Logic and Computability

Theories in

Predicate Logic
and Satisfiability Modulo Theories

Bettina Kénighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

https://xkcd.com/2323/

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

“I SPEND A LOT OF TiIME ON THIS TASK.
T SHOULD LIRITE A PROGRAM AUTOMATING IT!™

THECRY:

WRITING~,

CODE FREE
-

woRk o’ N\ WAt T

ORIGINAL TRSK

TME
REAUTY:
DEBUGGING <G DEVELFNENT
WRITING A~ G

CODE. I
RETHINKNG __ _ _ NO TME FOR
WORK — ORIGINAL TASK

ANYVIORE

TME.

El Motivation —
Satisfiability Modulo Theory

= We want solve formulas
= over Real Numbers, Integers,...
= that use functions and predicates like +,-,<,=,>...
"Eg,op=x=2 0N (x+y<2Vx+y=26)A(x+y=1Vx—y=4)

= Solving a formula = Find a model that makes the formula true

= The following model makes the formula true:
= A=1{01,2,3,4,5,6},
= >M <M. 5lways return true (e.g, 0<1,1<0,0<2,2<0,...)
= +M M. 3lwaysreturn5(e.g., 0+0=50—-0=35,..)

= We are typically not interested in such arbitrary models!

Bl Motivation —
Satisfiability Modulo Theory

= Usually we are not interested in arbitrary models
= E.g., Modelsinwhich54+3=100r20—-2=1

= Only interested in models with well-established interpretation of function & predicates

= Theory
= Axioms that define interpretation/meaning for functions and predicates

" Eg,1+1=2,142=3,1+3=4,..

= Satisfiable Modulo Theory (SMT)
= Deciding whether a formula logic is satisfiable modulo theory means that we only

consider models that interpret functions and predicates as defined by
the axioms in the theory.

Outline

= What are Theories?
= Definition
* Example Theories: Iz and Jgyr

= Notations and Concepts
= J -Terms, J -Atoms, T -Literals and 7" -Formulas
= J-Satisfiability, 7'-Validity, T'-Equivalence

" Implementation of SMT Solvers
= Eager Encoding
= explicit encoding of axioms
= Ackermann & Graph-based reduction
= Lazy Encoding
" use combination of theory solvers and SAT solver
= congruence Closure

Learning Outcomes

c.}'

After this lecture... J
1. students can explain the concept of a theory in first-order logic.

students can state the axioms of 7z and 7.

students can explain the meaning of “Satisfiability Modulo Theories”.

students can explain the concept of eager encoding.

students can solve formulas in 7z by applying Ackermann’s & Graph-based reduction

students can explain the concept of lazy encoding.

N o U kA W N

students can solve formulas in the conjunctive fragment of 7, using
Congruence Closure.

KB Notion of “Theory”

* Theories define axioms often used domains and applications/problems

Application Structures & Predicates &
Domain Objects Functions
Numbers R

Arithmetic (Integers, B N - =
Rationals , Reals)

Computer _ Array -Read,
Arrays, Bitvectors, _

Programs Lists Array -Write, ...

Definition of a Theory

Definition of a First-Order Theory T':

= Signature X
" js a set of constants, predicate and function symbols
= = Do not use any non-logical symbols not contained in X!
" Logical symbols are logical connectives like AV ---, variables like x,y ...,

and quantifiers like Vx

= Set of Axioms A
= Gives meaning to the predicate and function symbols
= Sentences (=Formulas without free variables) with symbols from X only

LN Theory of Linear Integer Arithmetic 5

Example:p:=x> OA (x+y< 2V x+y = 6)

DEfinitiOn Of TLIA:
" ZLIA =7 U {+, _} U {=,:/: <, S, >, 2}

" A;;4 : defines the usual meaning to all symbols
= Maps constants to their corresponding value in Z
= E.g., The function + is interpreted as the addition function, e.g.
= 0+0—>0
" 0+1 2> 1....

N Theory of Equality T'g

Example: ¢ == (x =b)A(y #x) - (W = D)
Definition of T:

" ZE = {ao, bo, Co, . =}
* Binary equality predicate =
* Arbitrary constant symbols

" qu .
1. Vx.x =x (reflexivity)
2. Vx.Vy.(x =y -y =x) (symmetry)

3. Vx.Vy.Vz.(x =yAy=2z—->x=2) (transitivity)

10 Theory of Equality & Uninterpreted Functions T gyr

= An uninterpreted function has no other property than its name, its arity
and the function congruence property:
= Given the same inputs, it gives the same outputs

= Used for abstractions
= Example

a- (f(B)+ f(c))=d Ab- (f(a)+ f(c)) #d Aa = b

= Using uninterpreted functions we get:

o m(a,p(f(b),f(c))) = d/\m(b,p(f(a),f(c))) +dANa=D»>

= Can be used to show UNSAT of the formula

i Theory of Equality & Uninterpreted Functions T ryr
Example: ¢ == ((f(x) = g(b)) A (f () # f(x))) - P(x)

Definition of T py;:
= Xgur = {40, bo, Cos s =}
* Binary equality predicate =
» Arbitrary constant, function and predicate symbols

" Agyr
1-3 same asin Ar (reflexivity), (symmetry), (transitivity)
4 Vx.Vy.((Njx; =y;) = f(x) = f(¥)) (function congruence)
5 Vx.Vy.((N;x; =y;) = P(x) = P(y)) (predicate equivalence)

Outline

= \What are Theories?
= Definition
= Example Theories: Jg and Jgyr

= Notations and Concepts
= J -Terms, J -Atoms, T -Literals and 7" -Formulas
= J-Satisfiability, 7'-Validity, T'-Equivalence

= |mplementation of SMT Solvers
= Eager Encoding
" Lazy Encoding

= T -terms, J'-atoms and T -literals
mp=x2= 0A ®\ x+y=>26)ANx+y=1Vx—y=4)

= J-term:
= Constants in X, variables, function instances with function symbols and inputs in 2
" Examples: 0,x,x +y,x —y
= J-atom:
= Predicate instances with predicate symbol and inputs in X
" Examples:x = 0, x+y < 2,...
= T -literal:
= J-atom or its negation
" x+y< 2,-(x+y< 2),..

= T -formulas

-¢@0Aﬂ(x+yﬁ 2Vx+y=6)AN(x+y= 1V x—yZ@

= J-formula:
= Predicate logic formula consisting of 7-literals
and logical connectives, and quantifiers.

= Models within a Theory

= Model in Predicate Logic
" Defines domain
= Value for free variables
= Concrete interpretation of functions and predicates

* Model in Predicate Logic using Theories?
= Value of free variables

A model M within a theory T is therefore an assignment of all free
variables to a constant in .

e Models within a Theory

= Example: consider the formula ¢ in 75
= (x+y>0A (x=0)

" Give a model for @ in Jyja?

"Eg, My={x—-5,y > 1}
. My ={x->0y-1}

J'-Satisfiability, I"-validity, T'-Equivalence

" Only models satisfying axioms are relevant
= = “Satisfiability modulo (=‘with respect to’) theories”

All possible Models

Models satisfying
all axioms

e J -Satisfiability

A formula @ is 7 -satisfiable, if and only if there exists is a model M
within J° (satisfying all its axioms) that satisfies .

T -Satisfiable

T -Satisfiable

* Green: Models Satisfying all Axioms
* Violet: Models Satisfying Formula in Question Not J-Satisfiable

= Models within a Theory

= Example: consider the formula ¢ in 75
= (x+y>0A (x=0)

" Give a satisfying and a falsifying model for ¢ in Jyja?

= Falsifying model: M¢ = {x = 5,y - 1}
= Satisfying model: M; = {x - 0,y — 1}

= I -Validity

A formula @ is 7'-valid, if and only if all models within 7" satisfy .

J-Valid

J-Valid

* Green: Models Satisfying all Axioms

Not 7'-Valid

* Violet: Models Satisfying Formula in Question

= J-Equivalence

= Similar: Only consider models that satisfy all axioms
= Models not satisfying (at least) one axiom: Irrelevant Model!

Two formulas @ and Y are J-equivalent, if and only if they
evaluate to ture for the exact same models in T'.

Outline

= \What are Theories?
= Definition
= Example Theories: Jg and Jgyr

= Notations and Concepts
" T -Terms, J -Atoms, T -Literals and 7" -Formulas
» J'-Satisfiability, T'-Validity, T'-Equivalence

= |mplementation of SMT Solvers
= Eager Encoding
" Lazy Encoding

= Implementations of SMT Solvers

= Eager Encoding
= Equisatisfiable propositional formula
= Adds all constraints that could be needed at once
= SAT Solver

= Lazy Encoding b SAT ﬂ Theory
= SAT Solver and Theory Solver Solver Solver

Blocking Clause
= Add constrains only when needed

UNSAT SAT

= Eager Encoding for Formulas in T gyr

Theory
quant.-free Ty p-formula Formula
¢T
Eliminate Ackermann’s
Function Reduction
Applications

equisatisfiable equisatisfiable
quant.-free T g-formula

EIimirTate Graph-based
Equality Reduction

Applications

equisatisfiable
propositional formula c/q N ¢

= Ackermann’s Reduction

Input: Formula ¢pgyfp in Tgyr Output: Formula ¢ in Tk

= Replace each function instance via a fresh variable

= f(x) w fy

" Form formula ¢@gyr

= For all function instances, add functional-consistency constraints

*(x=y) > (K =5)

" Form formula ¢,

" pr = Prc A Pryr

= Example of Ackermann’s Reduction

" Qpyr = (f(a) = f(b)) A —'(f(b) = f(C))
1. ¢gyr = fa = fo) A=(fp = f2)

2. f:a,b,c

drc=((a=b) > (fu=1)) A((b=¢) > (fr=F)) A
((a=¢c)- (fh=1))

3. ¢g = Ppc A Pryr

Example of Ackermann’s Reduction
ppvr = flg(@))=fy) V (z=9(y) Az # f(2))

= QpUF N Qrc

=l Example of Ackermann’s Reduction
pevr = flzy)=fy,2) V (2= fy,2) AN f(z,2) # f(z,9))

= (x:y/\yzz_)fmy:fyz)/\
(;U:a:/\y:x—>fmy:fm)/\
(yzw/\’z:x_)fyz:f:c:c)

— fmy:fyz V (Z:fyz/\fmﬂ’:#fﬂi’y)

YE = PpUF N\ QFrC

Eager Encoding for Formulas in T gyr

quant.-free T yr-formula

Ackermann’s
Reduction

equisatisfiable
quant.-free T g-formula

Graph-based
Reduction
equisatisfiable
propositional formula

v

= Graph-Based Reduction

= Step 1: Draw a non-polar equality graph
= Node per variable

= Edge per (dis)equality

= Step 2: Make graph chordal

= No cycles size > 3

= Graph-Based Reduction

= Step 3: Introduce fresh propositional variable per equation
"a=b w e,y

" Order! (To ensure symmetry)
b=a w ez

= Step 4: For each triangle (i,], k):
= Add transitivity constraints
(ei:j N ej=k — eizk) N
(ei:j N i= ejzk) N

(ei=k A ejk = i)

= Step 5: ¢prop = ¢rc N QBE

=» SAT Solver

= Example 1. Graph-Based Reduction
pr=a=bAb=cAc=dAd +a

drc = (eqp N epc = €ge) N
(epc N ege = €ap) A
(eab Neg. — ebc) A
(eac Ne g — ead) A
(ecd Negqg — eac) N\
(ead Neg. o ecd)

QO = egp Nepe Negg N eyy

Gprop = Prc N Pk

= Example 3. Graph-Based Reduction

ppi=a=bAb+*c—o>-(c¥xdVvVd=eNe=f)

¢prop = egp N €pe = 1 (mecq Vege A eef)

Eager Encoding for Formulas in T gyr

quant.-free I yg-formula

Ackermann’s
Reduction

v

equisatisfiable

quant.-free T g-formula

Graph-based
Reduction
equisatisfiable
propositional formula

=» SAT Solver

Outline

= \What are Theories?
= Definition
= Example Theories: Jg and Jgyr

= Notations and Concepts
" T -Terms, J -Atoms, T -Literals and 7" -Formulas
» J'-Satisfiability, T'-Validity, T'-Equivalence

= |mplementation of SMT Solvers
= Eager Encoding
" Lazy Encoding

Lazy Encoding

Assignment of

SAT Theory Literals Theory
¢ Solver Solver
B

locking Clause

Checks sat for
propositional skeleton of ¢

UNSAT SAT

Lazy Encoding

eg,a=bAb=cANa#c

|

Assignment of

SAT Theory Literals Theory
¢ Solver Solver
B

locking Clause

UNSAT SAT

Lazy Encoding

Assignment of

SAT Theory Literals Theory
¢ Solver Solver
B

locking Clause

I

Negation of

current assignment
e‘g"

UNSAT —(a=bAb=cAa+*c) SAT

Theory Solver for T

" Theory solver takes conjunctions of theory literals as input
» Equalities (t;=t5)
* Disequalities (t;# t5)

" Terms t;
= Constants
= a,b,c,d, ..
= Uninterpreted Function instance

= f(a),g(b),h(c,d),..

Congruence-Closure Algorithm

1. For every equality, create a congruence class
" Eg.t; =t,: create class for tq, t,

2. Create a singleton class for every term that only appears in disequalites

3. Merge clases:
= Shared term between classes: Merge classes! (repeat)

" t;t; from same class: Merge classes of f(t;), f(t]-) (repeat)
= No merging possible anymore, go to step 4

4. Check Disequalities t;, # t;
" t., t; in same class: UNSAT!
" Otherwise: SAT!

- Example 1. CC-Algorithm

" i=xy =X AXy =X3AX4 = X5 AXs F x1 A f(xq) # f(x3)

= {x1, %2}, {x2,x3}, {x4, x5}, Uf ()}, {f (x3)}
= {x1, %2, %3}, x4, x5}, {f (x0)} {f (x3)}
= {x1, %2, %3}, {x4, x5}, {f(x1), f(x3)}

» Check: f(xq) # f(x3) : both are in the same class =2
@ IS TEUF-UNSAT

- Example 2. CC-Algorithm

"p=x=fMAy=fWAu=vAv=zAv=[fy)A[f(x)*[f(2)

{x, f} . f)}, {uv}, (v,z}, v,f)} F(X)} {f(2)}
= {x, f), v}, v, f)}, {(w,v,z}, {f)) fY)}

{2z, fW}L W, fWhL{f ()} {f(2)}

v, z, fL iy, f(} {f (%), f(2)}

"{x, v,z (), f(W}{f(x), f(2)}

"{x,y,z, f(y), f(w), f(x), f(2)}

» Check: f(x) # f(z) both are in the same class 2 @ is T gyr-UNSAT

Thank You

https://xkcd.com/1033/

