Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Konighofer
Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

TU

Grazm
Graz University of Technology

mailto:bettina.koenighofer@iaik.tugraz.at

SAT Solvers

Determining the satisfiability of a formula stands as a powerful technique, given
that numerous real-world problems can be framed as instances of the SAT prob-
lem. Examples lie within the areas of high-level planning, scheduling, artificial
intelligence, circuit testing, and software verification. The practical importance of
the SAT-Problem has lead to remarkable research results and powerful tools for
SAT solving. In this chapter, we will focus in the DPLL algorithm, the basis of
many SAT solvers.

2.1 The SAT-Problem

Given a formula in propositional logic, the question whether there exists a sat-
isfying model is called the boolean satisfiability problem, or the SAT problem for
short.

Definition 2.1 (SAT-Problem.) Let ¢ be a formula in propositional logic. The
boolean satisfiability problem (SAT-Problem) asks whether there exists a satisfying
model M for ¢, i.e. M E .

The SAT problem is proven to be NP-complete. Given its NP-completeness, it
is very unlikely that there exists any polynomial algorithm for SAT. Neverthe-
less, there exist algorithms that are able to solve many interesting SAT instances
efficiently.

2 Chapter 2. SAT Solvers

2.2 The DPLL Algorithm

In 1962 Martin Davis, Hilary Putnam, Donald W. Loveland and George Logemann
introduced the DPLL algorithm. Their approach still forms the basis for most
modern SAT solvers.

The DPLL algorithm operates on formulas given in conjunctive normal form
(CNF) and is a complete, backtracking-based binary search algorithm.
Definition 2.2 (Conjunctive Normal Form) A formula ¢ is in conjunctive
normal form if it is a conjunction of clauses. A clause is a disjunction of literals.
Examples. The following formulas are in conjunctive normal form:

e w=(aVbVc)A(aVb),

e p=(aV-b)A(=aV-b)A(cVd)A(aV-bVc), and

e Y =a.
We will introduce the basic version of the algorithm and add additional optimiza-
tions further on. In its basic version, the algorithm tries every possible assignment

of truth values to the variables of the input formula. We can visualizes the search
space as a full binary search tree:

PN
b/ \ﬁb b/ \ﬁb
ARAA

Figure 2.1: The search space for an input formula ¢ consisting of variables a, b, and c.

The left-most leave of the tree in Figure 2.1 represents the model M = {a =
T,b=T,c=T}. Aslarge formulas will induce a large search space, optimization
techniques focus on ¢rimming the search space, i.e. not exploring paths that may
not lead to a satisfying model. Additionally, most modern SAT solvers implement
techniques that allow them to learn from wrong assignments. We will cover one
such technique at the end of this chapter.

The Basic DPLL Algorithm — Backtracking Binary Search

The basic procedure for a recursive implementation of the DPLL algorithm is given
in Listing 2.1. Note that the procedure in Listing 2.1 gives a rough overview of
how the search space is traversed. Be aware that it does not cover all the details
of the DPLL algorithm.

2.2. The DPLL Algorithm 3

sat(p, {}) = True iff ¢ is satisfiable
sat(p, A) = True iff @[A] is satisfiable
procedure sat(yp, A):

if ¢[A]=L1:
return False
if [A]l=T: # ¢ is SAT, A is satisfying assignment

return True

There are some unassigned variables left
Assign next variable
1 = pick unassigned variable
if sat(p, AU{l=T}
return True
if sat(p, AU{l=1}
return True
return False

Listing 2.1: The basic recursive call of the DPLL algorithm

The algorithm starts the recursion with an empty assignment, A := {}, and calls
sat (p, A). In each recursive step, the procedure first checks whether ¢ evaluates
to false under the current assignment A. If so, no extension of A will satisfy ¢,
and the recursive call returns False, effectively stopping traversing this path in
the search space. Otherwise, if A is a satisfying assignment, we return True.

Since A is not a full assignment yet (the procedure would have otherwise already
returned), the procedure picks one of the not yet assigned variables and continues
recursively. In order to do so, the procedure first calls sat(p, AU{l = T}) and
returns True if this extension is not falsifying, effectively continuing to traverse
this branch. Otherwise, the procedure traverses the other branch of the search
space and calls sat(p, AU {l = 1}). Again, the procedure returns True, if the
new assignment is not falsifying. If both recursive calls return False, this part of
the search space must not be traversed further. In case both recursive calls return
False for the first call of the recursion, we report that ¢ is unsatisfiable. In order
to keep track of this, the procedure keeps track of the so called decision level.

Definition 2.3 (Decision and Decision Level) Whenever the algorithm de-
cides on a truth value for a new literal [it makes a decision. The number of
decision currently assigned is called the decision level.

This basic version has seen many different extensions, all of which are aimed at
reducing the time needed to determine the satisfiability of the input formula. Most
of these extensions come in the form different heuristics. The first heuristics we
are going to look at are so-called decision heuristics.

Decision Heuristic

SAT solvers that implement the DPLL algorithm use heuristics to decide which
variable should be used to continue the search for a satisfying assignment. The
order in which the variables are chosen heavily influences the time needed to
decide whether the input formula is satisfiable. The efficiency of these heuristics
is measured empirically, by executing the algorithm on large sets of benchmarks.

4 Chapter 2. SAT Solvers

We will discuss one simple heuristic, as well as the approach we are going to use in
this course. You can read more about different heuristics in Chapter 2.2.5 of [1].

Dynamic Largest Individual Sum. In each iteration, count for each potential
assignment of truth value to a not yet assigned variable the number of clauses it
appears in. Then, pick the variable and truth value, such that the most clauses
become satisfied. Although this approach might seem like a good heuristic, it
introduces a large overhead as it is proportional to the number of clauses that are
not yet satisfied.

Predefined Order. In this course, we will always define the order for decision
making for every example. E.g. lexicographical order, positive phase first: Choose
the variables in lexicographical order and assign the truth value “true” first. We
denote this as follows: a< -a<b<-b<c<-c<....

Notation

For the remainder of this chapter, we will use shorthand notations for both the
input formula ¢ in CNF and the current assignment.

A clause can be represented as a set containing its literals, e.g. (-aVb) = {—a,b},

since the logical connectives are clear by definition. The input ¢ can then be
expressed as a set of sets. For instance, we express the input

p:=(2aVb A(=bVc)A(—eV —a).

Cy = {{—a,b},{-b, c}, {—-c,—a}}.

Similarly, we will use a shorthand in the set notation of assignments. If a variable
is assigned the truth value “true”, we represent it as the variable itself, i.e. {a =
T} = {a}. Similarly, we represent with {—a} the assignment {a = 1}.
Definition 2.4 (State of a clause under A.) A clause is satisfied if at least one
of its literals are satisfied under A, conflicting if all of its literals are not satisfied
under A, and unresolved otherwise.

These notations allows us to compactly represent ¢ and quickly compute ¢ under
different assignments A when executing the DPLL algorithm. In order to compute
»[A U {l}] using set representation we perform two steps:

1. Remove all clauses that contain [, since they are satisfied.
2. Remove all literals =/ from all remaining clauses, because these literals eval-
uate to false. Report any empty clause as conflicting.
The computation of p[A U {~l}] follows analogously.

Checking for falsifying assignments. The input ¢ under an assignment A
evaluates to false, if using set representation at least one clause is conflicting.

Checking for satisfying assignments. Finally, we can efficiently check whether
o under assignment A evaluates to true. It does so if the resulting set of clauses
becomes empty, i.e., all clauses evaluate to true and are removed from C,.

2.2. The DPLL Algorithm

Given ¢ :=(aVbVc)Adand A := {a}. Compute p[A] using set represen-
tation. State any satisfied or conflicting clauses.

ot

Solution. Expressing ¢ in set representation gives us

C, = {{a,b,c}, {d}}.

Since a € {a,b,c}, we remove the first clause from C,,, resulting in C,, :=
{{d}} or ¢[A] = d, and we report the first clause to be satisfied.

Exercise 2.2

| \.

Given ¢ := (maVbVec)Adand A := {a,~d}. Compute p[A] using set
representation. State any satisfied or conflicting clauses.

Solution. Expressing ¢ in set representation gives us

Cy = {{—a,b,c},{d}}.

Under A we remove —a from the first clause and d from the second clause,
resulting in Cy, = {{b,c}, {}} or p[4] := (bV ¢) A L. We can therefore
report the first clause to be unresolved and the second to be conflicting.

Tabular Execution of the DPLL Algorithm

In order to study the DPLL algorithm in more detail, we will use a tabular rep-
resentation to complete exercises in this course. The tabular representation in
Table 2.1 shows the different components needed.

Each iteration of the algorithm is represented by a single column in the table. The
different rows hold specific information: the current decision level, the literals cur-
rently assigned, the set representation of the clauses under the current assignment
and the next decision chosen by the algorithm.

To execute the algorithm, we follow these steps:

Step i) Enter the input clauses in set notation into the first column of the table.
Step ii) Start with the empty assignment A = {}. The algorithm now starts with
the recursive procedure.
Step iii) Evaluate ¢ under the current assignment A:
o Clauses that are satisfied under A are replaced by a v/,
o unresolved clauses are updated and entered into their respective cell, and
« conflicting clauses are replaced by a {} X. We call this a conflict.

6 Chapter 2. SAT Solvers

Step 1 2 3 4 5 6 7
Decision Level

Assignment
CL 1:
ClL 2:

ClL n:
Decision

Table 2.1: The table used for DPLL exercises.

Step iv) If all clauses are satisfied, we report SAT and A as a satisfying model.
Step v) If no clause is conflicting, we continue with step Step vii).

Step vi) If there is at least one conflicting clause under the current assignment
A, we backtrack. When backtracking the algorithm removes the last decisions
and the decision level is reduced by the number of reverted decisions.

e If the conflict occured in decision level 0, the algorithm stops and reports
UNSAT.

¢ Otherwise, the algorithm continues with step Step vii) and chooses the
next combination of literal and truth value.

Step vii) Update the current assignment A with the next literal I. Increment the
decision level by 1.

Use the DPLL Algorithm to determine whether or not the formula
p:=(maVb)A(=bVc)A(-cV-a)

is satisfiable.
Use a lexicographical order starting with the positive value as the decision
heuristic: a< =a< b< =b< c< —c< ...

Solution. We start by representing ¢ in the set representation,

Cy = {{—a,b},{(-b, c},{—c, ~a},

and enter the individual clauses into the table.

In the following, we will discuss more heuristics that improve the run time of the
DPLL algorithm.

2.2. The DPLL Algorithm 7

| Step | 1 [23] 4] 5 [6713871 9 |
Decision Level 0 1 2 3 3 2 1 2 3
Assignment - a a,b | a,b,c|ab,—c|a—-b| —a | —a,b| -ab,c
CL 1: —a,b —a,b b v v x| v v v
Cl 2: =b,c —-b,c | =bc| ¢ v {} x v | -bec| ¢ v/
Cl 3: =¢,ma | —~c,ma| —c | —c| {} X v -c v v/ v
IDCCision [a [b [c [-c [—b [—a [b [@ [SAT ‘

In step 0 of the algorithm, we pick a as our first assignment. In step 1 this
choice is added to A and we evaluate the clauses accordingly.

In step 4, after assigning c, the third clause becomes conflicting and we
reach our first conflict. We backtrack and flip the truth value assignment
for and assign —c¢. Once again, this leads to a conflicting clause in step 5
and we revert the last two decisions, namely —c and b. The algorithm then
picks —b.

We continue until step 9, in which all clauses are satisfied and we report
A = {—a,b,c} as a satisfying model.

Figure 2.2 illustrates the binary search we have performed during the search
and annotates the decision levels.

Decision Level 0
/&
Decision Level 1
/ \ 7 / \

/\ /\ /\ /\

Figure 2.2: Binary Search Tree

Decision Level 2

Decision Level 3

2.2.1 DPLL with Boolean Constraint Propagation

As a first optimization we will introduce Boolean Constraint Propagation (BCP).
To discuss this heuristic we first need to extend Definition 7?7 with unit clauses:

Definition 2.5 (Unit Clause.) A clause is said to be a unit clause, or unary,
under some assignment A if the clause is not satisfied by A and all but one of its
variables are assigned in A.

The key observation is that in order to extend A to a satisfying assignment for
any formula that contains a unit clause, we must assign the according literal:

For any unit clause ¢ = {l} the next assignment must include I, resulting in

8 Chapter 2. SAT Solvers

A=AU{l}.

In order to add this heuristic to our approach, we modify step Step vii) by executing
BCP before making a next decision:

Step vii) Chose a literal as update for the next assignment:
o If there is a unit clause, execute BCP and extend A with the literal of the
unit clause.

e Otherwise, update the current assignment A with the next literal . In-
crement the decision level by 1.

Note that, when applying BCP, the decision level is not increased. We say that an
assignment of a variable that is made due to a unit clause is an implication and
therefore not a decision.

Use the DPLL Algorithm with BCP to determine whether or not the for-
mula
p:=(ma Vb A(-bVe)A(meV -a)

is satisfiable. Use a lexicographical order starting with the positive value
as the decision heuristic: a < ~a< b< =b< e¢< —c< ...

Solution. As above, we start by representing ¢ in set notaton and list the
clauses in the first column.

| Step | 1 | 2 [3] 4 [5 | 6 [7 |
Decision Level 0 1 1 1 1 2 2
Assignment - a a,b | a,b,c | —a | —a,b | —a,b,c
Cl 1: —a,b —a, b b v v v v v
Cl. 2: =b,c =b,c | -b,c | ¢ v =b, c c v
Cl. 3: =¢,—a 3 ¢ | me | {}X | V v v
BCP - b c - - c -
Decision a - - —a b - SAT

In this example we apply BCP in step 2, 3, and 6. The decision level is not
incremented when applying BCP. As we can see, the algorithm is able to
find a satisfying assignment with a fewer number of steps.

2.2.2 DPLL with Pure Literals

The next optimization is the pure literal rule and is one of the standard techniques
used in DPLL-based SAT solvers.

2.2. The DPLL Algorithm 9

Definition 2.6 (Pure Literal.) A literal is pure if its negation does not appear
in the formula.

Example. Consider the set of clauses C, = {{a,—b,c}{a,~c}, {b,~c}}. The
literal a is pure in ¢, since —a does not appear in any clause.

Similarly to BCP, we can deduce that assigning the negation of a pure literal
cannot help in the search for a satisfying assignment. On the other hand, by
assigning a pure literal all clauses containing it will immediately be satisfied.

We can therefore further extend the DPLL algorithm, by modifying step Step vii)
once more:
Step vii) Chose a literal as update for the next assignment:

o If there is a unit clause, execute BCP and extend A with the literal of the
unit clause.

o If there is a pure literal, execute PL and extend A with the pure literal.

e Otherwise, update the current assignment A with the next literal . In-
crement the decision level by 1.

As for BCP, the decision level is not increased when applying the pure literal rule.

Use the DPLL Algorithm with BCP and PL to determine whether or not
the formula
p:=(maVb)A(=bVc)A(mcV-a)

is satisfiable. Use a lexicographical order starting with the positive value
as the decision heuristic: a < "a< b< =b< c< —c< ...

Solution.
[Step |t [2 [3 |
Decision Level 0 0 0
Assignment - -a | —a,—b
Cl 1: —a,b —a,b v v
Cl 2: =b,¢c —b,c | —b,c v
Cl 3: —¢,—a e, —a v v
BCP - - -
PL —q —b -
Decision - - SAT

10 Chapter 2. SAT Solvers

The formula ¢ contains the pure literal —a, therefore the pure-literal rule
is applied in the first step and satisfies the clauses 1 and 3. The single
remaining second clause gives us two pure literals: —b and c. The algorithm
picks —b. The assignment A = {—a, —b} satisfies all clauses.

2.2.3 Conflict-driven Clause Learning

We now come to the final optimization technique, conflict-driven clause learning
(CDCL). The principal idea of CDCL is to learn from conflicts that the algorithm
encountered so far. As the name suggests, the aim is to learn new clauses and
add them to the set of clauses. The newly added clauses influence the choice of
the next assignment and keeps the algorithm from encoutering the same conflict.
There are different methods to learn new clauses. In this course we will focus on
a simple approach.

SAT solvers keep track of decisions that they have made and implications that
occured due to BCP. This information is tracked via a conflict graph, or implication
graph.

Definition 2.7 (Conflict Graph) A conflict graph is a directed, acyclic graph
G(V, E), where:

o V =Vgee UVipmp U{L} is a set of nodes representing the partial assignment.
Vaee is a set of root nodes that represent all decisions. Vj,, consists of
implications that occured due to BCP. The special node | represents the
conflict.

o FE is a set of edges. Labeled edges connect two nodes from Ve, U Vipmp and
denote the clause as the reason for the implication. Unlabeled edges connect
nodes from Vgee U Vimp to L, denoting the clauses that lead to the conflict.

A conflict graph is constructed whenever the algorithm encounters a conflict, fol-
lowing these steps:

1. For every decision, create a root node that is labeled with that decision.

2. For every implication due to BCP, create a new node that is labeled the
implication. Connect the assignments that caused the clause to become
unary with the newly added implication. Label all edges with the index of
the unit clause. If the set of clauses contains a unary clause, i.e. no decision
is needed for this implication, add the according node with a dangling edge.

3. Connect all implications corresponding to the conflict with L.

2.2. The DPLL Algorithm 11

Execute the DPLL algorithm with BCP and PL for the set of clauses C,,
until the first conflict occurs. Draw the conflict graph.

C, = {{a,—c}, {b,~c}, {—a, b, c}, {—a, -b}, {—a, b}{a, -b}, {a,b}.

Use decision heuristic —c<c< a<a<-b<b<....

Solution.
Step 1 2 3 4
Decision Level 0 1 2 2
Assignment = —c —¢,ma | —e,—a, —b
Cl 1: a,—c a,—c v v v
Cl. 2: b,—c b, ¢ v v v
CL 3: —=a,—b,c | —a,—b,c | —a,—b v v
Cl. 4: —a,—b —a,—b | —a,—b v v
Cl 5: a,—b a,—b a,—b —b v
CL 6: a,b a,b a,b b {} X
BCP - - —-b -
PL - - - -
Decision —c —a -

We encounter the first conflicting clause in step 4.

In order to draw the conflict graph, we start by adding two nodes for the
decisions of the current assignment: —c¢ and —a. The decision —a caused
clauses 5 and 6 to become unary, we therefore add —b and b as implications
and connect the nodes. The edges are labeled according to the unit clauses.
Since these two clauses are the conflicting clauses, we add the conflict node
and connect the nodes representing —b and b.

Clause Learning via Resolution Proofs

CDCL uses the generated conflict graphs to derive new clauses. As mentioned
above, SAT solvers implement different strategies for the computation of learned
clauses from the conflict graph. In this course, we apply an approach based on
resolution proofs.

Definition 2.8 (Resolution Rule.) Let ¢; = (¢ V1) and ¢y = (v V =l) be two

12 Chapter 2. SAT Solvers

clauses, where ¢ and 1 denote disjunctions of arbitrary literals. Then the clause
@ V1 is implied by ¢1 A cs.

The resolution rule is a derived natural deduction rule and can be written as
follows:

(pvD) (V)
(p V)

Definition 2.9 (Resolution Proof.) A resolution proof derives a new clause
from a set of clauses by applying the resolution rule.

The resolution proof for a new learned clause can easily be generated by traversing
the conflict graph from the conflict node to the root nodes. The clauses that are
represented by the labels in the graph are iteratively used to apply the resolution
rule.

Example. We want to state a resolution proof to compute a new clause for
Exercise 2.6. We iteratively apply the resolution rule to the clauses in the conflict
graph. Since the conflict graph contains only clauses 5 and 6 we apply the rule
and learn the new clause {a}.

5.aV —b 6.aVb
a

Figure 2.3: The resolution proof for conflict graph in Exercise 2.6

Backtracking Level: After a conflict is reached and a new learned clause is
added, the DPLL algorithm needs to perform backtracking. Again, different strate-
gies exists on which level the SAT solver backtracks after adding a learned clause.

In this course we apply the following rule for deciding the backtracking level: After
reaching a conflict and adding a learned clause, we backtrack to the level where
the newly added clause becomes a unit clause. This way, the newly added clause
can immediately be used with BCP.

Use the DPLL algorithm with BCP, PL and CDCL to determine whether
the set of clauses C, is satisfiable. Draw the conflict graph and state the
resolution proof for any conflict.

C, = {{a,—c}, {b, ~c}, {—a, b, c}, {—a, -b}, {—a, b}{a, -b}, {a,b}.

Use decision heuristic —c<c< a<a<-b<b<....

Solution.

2.2. The DPLL Algorithm 13

Step 1 2 3 4
Decision Level 0 1 2 2
Assignment = —c —¢,—a | —e,—a,—b
ClL 1: a,—c a, ¢ v v v
CL 2: b,—c b, —c v 4 v
CL 3: =a,—b,c | —a,—b,c | —a,—b v v
Cl. 4: —a,—b —a,—b | —a,—b v v
Cl 5: a,—b a,—b a, b —b v
CL 6: a,b a,b a,b b {} X
BCP - - —-b -
PL - - - -
Decision =@ —a - -

a

Step 5 7
Decision Level 1 1
Assignment —c -c,a | e, a,—b
ClL 1: a,—c v v v
Cl. 2: b,—c v v v
Cl. 3: —a,-b,c | —a,—b —b v
Cl 4: —a,—b —a,—b | —b v
CL 5: a,-b a,—b v v
Cl 6: a,b a,b v v
ClL 7:a a v v
BCP a —b -
PL - - -
Decision - - SAT

Proofs for Unsatisfiability

Finally, in the case the input formula ¢ is unsatisfiable, we want to give a concise
proof that shows its unsatisfiability. When a conflict occurs at decision level 0
we state a resolution proof in the same manner as when learning a new clause.
Note that this can also be viewed as learning the empty clause, which cannot be
satisfied and the whole formula is therefore unsatisfiable.

Example. Consider the second conflict in Exercise 2.8. The proof in Figure 2.4
shows the same proof. We start by applying the resolution rule using clauses 2
and 4, according to the conflict graph. We deduce that the algorithm needs to set
—a for any satisfying assignment. In a previous conflict we have learned that the

14 Chapter 2. SAT Solvers

algorithm also needs to assign a and we deduce L, resulting in the proof that the
input is unsatisfiable.

2. -aVb 4. —a V —b
—a 5. a

uE

Figure 2.4: The resolution proof for step 6 in 2.8 showing that the formula unsatisfiable.

The DPLL Algorithm with CDCL

We conclude this chapter with the final algorithm. In order to incorporate conflict-
driven clause learning we need to adapt step Step vi). Instead of backtracking and
choosing the next assignment according to the decision heuristic, we learn a new
clause.

Step i) Enter the input clauses in set notation into the first column of the table.

Step ii) Start with the empty assignment A = {}. The algorithm now starts with
the recursive procedure.

Step iii) Evaluate ¢ under the current assignment A:

e Clauses that are satisfied under A are replaced by a v/,

e unresolved clauses are updated and entered into their respective cell, and

« conflicting clauses are replaced by a {} X. We call this a conflict.

Step iv) If all clauses are satisfied, we report SAT and A as a satisfying model.

Step v) If no clause is conflicting, we continue with step Step vii).

Step vi) If there is at least one conflicting clause under the current assignment A
we process the conflict. We start by drawing the corresponding conflict graph
and formulate a resolution proof.

e If we have learned a new clause, the algorithm backtracks and reverts
decisions, such that the newly learned claused triggers BCP in the next
step.

o If the conflict occured at decision level 0, we have proven that the input
is unsatisfiable and we stop.

Step vii) Chose a literal as update for the next assignment:
o If there is a unit clause, execute BCP and extend A with the literal of the
unit clause.
e If there is a pure literal, execute PL and extend A with the pure literal.

e Otherwise, update the current assignment A with the next literal [. In-
crement the decision level by 1.

2.2. The DPLL Algorithm 15

Use the DPLL algorithm with BCP, PL and CDCL to determine whether
the set of clauses C, is satisfiable. Draw the conflict graph and state the
resolution proof for any conflict.

C, = {{a,b},{a, -b}, {—a, b}, {—a, -b}

Use decision heuristic —a<a<-b<b<....

Solution.

Step 1 2 3 4 5 6
Decision Level 0 1 1 0 0 0
Assignment - -a | —a,—b - a a,—b
ClL 1: a,b a,b b {} X a,b v v
ClL 2: —a,b -a,b | v/ v/ —-a,b b {} X
Cl. 3: a,—b a,—b | —b v a,—b | v v
CL 4: —a,—b —a,=b | / v —a,—b | —b v
CL 5: a (LC) - - - a v v
BCP - —=b - a =b -
PL - - - - - -
Decision —a - - - - | UNSAT

l.aVb 3.aV b
a

After the first conflict we can deduce that we need to assign a and add
it as a learned clause. We backtrack, such that we can use BCP and
therefore move back to decision level 0.

In the next step the unary clause 4 triggers BCP again and we reach
another conflict.

2.-a Vb 4. -a V b
—a 5.a

il

16

Chapter 2. SAT Solvers

as the decision heuristic:

Use the DPLL Algorithm with BCP, PL and CDCL to determine whether
or not the formula

= (aV-eV=e)A(naV-e)A(bVe)A(mbVdVe)A(—bV-d)A(cV-d)A(cVd)

is satisfiable. Use a lexicographical order starting with the negative value
a<a<b<b<c<ce< ...

Solution.
Step 1 2 3 4 5 6
Decision Level 0 1 2 2 2 2
Assignment - -a a,—b | —a, b e a0 || T
—c —¢, —d
Cl 1: a,—¢,—e | a,—¢c,—e | —¢,—e | —¢, e —c v v
Cl. 2: —a,—e —a, —e v v v v v
Cl. 3: b,e b,e b,e e v v v
Cl. 4: =b,d,e =b,d,e | =b,d,e v v v v
ClL. 5: =b,—d =b, ~d =b, =d v v v v
Cl. 6: ¢,—d ¢, —d c,d ¢, —d c,d —d v
CL 7: c,d c,d c,d ¢, d c,d d {} x
BCP - - e -c —d -
PL - - - - - -
Decision -a -b - - - -

Conflict in step 6

O——0O—

7.cVd

6.cV —d

C

()
®<@'>@

l.aV —-cV —e

aV —e

3.bVe

aVb

2.2. The DPLL Algorithm

17

Step 7 8 10 11
Decision Level 1 1 1 1
Assignment —a —a,b | —a,b,—d BT || S

c ¢, e
CL 1: a,—¢c,—e | —¢c,—e | =¢c,me | —c,—e —e v
ClL 2: —a,—e v v v v v
ClL 3: b,e b,e v v v 4
Cl 4: —-b,d,e -b,d,e | de e e {} X
CL 5: =b,—d =b, ~d —d v v v
CL 6: ¢,~d ¢, —d ¢, —d v v v
Cl 7: ¢,d c,d c,d c v v
CL 8: a,b b v v v v
BCP b —d 8 —e -
PL - - = = =
Decision - - = = =

Conflict in step 11
1

Conflict in step 16

8
(OO
®
: O—
l.aV-cV —e 4. -bvdVe
aV-cV-bVvd 7.cVvVd
aV-bVd 5. bV d
aV b 8.aVb
a

Step 12 13 14 15 16
Decision Level 0 0 0 0 0

. a,—e,b,
Assignment - a a,—e | a,—e,b d
Cl 1: a,—c¢c,—e | a,—c,—e v v v v
ClL 2: —a,—e —a, —e —e v 4 4
CL 3: b,e b,e b,e b v v
Cl. 4: =b,d,e =b,d,e | —b,d,e | —b,d d {} x
ClL. 5: =b,—d =b, ~d =b,—d | —b,—d —d v
Cl. 6: ¢,—d ¢, d c,d c,—d c,d v
CL 7: ¢, d c,d c,d c,d c,d c
ClL 8: a,b a,b v v v v
Cl 9: a a v v v v
BCP a —e b -d -
PL - - - - -
Decision - - - - UNSAT

18

Chapter 2. SAT Solvers

4. -bVvdVe 5. =bV —d
-bVe 3.bVe
e 2. naV —e

—a 9.a

2.2. The DPLL Algorithm 19

This chapter is based on:
D. Kroening and O. Strichman. Decision Procedures - An Algorithmic Point of
View, Second Edition. Springer, 2016.

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

List of Definitions

SAT-Problem.o 1
Conjunctive Normal Form 2
Decision and Decision Level 3
State of a clause under A. 4
Unit Clause. e 7
Pure Literal. 8
Conflict Graph 10
Resolution Rule. 11
Resolution Proof. 12

21

Bibliography

[1] D. Kroening and O. Strichman. Decision Procedures - An Algorithmic Point
of View, Second Edition. Springer, 2016.

23

	SAT Solvers
	The SAT-Problem
	The DPLL Algorithm
	DPLL with Boolean Constraint Propagation
	DPLL with Pure Literals
	Conflict-driven Clause Learning

