
Bettina Könighofer
bettina.koenighofer@iaik.tugraz.at

Logic and Computability
Lecture 2

SAT Solving

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/287/

▪ One Model

▪ All Models

SAT Problem
2

▪ Decide whether a formula 𝜑 is satisfiable
▪ 𝜑 is SAT iff there exists a model ℳ such that ℳ⊨𝜑

All possible Models

Models satisfying
formula

3

SAT-Solver

SAT
Solver

Formula (in CNF)

Satisfiable
(+ model)

Unsatisfiable
(+ resolution

proof)

▪ Applications
▪ HW and SW Verification
▪ Bounded Model Checking
▪ Hardware Equivalence Checking
▪ Circuit Synthesis
▪ Planning (e.g., air-traffic control, telegraph routing)
▪ Scheduling (sport tournaments)
▪ Finite mathematics
▪ Cryptanalysis
▪ …

4

Motivation – SAT Solving

SAT Problem
5

▪ Decide whether a formula 𝜑 is satisfiable
▪ 𝜑 is SAT iff there exists a model ℳ such that ℳ⊨𝜑

▪ The SAT problem is NP complete
▪ 𝑃 ≠ 𝑁𝑃 ⇒ worst-case exponential

▪ Problem: Formulas are huge!

▪ Automated Tools: “SAT Solver”
▪ Highly efficient for many practical problem instances

▪ Automatically generated from problem specifications

6

Motivation – SAT Encoding

(¬𝒙𝟏 ∨ 𝒙𝟕) ∧

¬𝒙𝟏 ∨ 𝒙𝟔 ∧ ⋯

𝐒𝐡𝐨𝐮𝐥𝐝 𝐱𝟏𝐛𝐞 𝐬𝐞𝐭 𝐭𝐨 𝐅𝐚𝐥𝐬𝐞?

Nr variables Nr clauses

▪ Automatically generated from problem specifications

7

10 Pages Later

𝐍𝐨𝐭𝐞 𝒙𝟏

▪ Automatically generated from problem specifications

8

4.000 Pages Later

9

Finally, 15.000 Pages Later

• Search space of truth assignments:
• 250000 ≈ 3.1607 ∗ 1015051

• How long to solve it?
• Modern SAT solver needs just a few seconds!

Outline
10

▪ DPLL Algorithm
▪ Boolean Constrain Propagation
▪ Pure Literals
▪ Conflict-Driven Clause Learning

11

▪ Introduced by Martin Davis, Hilary Putnam, Donald Loveland and George Logemann
in 1962
▪ M. Davis, G. Logemann, and D. Loveland.

“A machine program for theorem-proving”. Communications of the ACM, 5:394-397, 1962

▪ Algorithm still forms the basis for most modern SAT solvers

DPLL Algorithm

12

▪ Introduced by Martin Davis, Hilary Putnam, Donald Loveland and George Logemann
in 1962
▪ M. Davis, G. Logemann, and D. Loveland.

“A machine program for theorem-proving”. Communications of the ACM, 5:394-397, 1962

▪ Algorithm still forms basis for most modern SAT solvers

▪ Input:
▪ Formula in Conjunctive Normal Form (CNF)

DPLL Algorithm

Conjunctive Normal Form
13

Conjunctive Normal Form
14

▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

Conjunctive Normal Form
15

▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

▪ Clause: disjunction of literals
▪ Example: 𝑝 ∨ ¬𝑞 ∨ 𝑟

Conjunctive Normal Form
16

▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

▪ Clause: disjunction of literals
▪ Example: 𝑝 ∨ ¬𝑞 ∨ 𝑟

▪ Conjunctive Normal Form (CNF)
▪ Conjunction of clauses:

𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑛 ∧ 𝑏1 ∨ ⋯∨ 𝑏𝑚 ∧ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal

Conjunctive Normal Form
17

▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

▪ Clause: disjunction of literals
▪ Example: 𝑝 ∨ ¬𝑞 ∨ 𝑟

▪ Conjunctive Normal Form (CNF)
▪ Conjunction of clauses:

𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑛 ∧ 𝑏1 ∨ ⋯∨ 𝑏𝑚 ∧ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal

▪ Examples: 𝜑 = 𝑎 ∧ 𝑏 ∨ ¬𝑐 ∧ ¬𝑎 ∨ ¬𝑏 ∨ 𝑐
𝜑 = ¬𝑎

18

Notation

▪ Today: 𝜑 is a formula in CNF
▪ 𝜑 = 𝑏 ∨ ¬𝑐 ∧ ¬𝑎 ∨ ¬𝑏 ∨ 𝑐

19

Notation

▪ Today: 𝜑 is a formula in CNF
▪ 𝜑 = 𝑏 ∨ ¬𝑐 ∧ ¬𝑎 ∨ ¬𝑏 ∨ 𝑐

▪ A is an assignment of truth values to variables
▪ 𝐴 = 𝑎 → 𝑡𝑟𝑢𝑒, 𝑏 → 𝑓𝑎𝑙𝑠𝑒, 𝑐 → 𝑓𝑎𝑙𝑠𝑒
▪ Total or partial assignment

20

Notation

▪ Today: 𝜑 is a formula in CNF
▪ 𝜑 = 𝑏 ∨ ¬𝑐 ∧ ¬𝑎 ∨ ¬𝑏 ∨ 𝑐

▪ A is an assignment of truth values to variables
▪ 𝐴 = 𝑎 → 𝑡𝑟𝑢𝑒, 𝑏 → 𝑓𝑎𝑙𝑠𝑒, 𝑐 → 𝑓𝑎𝑙𝑠𝑒
▪ Total or partial Assignment

▪ 𝜑 𝐴 : 𝜑 with all variables set according to A
▪ 𝜑 𝐴 = ⊥∨ ¬⊥ ∧ ¬⊤ ∨ ¬⊥∨⊥ = ⊤ ∧ ⊥∨ ⊤ ∨⊥ = ⊤

21

Basis Idea - Backtracking Binary Search

▪ Recursively search for a satisfying model/assignment
▪ Search for A such that 𝜑[𝐴] = ⊤

Search space for 𝜑 with
variables 𝑎, 𝑏, 𝑐

22

Basis Idea - Backtracking Binary Search

▪ Recursively search for a satisfying model/assignment
▪ Search for A such that 𝜑[𝐴] = ⊤

▪ No such A exists
▪  is unsatisfiable

Search space for 𝜑 with
variables 𝑎, 𝑏, 𝑐

23

Basis Idea - Backtracking Binary Search

▪ Recursively search for a satisfying model/assignment
▪ Search for A such that 𝜑[𝐴] = ⊤

▪ No such A exists
▪  is unsatisfiable

▪ Several optimizations to prune search tree.

Search space for 𝜑 with
variables 𝑎, 𝑏, 𝑐

24

Basis Idea - Backtracking Binary Search

25

Basis Idea - Backtracking Binary Search

Decision Level:
• Decision = algorithm assigns

truth value to a variable
• Decision level = number of currently

made decisions

26

Basis Idea - Backtracking Binary Search

Decision heuristic
• Heuristic to decide which variable should be

assigned next
• Huge impact on solving time

E.g.: Dynamic Largest Individual Sum
• pick the variable and truth value, such that

the most unresolved clauses become satisfied.

We will use a predefined order.
• E.g., lexicographical order, positive phase first

27

𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ ¬𝑎

Decision heuristic: alphabetical order starting with the positive phase

Iteration 1 2 3 4 5 6 7 8 9

Dec. Level 0

Assignment {}

CL1: {¬𝑎, 𝑏}

CL2: {¬b, 𝑐}

CL3: {¬c,¬𝑎 }

Decision

Tabular Execution of the Basic Search

28

𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ ¬𝑎

Decision heuristic: alphabetical order starting with the positive phase

Iteration 1 2 3 4 5 6 7 8 9

Dec. Level 0

Assignment {}

CL1: {¬𝑎, 𝑏}

CL2: {¬b, 𝑐}

CL3: {¬c,¬𝑎 }

Decision

Tabular Execution of the Basic Search

Evaluate clauses under current A:

• Satisfied Clause:

• At least on of its literals is

satisfied under A

• Marked with

• Conflicting clauses:
• all of its literals are not

satisfied under A
• Marked with {}

• Unresolved clauses:

• Otherwise

29

𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ ¬𝑎

Decision heuristic: alphabetical order starting with the positive phase

Step 1 2 3 4 5 6 7 8 9

Dec. Level 0 1 2 3

Assignment {} 𝑎 𝑎,b 𝑎,b,c

CL1: {¬𝑎, 𝑏} ¬𝑎, 𝑏 𝑏 ✓ ✓

CL2: {¬b, 𝑐} ¬b, 𝑐 ¬b, 𝑐 𝑐 ✓

CL3: {¬c,¬𝑎 } ¬c,¬𝑎 ¬c ¬c {} X

Decision 𝑎 b c

Tabular Execution of the Basic Search

Found a conflicting clause: {}

• All of its literals are not

satisfied under A

• Backtrack

• Remove last decision

• Reduce Decision

30

𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ ¬𝑎

Decision heuristic: alphabetical order starting with the positive phase

Step 1 2 3 4 5 6 7 8 9

Dec. Level 0 1 2 3 3 2 1 2 3

Assignment {} 𝑎 𝑎,b 𝑎,b,c 𝑎,b, ¬c 𝑎, ¬b ¬a ¬a,b ¬a,b,c

CL1: {¬𝑎, 𝑏} ¬𝑎, 𝑏 𝑏 ✓ ✓ ✓ {} X ✓ ✓ ✓

CL2: {¬b, 𝑐} ¬b, 𝑐 ¬b, 𝑐 𝑐 ✓ {} X ✓ ¬b, 𝑐 c ✓

CL3: {¬c,¬𝑎 } ¬c,¬𝑎 ¬c ¬c {} X ✓ ¬c ✓ ✓ ✓

Decision 𝑎 b c ¬c ¬b ¬a b c SAT

Tabular Execution of the Basic Search

All clauses are satisfied

• Report SAT and
A as satisfying assignment

31

Boolean Constrain Propagation (BCP)

▪ Unit clause:
▪ a clause with a single unassigned literal
▪ Examples:
▪ (a)
▪ (b)

▪ Unit Clause exists ➔ set its literal
▪ Very simple but very important heuristic!

32

Step 1 2 3 4 5 6 7 8 9

Dec. Level

Assignment

CL1: {¬𝑎, 𝑏}

CL2: {¬b, 𝑐}

CL3: {¬c,¬𝑎 }

BCP

Decision

DPLL + BCP Example
▪ 𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ (¬𝑐 ∨ ¬𝑎)

33

DPLL + BCP Example
▪ 𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ (¬𝑐 ∨ ¬𝑎)

34

Pure Literals
▪ Pure Literal:
▪ Unassigned literal
▪ Complement does not occur in any unsatisfied clause

▪ Pure literals → set to TRUE

35

Step 1 2 3 4 5 6 7 8 9

Dec. Level

Assignment

CL1: {¬𝑎, 𝑏}

CL2: {¬b, 𝑐}

CL3: {¬c,¬𝑎 }

BCP

Pure Literal

Decision

DPLL + BCP + Pure Literal Example
▪ 𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ (¬𝑐 ∨ ¬𝑎)

36

DPLL+BCP+Pure Literals Example
▪ 𝜑 ≔ ¬𝑎 ∨ 𝑏 ∧ ¬𝑏 ∨ 𝑐 ∧ (¬𝑐 ∨ ¬𝑎)

Clause Learning37

Clause Learning

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

38

Clause Learning

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

c

39

Clause Learning

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

c

a

UNSAT

40

Clause Learning

c

a

UNSAT

a

UNSAT

41

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

Clause Learning

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

c

a

UNSAT

a

UNSAT

a

UNSAT

a

UNSAT

Without learning

Problem is with “a”:
➔ No need to try c=TRUE!

42

Conflict Graph

c

a

UNSAT

43

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

▪ Draw conflict graph for every conflict
▪ Illustrates decisions involved in conflict

Conflict Graph

c

a

UNSAT

44

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

▪ Draw conflict graph for every conflict
▪ Illustrates decisions involved in conflict

Root nodes:
Decisions

Internal nodes:
Implied (by BCP)

Conflict NodeClause numbers:
b is implied by
a via clause 7

Conflict Graph

c

a

UNSAT

45

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

▪ Draw conflict graph for every conflict
▪ Illustrates decisions involved in conflict
▪ To avoid conflict: change at least one decision that was involved

➔ Learn New Clause: (a)

Backtracking

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

8. a

4

5

8

No decision was necessary
➔We learn: UNSAT

46

Backtracking

1. (a  c)

2. (b  c)

3. (a  b  c)

4. (a  b)

5. (a  b)

6. (a  b)

7. (a  b)

8. a

4

5

8

No decision was necessary
➔We learn: UNSAT

47

c

a

UNSAT

a

UNSAT

a

UNSAT

a

UNSAT

No need to search here

48 DPLL + BCP + PL + Learning
▪ 𝜑 ≔ 𝑎 ∨ ¬𝑐 ∧ 𝑏 ∨ ¬𝑐 ∧ ¬𝑎 ∨ ¬𝑏 ∨ 𝑐 ∧ ¬𝑎 ∧ ¬𝑏 ∧ ¬𝑎 ∨ 𝑏 ∧ 𝑎 ∨ ¬𝑏 ∧ (𝑎 ∨ 𝑏)

Step 1 2 3 4 5 6 7 8 9

Dec. Level

Assignment

CL1: {𝑎,¬𝑐}

CL2: {𝑏, ¬𝑐}

CL3: {¬𝑎,¬𝑏, 𝑐}

CL4: {¬𝑎,¬𝑏}

CL5: {¬𝑎, 𝑏}

CL6: {𝑎, ¬𝑏}

CL7: {𝑎, 𝑏}

LC:

BCP

Pure Literal

Decision

𝑂𝑟𝑑𝑒𝑟:¬𝑐 < 𝑐 < ¬𝑎 < 𝑎 < ¬𝑏 < 𝑏

49

DPLL + BCP + PL + Learning

Backtrack Level

• Ongoing Research Problem

• In this course:
• → earliest level where conflict clause is a unit clause

• New clause immediately be used

50

51 𝜑 ∶= (𝑎 ∨ ¬𝑐 ∨ ¬𝑒) ∧ (¬𝑎 ∨ ¬𝑒) ∧ (𝑏 ∨ 𝑒) ∧ (¬𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (¬𝑏 ∨ ¬𝑑) ∧ (𝑐 ∨ ¬𝑑) ∧ (𝑐 ∨ 𝑑)
Decision heuristic: alphabetical order starting with the negative phase

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dec. Level

Assignment

1: {𝑎,¬𝑐, ¬𝑒}

2: {¬𝑎,¬𝑒}

3: {𝑏, 𝑒}

4: {¬𝑏, 𝑑, 𝑒}

5: {¬𝑏,¬𝑑}

6: {𝑐, ¬𝑑}

7: {𝑐, 𝑑}

LC 1

LC 2

BCP

Pure Literal

Decision

52 𝜑 ∶= (𝑎 ∨ ¬𝑐 ∨ ¬𝑒) ∧ (¬𝑎 ∨ ¬𝑒) ∧ (𝑏 ∨ 𝑒) ∧ (¬𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (¬𝑏 ∨ ¬𝑑) ∧ (𝑐 ∨ ¬𝑑) ∧ (𝑐 ∨ 𝑑)
Decision heuristic: alphabetical order starting with the negative phase

53 𝜑 ∶= (𝑎 ∨ ¬𝑐 ∨ ¬𝑒) ∧ (¬𝑎 ∨ ¬𝑒) ∧ (𝑏 ∨ 𝑒) ∧ (¬𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (¬𝑏 ∨ ¬𝑑) ∧ (𝑐 ∨ ¬𝑑) ∧ (𝑐 ∨ 𝑑)
Decision heuristic: alphabetical order starting with the negative phase

54 𝜑 ∶= (𝑎 ∨ ¬𝑐 ∨ ¬𝑒) ∧ (¬𝑎 ∨ ¬𝑒) ∧ (𝑏 ∨ 𝑒) ∧ (¬𝑏 ∨ 𝑑 ∨ 𝑒) ∧ (¬𝑏 ∨ ¬𝑑) ∧ (𝑐 ∨ ¬𝑑) ∧ (𝑐 ∨ 𝑑)
Decision heuristic: alphabetical order starting with the negative phase

DPLL + BCP + PL + Clause Learning

• Binary Search Tree
• Worst Case: Exponential Time

• Pruning
• Boolean Constraint Propagation (BCP)

• Pure Literals

• Learn Conflict Clauses

55

56

57

Resolution Proof58

Resolution Proof59

Resolution Proof60

Resolution Proof61

Resolution Proof62

Resolution Proof63

Thank You

64

64

https://xkcd.com/1033/

