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▪ Propositional Logic
▪ Syntax and Semantics

▪ SAT Solving (DPLL) 
▪ (Efficiently) solve huge formulas

▪ BDDs
▪ Data structure to efficiently store and manipulate formulas

▪ Natural Deduction
▪ Prove that arguments in prop. logic are valid
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Recap - Topics we discussed so far



▪ Last lecture about propositional logic
▪ Next week: predicate logic

▪ Several basic concepts
▪ Relations between Satisfiability, Validity, and Equivalence
▪ Normal Forms: CNF, DNF
▪ Logical equivalences: Distributive laws, De Morgan’s law…

▪ Tseitin Encoding
▪ Computes equisatisfiable formula in CNF

▪ Equivalence checking via reduction to SAT
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Plan of Today
First Part – A few Basic Concepts of Propositional Logic Second Part – Z3

▪ Introduction to SMT 
solver Z3

▪ Focus on solving formulas
in propositional logic



Outline
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Relations between Satisfiability, Validity, and Equivalence

▪ Normal Forms

▪ Tseitin Encoding
▪ Algorithm to translate formula in equisatisfiable formula in CNF



Learning Outcomes
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After this lecture…
1. students can apply the algorithm to check for equivalence

based on the reduction to SAT.
2. students can explain the relation between satisfiability, validity, and

equivalence.
3. students can rewrite and simplify formulas by applying 

logical equivalences.
4. students can construct the CNF and DNF normal forms of formulas 

via truth tables.
5. students can apply Tseitin’s algorithm to construct formulas in CNF.
6. students can explain the concept of equisatisfiability. 



▪ Circuit Optimization and Synthesis Tools
▪ Big Market
▪ Tools can make mistakes!
▪ Need to check for equivalence
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Combinational Equivalence Checking

=
?
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▪ Using Truth Tables: Check for 𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙 ? 
i. e., 𝜙 and 𝜓 are true for the same models

▪ Exponentially large 
▪ → Not practicable!

▪ Better way: Reduction to SAT

Algorithm - Circuit Equivalence via Truth Tables
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Algorithm - Circuit Equivalence based on SAT 

Step 1: Encode 𝑪𝟏 and 𝑪𝟐 into formulas:

𝜑1 

𝜑2 
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𝜑2 = 𝒂 ∧ ¬𝒃 ∨ ¬𝒂 ∧ 𝒃

Algorithm - Circuit Equivalence based on SAT 

Step 1: Encode 𝑪𝟏 and 𝑪𝟐 into formulas:

𝜑1 = 𝑡 ∧ 𝑠
= ¬𝑟 ∧ 𝑎 ∨ 𝑏

 = ¬ 𝒂 ∧ 𝒃 ∧ 𝒂 ∨ 𝒃

𝜑1 

𝜑2 
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Algorithm - Circuit Equivalence based on SAT 

Step 1: Encode 𝑪𝟏 and 𝑪𝟐 into formulas:

Circuits are equivalent     𝜑1 ⊕ 𝜑2 is unsatisfiable.

𝜑2 = 𝒂 ∧ ¬𝒃 ∨ ¬𝒂 ∧ 𝒃

𝜑1  = ¬ 𝒂 ∧ 𝒃 ∧ 𝒂 ∨ 𝒃𝜑1 

𝜑2 



11

Algorithm - Circuit Equivalence based on SAT 

Step 1: Encode 𝑪𝟏 and 𝑪𝟐 into formulas:

Circuits are equivalent     𝜑1 ⊕ 𝜑2 is unsatisfiable.

SAT Solver needs CNF
Use Tseitin Encoding to encode 𝜑1 ⊕ 𝜑2 as CNF 

𝜑2 = 𝒂 ∧ ¬𝒃 ∨ ¬𝒂 ∧ 𝒃

𝜑1  = ¬ 𝒂 ∧ 𝒃 ∧ 𝒂 ∨ 𝒃𝜑1 

𝜑2 
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1. Encode 𝐶1 and 𝐶2 into two formulas 𝜑 1 and 𝜑 2

2. Compute the Conjunctive Normal Form (CNF) of 𝜑 1 ⊕ 𝜑2
▪ Use Tseitin Encoding

3. Give CNF(𝜑 1 ⊕ 𝜑2) to a SAT solver 

4. 𝐶1 and 𝐶2 are equivalent if and only if 𝜑 1 ⊕ 𝜑2  is UNSAT

Algorithm - Circuit Equivalence based on SAT 



Outline
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Relations between Satisfiability, Validity, and Equivalence 

▪ Normal Forms

▪ Tseitin Encoding

Circuits are equivalent  𝜑1 ⊕ 𝜑2 is unsatisfiable.

Convert to CNF using Tseitin Encoding



Duality: Validity and Satisfiability
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▪ 𝝓 is valid                  ¬𝝓 is not satisfiable
 𝝓 is satisfiable        ¬𝝓 is not valid

▪   Example:
▪ 𝜙 = (𝑥 ∨ ¬𝑥) is valid.                                              Truth Table: All rows T.
▪ ¬𝜙 = ¬ 𝑥 ∨ ¬𝑥 ≡ ¬𝑥 ∧ 𝑥 is not satisfiable.   Truth Table: All rows F.

▪ Only one decision procedure needed 



Reductions
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Solve

satisfiable?
valid? ? ?

not

satisfiable?
not 

satisfiable?

not valid? valid?

and

?

using

Satisfiability

Validity

Equivalence

Equivalence

? ?

?

▪ Only one decision procedure needed 



Outline
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Relations between Satisfiability, Validity, and Equivalence 

▪ Normal Forms

▪ Tseitin Encoding

Circuits are equivalent  𝜑1 ⊕ 𝜑2 is unsatisfiable.

Convert to CNF using Tseitin Encoding



Normal Forms
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▪ Literal: propositional variable or its negation
▪ Example: 𝑝, ¬𝑞

▪ Disjunctive Normal Form (DNF)
▪ Disjunction of conjunction of literals:

𝑎1 ∧ 𝑎2 ∧ ⋯ ∧ 𝑎𝑛 ∨ 𝑏1 ∧ ⋯ ∧ 𝑏𝑚 ∨ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal

▪ Conjunctive Normal Form (CNF)
▪ Conjunction of disjunctions of literals:

𝑎1 ∨ 𝑎2 ∨ ⋯ ∨ 𝑎𝑛 ∧ 𝑏1 ∨ ⋯ ∨ 𝑏𝑚 ∧ ⋯

where each 𝑎𝑖 , 𝑏𝑗 is a literal



Ways to Obtain a CNF
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▪ SAT Solvers require formula in CNF as input

▪ Obtain CNF via Truth Table
▪ Exponential size

▪ Obtain CNF via logical equivalences (De Morgan’s laws, Distributive laws…) 
▪ Exponential size

▪ Tseitin Encoding
▪ Use auxiliary variables
▪ Linear blow-up
▪ Produces equisatisfiable formula with linear blowup



DNF from Truth Table
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𝒑 𝒒 𝒓 𝒓 ∨ 𝒒 → (𝒑 ∧ ¬𝒒)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Example:



DNF from Truth Table
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𝒑 𝒒 𝒓 𝒓 ∨ 𝒒 → (𝒑 ∧ ¬𝒒)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Example:

¬𝑝 ∧ ¬𝑞 ∧ ¬𝑟

𝑝 ∧ ¬𝑞 ∧ ¬𝑟

𝑝 ∧ ¬𝑞 ∧ 𝑟

DNF: ¬𝑝 ∧ ¬𝑞 ∧ ¬𝑟 ∨ 𝑝 ∧ ¬𝑞 ∧ ¬𝑟 ∨ (𝑝 ∧ ¬𝑞 ∧ 𝑟)

Enumerate satisfying models, 
connect satisfying models with disjunctions.



CNF from Truth Table
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𝒑 𝒒 𝒓 𝒑 ∨ ¬𝒒 → 𝒓

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Example:



CNF from Truth Table
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𝒑 𝒒 𝒓 𝒑 ∨ ¬𝒒 → 𝒓

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Example:

𝑝 ∨ 𝑞 ∨ 𝑟

¬𝑝 ∨ 𝑞 ∨ 𝑟

¬𝑝 ∨ ¬𝑞 ∨ 𝑟

CNF: 𝑝 ∨ 𝑞 ∨ 𝑟 ∧ ¬𝑝 ∨ 𝑞 ∨ 𝑟 ∧ (¬𝑝 ∨ ¬𝑞 ∨ 𝑟)

Exclude falsifying models by requiring that at least 
one literal per falsifying model must be different,
connect with conjunctions.



Outline
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▪ Algorithm - Decide equivalence of combinational circuits
▪ Based on reduction to Satisfiability

▪ Relations between Satisfiability, Validity, and Equivalence 

▪ Normal Forms

▪ Tseitin Encoding

Circuits are equivalent  𝜑1 ⊕ 𝜑2 is unsatisfiable.

Convert to CNF using Tseitin Encoding



Tseitin Encoding
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▪ Produces equisatisfiable formula in CNF with linear blowup

▪ Trick: Use auxiliary variables

▪ Definition of equisatisfiability:

𝜙 and 𝜓 are equisatisfiable           either both are satisfiable, or both are unsatisfiable

▪ For equivalence checking, we only need the info SAT or UNSAT
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▪ Step 1
▪ Assign new variables to each sub-formula

▪ Step 2 
▪ Add explanation for each new variable

▪ Step 3 
▪ Apply Tseitin Rewrite Rules to obtain equisatisfiable CNF

Tseitin Encoding



26 Example – Tseitin Encoding
Use Tseitin encoding to compute the CNF of 𝜑 = ( 𝑝 ∨ 𝑞 ∧ 𝑟) ∨ ¬𝑝. 

Rewrite Rules



27 Example – Tseitin Encoding
Use Tseitin encoding to compute the CNF of 𝜑 = ( 𝑝 ∨ 𝑞 ∧ 𝑟) ∨ ¬𝑝. 

Rewrite Rules

∨



28 Example – Tseitin Encoding
Use Tseitin encoding to compute the CNF of 𝜑 = ¬ 𝑎 ∨ ¬𝑏 ∨ (¬𝑎 ∧ 𝑐). 

Rewrite Rules



29 Example – Tseitin Encoding
Use Tseitin encoding to compute the CNF of 𝜑 = ¬ 𝑎 ∨ ¬𝑏 ∨ (¬𝑎 ∧ 𝑐). 



30 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF  

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏  ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏  ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐



31 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF  

▪ (r→ p  q)  (p  q → r) 

▪ (r  (p  q))  ((p  q)  r)

▪ (r  p )  (r  q)  (p   q  r)

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏  ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏  ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐



32 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF  

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏  ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏  ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐



33 Derive Rewrite Rules

▪ r (p  q) … rewrite it to a CNF  

▪ ((p  q)→ r)  (r→ p  q) 

▪ ((p  q)  r)  (r  p  q)

▪ ((p   q)  r)  (r  p  q)

▪ (p  r)  (  q  r)  (r  p  q)

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏  ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏  ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐



34 Example

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏  ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏  ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

Derive the rewrite rule for 𝑥 (𝑝 → 𝑞). 



35 Example

𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

¬ 𝑎 ∧ 𝑏  ≡ ¬𝑎 ∨ ¬𝑏
¬ 𝑎 ∨ 𝑏  ≡ ¬𝑎 ∧ ¬𝑏

De-Morgan

Distributive Law

𝑎 ∨ (𝑏 ∧ 𝑐) ≡ 𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐
𝑎 ∧ (𝑏 ∨ 𝑐) ≡ 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐

Derive the rewrite rule for 𝑥 (𝑝 → 𝑞). 



36 CEC Example
Check whether 𝜑1 = 𝑎 ∧ ¬𝑏 and 𝜑2 = ¬ ¬𝑎 ∨ 𝑏 are equivalent using the reduction to SAT.



37 CEC Example
Check whether 𝜑1 = 𝑎 ∧ ¬𝑏 and 𝜑2 = ¬ ¬𝑎 ∨ 𝑏 are equivalent using the reduction to SAT.

Step 1) Build 𝜑 =  𝜑1 ⊕ 𝜑2 

Step 2) Compute CNF of 𝜑 via Tseitin

Step 3) Check via SAT Solver: Is the CNF of 𝜑 satisfiable? 
Step 4) Interpret result: 𝜑 1 and 𝜑2 are equivalent if and only if 𝜑 1 ⊕ 𝜑2  is UNSAT 



Learning Outcomes
38

After this lecture…
1. students can apply the algorithm to check for equivalence

based on the reduction to SAT.
2. students can explain the relation between satisfiability, validity, and

equivalence.
3. students can rewrite and simplify formulas by applying 

logical equivalences.
4. students can construct the CNF and DNF normal forms of formulas 

via truth tables.
5. students can apply Tseitin’s algorithm to construct formulas in CNF.
6. students can explain the concept of equisatisfiability. 



Thank You

39
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https://xkcd.com/1033/
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