
and Satisfiability Modulo Theories

Bettina Könighofer
bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/2323/

2

▪ We want solve formulas
▪ over Real Numbers, Integers,…
▪ that use functions and predicates like +,-,<,=,>…
▪ E.g., 𝜑 = 𝑥 ≥ 0 ∧ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ Solving a formula = Find a model that makes the formula true

▪ The following model makes the formula true:
▪ A = 0,1,2,3,4,5,6 ,
▪ ≥M, ≤M: always return true (e.g., 0 ≤ 1, 1 ≤ 0, 0 ≤ 2, 2 ≤ 0,…)
▪ +M, −M: always return 5 (e.g., 0 + 0 = 5, 0 − 0 = 5,…)

▪ We are typically not interested in such arbitrary models!

Motivation –
Satisfiability Modulo Theory

3

▪ Usually we are not interested in arbitrary models
▪ E.g., Models in which 5 + 3 = 10 or 20 − 2 = 1

▪ Only interested in models with well-established interpretation of function & predicates

▪ Theory
▪ Axioms that define interpretation/meaning for functions and predicates
▪ E.g., 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, …

▪ Satisfiable Modulo Theory (SMT)
▪ Deciding whether a formula logic is satisfiable modulo theory means that we only

consider models that interpret functions and predicates as defined by
the axioms in the theory.

Motivation –
Satisfiability Modulo Theory

Outline
4

▪ What are Theories?
▪ Definition
▪ Example Theories: 𝒯E and 𝒯E𝑈𝐹

▪ Notations and Concepts
▪ 𝒯 -Terms, 𝒯 -Atoms, 𝒯 -Literals and 𝒯 -Formulas
▪ 𝒯-Satisfiability, 𝒯-Validity, 𝒯-Equivalence

▪ Implementation of SMT Solvers
▪ Eager Encoding

▪ explicit encoding of axioms
▪ Ackermann & Graph-based reduction

▪ Lazy Encoding
▪ use combination of theory solvers and SAT solver
▪ congruence Closure

Learning Outcomes
5

After this lecture…

1. students can explain the concept of a theory in first-order logic.

2. students can state the axioms of 𝒯𝐸 and 𝒯𝑈𝐸.

3. students can explain the meaning of “Satisfiability Modulo Theories”.

4. students can explain the concept of eager encoding.

5. students can solve formulas in 𝒯𝑈𝐸 by applying Ackermann’s & Graph-based reduction

6. students can explain the concept of lazy encoding.

7. students can solve formulas in the conjunctive fragment of 𝒯𝑈𝐸 using
Congruence Closure.

6 Notion of “Theory”

Application

Domain

Structures &

Objects

Predicates &

Functions

Arithmetic

Numbers

(Integers,

Rationals , Reals)

Computer

Programs
Arrays,

Lists,…

Bitvectors,
Array -Read,

Array -Write, …

▪ Theories define axioms often used domains and applications/problems

7

Definition of a First-Order Theory 𝓣:

▪ Signature Σ
▪ is a set of constants, predicate and function symbols
▪ → Do not use any non-logical symbols not contained in 𝚺!
▪ Logical symbols are logical connectives like ∧,∨ ⋯, variables like x, y …,

and quantifiers like ∀x

▪ Set of Axioms 𝒜
▪ Gives meaning to the predicate and function symbols
▪ Sentences (=Formulas without free variables) with symbols from Σ only

Definition of a Theory

8

Example: 𝜑:= 𝑥 ≥ 0 ∧ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6

Definition of 𝓣𝐋𝐈𝐀:

▪ ΣLIA ∶= ℤ ∪ +,− ∪ =,≠ <,≤,>,≥

▪ 𝒜𝐿𝐼𝐴 : defines the usual meaning to all symbols
▪ Maps constants to their corresponding value in
▪ E.g., The function + is interpreted as the addition function, e.g.
▪ …
▪ 0+0 → 0
▪ 0+1→ 1….

Theory of Linear Integer Arithmetic 𝓣𝐋𝐈𝐀

9

Example: 𝜑 ≔ 𝑥 = 𝑏 ∧ 𝑦 ≠ 𝑥 → (𝑤 = 𝑏)
Definition of 𝓣𝐄:

▪ ΣE ∶= {𝑎0, 𝑏0, 𝑐0, … , =}
▪ Binary equality predicate =
▪ Arbitrary constant symbols

▪ 𝒜𝐸 :
1. ∀𝑥. 𝑥 = 𝑥 (reflexivity)

2. ∀𝑥. ∀𝑦. 𝑥 = 𝑦 → 𝑦 = 𝑥 (symmetry)

3. ∀𝑥. ∀𝑦. ∀𝑧. 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 → 𝑥 = 𝑧 (transitivity)

Theory of Equality 𝓣𝐄

10

▪ An uninterpreted function has no other property than its name, its arity
and the function congruence property:
▪ Given the same inputs, it gives the same outputs

▪ Used for abstractions
▪ Example

▪ 𝑎 ⋅ 𝑓 𝑏 + 𝑓 𝑐 = 𝑑 ∧ 𝑏 ⋅ 𝑓 𝑎 + 𝑓 𝑐 ≠ d ∧ 𝑎 = 𝑏

▪ Using uninterpreted functions we get:

▪ 𝑚 𝑎, 𝑝 𝑓 𝑏 , 𝑓 𝑐 = 𝑑 ∧ 𝑚 𝑏, 𝑝 𝑓 𝑎 , 𝑓 𝑐 ≠ 𝑑 ∧ 𝑎 = 𝑏

▪ Can be used to show UNSAT of the formula

Theory of Equality & Uninterpreted Functions 𝓣𝐄𝐔𝐅

11

Example: 𝜑 ≔ (𝑓 𝑥 = 𝑔 𝑏 ∧ 𝑓 𝑦 ≠ 𝑓 𝑥) → 𝑃(𝑥)

Definition of 𝓣𝑬𝑼𝑭:

▪ ΣEUF = {𝑎0, 𝑏0, 𝑐0, … , =}
▪ Binary equality predicate =
▪ Arbitrary constant, function and predicate symbols

▪ 𝒜𝐸𝑈𝐹

1-3 same as in 𝒜𝐸 (reflexivity), (symmetry), (transitivity)
4 ∀𝑥. ∀ 𝑦. 𝑖ٿ) 𝑥𝑖 = 𝑦𝑖) → 𝑓 𝑥 = 𝑓 𝑦 (function congruence)
5 ∀𝑥. ∀ 𝑦. 𝑖ٿ) 𝑥𝑖 = 𝑦𝑖) → 𝑃 𝑥 = 𝑃 𝑦 (predicate equivalence)

Theory of Equality & Uninterpreted Functions 𝓣𝐄𝐔𝐅

Outline
12

▪ What are Theories?
▪ Definition
▪ Example Theories: 𝒯E and 𝒯E𝑈𝐹

▪ Notations and Concepts
▪ 𝒯 -Terms, 𝒯 -Atoms, 𝒯 -Literals and 𝒯 -Formulas
▪ 𝒯-Satisfiability, 𝒯-Validity, 𝒯-Equivalence

▪ Implementation of SMT Solvers
▪ Eager Encoding
▪ Lazy Encoding

𝒯-terms, 𝒯-atoms and 𝒯-literals
13

▪ 𝜑 = 𝑥 ≥ 0 ∧ ¬ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ 𝓣-term:
▪ Constants in Σ, variables, function instances with function symbols and inputs in Σ
▪ Examples: 0, 𝑥, 𝑥 + 𝑦, 𝑥 − 𝑦

▪ 𝓣-atom:
▪ Predicate instances with predicate symbol and inputs in Σ
▪ Examples: 𝑥 ≥ 0, 𝑥 + 𝑦 ≤ 2,….

▪ 𝓣-literal:
▪ 𝒯-atom or its negation
▪ 𝑥 + 𝑦 ≤ 2, ¬ 𝑥 + 𝑦 ≤ 2 ,…

𝒯-formulas
14

▪ 𝜑 = 𝑥 ≥ 0 ∧ ¬ 𝑥 + 𝑦 ≤ 2 ∨ 𝑥 + 𝑦 ≥ 6 ∧ 𝑥 + 𝑦 ≥ 1 ∨ 𝑥 − 𝑦 ≥ 4

▪ 𝓣-formula:
▪ Predicate logic formula consisting of 𝓣-literals

and logical connectives, and quantifiers.

Models within a Theory
15

▪ Model in Predicate Logic
▪ Defines domain
▪ Value for free variables
▪ Concrete interpretation of functions and predicates

▪ Model in Predicate Logic using Theories?
▪ Value of free variables

A model 𝑀 within a theory 𝒯 is therefore an assignment of all free
variables to a constant in Σ.

Models within a Theory
16

▪ Example: consider the formula 𝜑 in 𝒯𝐋𝐈𝐀
▪ 𝜑 ≔ 𝑥 + 𝑦 > 0 ∧ (𝑥 = 0)

▪ Give a model for 𝜑 in 𝒯𝐋𝐈𝐀?

▪ E.g., 𝑀0 = {𝑥 → 5, 𝑦 → 1}
▪ M1 = {𝑥 → 0, 𝑦 → 1}

𝒯-Satisfiability, 𝒯-validity, 𝒯-Equivalence
17

All possible Models

Models satisfying
all axioms

▪ Only models satisfying axioms are relevant
▪ ➔ “Satisfiability modulo (=‘with respect to’) theories”

𝒯-Satisfiability

𝓣-Satisfiable

𝓣-Satisfiable

Not 𝓣-Satisfiable

18

• Green: Models Satisfying all Axioms

• Violet: Models Satisfying Formula in Question

A formula 𝜑 is 𝒯-satisfiable, if and only if there exists is a model 𝑀
within 𝒯 (satisfying all its axioms) that satisfies 𝜑.

Models within a Theory
19

▪ Example: consider the formula 𝜑 in 𝒯𝐋𝐈𝐀
▪ 𝜑 ≔ 𝑥 + 𝑦 > 0 ∧ (𝑥 = 0)

▪ Give a satisfying and a falsifying model for 𝜑 in 𝒯𝐋𝐈𝐀?

▪ Falsifying model: 𝑀𝑓 = {𝑥 → 5, 𝑦 → 1}

▪ Satisfying model: 𝑀𝑠 = {𝑥 → 0, 𝑦 → 1}

𝓣-Valid

𝓣-Valid

Not 𝓣-Valid

20

𝒯-Validity

A formula 𝜑 is 𝒯-valid, if and only if all models within 𝒯 satisfy 𝜑.

• Green: Models Satisfying all Axioms

• Violet: Models Satisfying Formula in Question

𝒯-Equivalence

▪ Similar: Only consider models that satisfy all axioms
▪ Models not satisfying (at least) one axiom: Irrelevant Model!

21

Two formulas 𝜑 and 𝜓 are 𝒯-equivalent, if and only if they
evaluate to ture for the exact same models in 𝒯.

Outline
22

▪ What are Theories?
▪ Definition
▪ Example Theories: 𝒯E and 𝒯E𝑈𝐹

▪ Notations and Concepts
▪ 𝒯 -Terms, 𝒯 -Atoms, 𝒯 -Literals and 𝒯 -Formulas
▪ 𝒯-Satisfiability, 𝒯-Validity, 𝒯-Equivalence

▪ Implementation of SMT Solvers
▪ Eager Encoding
▪ Lazy Encoding

Implementations of SMT Solvers
23

▪ Eager Encoding
▪ Equisatisfiable propositional formula
▪ Adds all constraints that could be needed at once

▪ SAT Solver

▪ Lazy Encoding
▪ SAT Solver and Theory Solver
▪ Add constrains only when needed

quant.-free 𝓣𝑬𝑼𝑭-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s
Reduction

Graph-based
Reduction

Theory
Formula
𝝓𝑻

𝒜 ∧𝝓

equisatisfiable

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭
24

Eliminate
Function
Applications

Eliminate
Equality
Applications

Ackermann’s Reduction
25

Input: Formula 𝝓𝐄𝐔𝐅 in 𝓣𝑬𝑼𝑭 Output: Formula 𝝓𝑬 in 𝓣𝑬

▪ Replace each function instance via a fresh variable
▪ 𝑓 𝑥 ⇝ 𝑓𝑥
▪ Form formula ෡𝝓𝐄𝐔𝐅

▪ For all function instances, add functional-consistency constraints
▪ 𝑥 = 𝑦 → 𝑓𝑥 = 𝑓𝑦
▪ Form formula 𝜙𝐹𝐶

▪ 𝝓𝑬 = 𝝓𝑭𝑪 ∧ ෡𝝓𝐄𝑼𝑭

26

Example of Ackermann’s Reduction

▪ 𝝓𝑬𝑼𝑭 ≔ 𝒇 𝒂 = 𝒇 𝒃 ∧ ¬ 𝒇 𝒃 = 𝒇 𝒄

1. ෠𝜙𝐸𝑈𝐹 ≔ 𝑓𝑎 = 𝑓𝑏 ∧ ¬(𝑓𝑏 = 𝑓𝑐)

2. 𝑓: 𝑎, 𝑏, 𝑐

𝜙𝐹𝐶 ≔ 𝑎 = 𝑏 → (𝑓𝑎= 𝑓𝑏) ∧ 𝑏 = 𝑐 → (𝑓𝑏= 𝑓𝑐) ∧

(𝑎 = 𝑐 → (𝑓𝑎= 𝑓𝑐))

3. 𝜙𝐸 = 𝜙𝐹𝐶 ∧ ෠𝜙𝐸𝑈𝐹

27

Example of Ackermann’s Reduction

28

Example of Ackermann’s Reduction

quant.-free 𝓣𝑬𝑼𝑭-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s
Reduction

Graph-based
Reduction

29

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭

▪ Step 1: Draw a non-polar equality graph

▪ Node per variable

▪ Edge per (dis)equality

▪ Step 2: Make graph chordal

▪ No cycles size > 3

a

b

c

d
e

f

g

30

Graph-Based Reduction

▪ Step 3: Introduce fresh propositional variable per equation

▪ 𝑎 = 𝑏 ⇝ 𝑒𝑎=𝑏
▪ Order! (To ensure symmetry)
𝑏 = 𝑎 ⇝ 𝑒𝑎=𝑏

▪ Step 4: For each triangle (𝑖, 𝑗, 𝑘):
▪ Add transitivity constraints

𝑒𝑖=𝑗 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑘 ∧

𝑒𝑖=𝑗 ∧ 𝑒𝑖=𝑘 → 𝑒𝑗=𝑘 ∧

𝑒𝑖=𝑘 ∧ 𝑒𝑗=𝑘 → 𝑒𝑖=𝑗

▪ Step 5: 𝜙𝑝𝑟𝑜𝑝 = 𝜙𝑇𝐶 ∧ ෠𝜙𝐸

𝒊 𝒋

𝒌

31

Graph-Based Reduction

➔ SAT Solver

32

Example 1. Graph-Based Reduction

𝜙𝐸 ≔ 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 ∧ 𝑐 = 𝑑 ∧ 𝑑 ≠ 𝑎

d

a b

c

𝜙𝑇𝐶 ≔ 𝑒𝑎𝑏 ∧ 𝑒𝑏𝑐 → 𝑒𝑎𝑐 ∧
𝑒𝑏𝑐 ∧ 𝑒𝑎𝑐 → 𝑒𝑎𝑏 ∧
𝑒𝑎𝑏 ∧ 𝑒𝑎𝑐 → 𝑒𝑏𝑐 ∧
𝑒𝑎𝑐 ∧ 𝑒𝑐𝑑 → 𝑒𝑎𝑑 ∧
𝑒𝑐𝑑 ∧ 𝑒𝑎𝑑 → 𝑒𝑎𝑐 ∧
𝑒𝑎𝑑 ∧ 𝑒𝑎𝑐 → 𝑒𝑐𝑑

෠𝜙𝐸 ≔ 𝑒𝑎𝑏 ∧ 𝑒𝑏𝑐 ∧ 𝑒𝑐𝑑 ∧ ¬𝑒𝑎𝑑

𝜙𝑝𝑟𝑜𝑝 ≔ 𝜙𝑇𝐶 ∧ 𝜙𝐸

33

Example 3. Graph-Based Reduction

𝜙𝐸 ≔ 𝑎 = 𝑏 ∧ 𝑏 ≠ 𝑐 → ¬ (𝑐 ≠ 𝑑 ∨ 𝑑 = 𝑒 ∧ 𝑒 = 𝑓)

a b c

f e d

𝜙𝑝𝑟𝑜𝑝 ≔ 𝑒𝑎𝑏 ∧ ¬𝑒𝑏𝑐 → ¬ (¬𝑒𝑐𝑑 ∨ 𝑒𝑑𝑒 ∧ 𝑒𝑒𝑓)

quant.-free 𝓣𝑼𝑬-formula

equisatisfiable
quant.-free 𝓣𝑬-formula

equisatisfiable
propositional formula

Ackermann’s
Reduction

Graph-based
Reduction

34

Eager Encoding for Formulas in 𝓣𝑬𝑼𝑭

➔ SAT Solver

Outline
35

▪ What are Theories?
▪ Definition
▪ Example Theories: 𝒯E and 𝒯E𝑈𝐹

▪ Notations and Concepts
▪ 𝒯 -Terms, 𝒯 -Atoms, 𝒯 -Literals and 𝒯 -Formulas
▪ 𝒯-Satisfiability, 𝒯-Validity, 𝒯-Equivalence

▪ Implementation of SMT Solvers
▪ Eager Encoding
▪ Lazy Encoding

Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

36

Checks sat for
propositional skeleton of 𝝓

SATUNSAT

Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

37

e.g., 𝒂 = 𝒃 ∧ 𝒃 = 𝒄 ∧ 𝒂 ≠ 𝒄

SATUNSAT

Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

SATUNSAT

38

Negation of
current assignment

e.g.,
¬(𝒂 = 𝒃 ∧ 𝒃 = 𝒄 ∧ 𝒂 ≠ 𝒄)

Theory Solver for 𝒯𝑈𝐸

▪ Theory solver takes conjunctions of theory literals as input
▪ Equalities (𝑡1= 𝑡2)

▪ Disequalities (𝑡1≠ 𝑡2)

▪ Terms 𝑡𝑖
▪ Constants
▪ 𝑎, 𝑏, 𝑐, 𝑑, …

▪ Uninterpreted Function instance
▪ 𝑓 𝑎 , 𝑔 𝑏 , ℎ 𝑐, 𝑑 , …

39

Congruence-Closure Algorithm

1. For every equality, create a congruence class
▪ E.g. 𝑡1 = 𝑡2: create class for 𝑡1, 𝑡2

2. Create a singleton class for every term that only appears in disequalites

3. Merge clases:
▪ Shared term between classes: Merge classes! (repeat)

▪ 𝒕𝒊, 𝒕𝒋 from same class: Merge classes of 𝐟 𝒕𝒊 , 𝐟 𝒕𝒋 (repeat)
▪ No merging possible anymore, go to step 4

4. Check Disequalities 𝑡𝑘 ≠ 𝑡𝑙
▪ 𝑡𝑘 , 𝑡𝑙 in same class: UNSAT!
▪ Otherwise: SAT!

40

41

Example 1. CC-Algorithm

▪ 𝜑 ≔ 𝑥1 = 𝑥2 ∧ 𝑥2 = 𝑥3 ∧ 𝑥4 = 𝑥5 ∧ 𝑥5 ≠ 𝑥1 ∧ 𝑓 𝑥1 ≠ 𝑓 𝑥3

▪ 𝑥1, 𝑥2 , 𝑥2, 𝑥3 , 𝑥4, 𝑥5 , 𝑓 𝑥1 , 𝑓 𝑥3
▪ 𝑥1, 𝑥2, 𝑥3 , 𝑥4, 𝑥5 , 𝑓 𝑥1 , 𝑓 𝑥3
▪ 𝑥1, 𝑥2, 𝑥3 , 𝑥4, 𝑥5 , 𝑓 𝑥1 , 𝑓 𝑥3

▪ Check: 𝑓 𝑥1 ≠ 𝑓(𝑥3) : both are in the same class→
𝜑 is 𝓣𝑬𝑼𝑭-UNSAT

Example 2. CC-Algorithm
42

▪ 𝜑 ≔ 𝑥 = 𝑓 𝑦 ∧ 𝑦 = 𝑓 𝑢 ∧ 𝑢 = 𝑣 ∧ 𝑣 = 𝑧 ∧ 𝑣 = 𝑓 𝑦 ∧ 𝑓 𝑥 ≠ 𝑓 𝑧

▪ 𝑥, 𝑓 𝑦 , 𝑦, 𝑓 𝑢 , 𝑢, 𝑣 , 𝑣, 𝑧 , 𝑣, 𝑓 𝑦 , 𝑓 𝑥 , 𝑓 𝑧
▪ 𝑥, 𝑓 𝑦 , 𝑣 , 𝑦, 𝑓 𝑢 , 𝑢, 𝑣, 𝑧 , 𝑓 𝑥 , 𝑓 𝑦
▪ 𝑥, 𝑦, 𝑧, 𝑓 𝑦 , 𝑦, 𝑓 𝑢 , 𝑓 𝑥 , {𝑓 𝑧 }
▪ 𝑥, 𝑦, 𝑧, 𝑓 𝑦 , 𝑦, 𝑓 𝑢 , {𝑓(𝑥), 𝑓 𝑧 }
▪ 𝑥, 𝑦, 𝑧, 𝑓 𝑦 , 𝑓(𝑢) , {𝑓(𝑥), 𝑓 𝑧 }
▪ 𝑥, 𝑦, 𝑧, 𝑓 𝑦 , 𝑓 𝑢 , 𝑓(𝑥), 𝑓 𝑧

▪ Check: 𝑓 𝑥 ≠ 𝑓(𝑧) both are in the same class→ 𝜑 is 𝓣𝑬𝑼𝑭-UNSAT

Thank You

43

43

https://xkcd.com/1033/

