
Formal verification in hardware design

Henrik Zant

January 10, 2024

1



Introduction



Testing vs verification [1]

Traditional testing

• Test if system behaves according to

expectations

• ”Correct” behaviour often described

ambiguously

• Tests may not detect some bugs

→ only probabilistic assurances

Formal verification

• Prove a system behaves according to

its specification using mathematically

sound techniques

• ”Correct” behaviour entirely based on

unambiguous specification

• Works on abstractions of the physical

device
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Verification pitfalls [1]

• Specification may not capture client’s intention

• Time/Space effort may be huge for bigger designs

• May not capture manufacturing faults/time/environment of physical device

→ assumptions need to be made
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Verification Approaches [1], [2]

• Specifying desired properties

• High level model as specification

• Combinations of both
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Specifying Desired Properties



Model-Checking Introduction [1], [3]

1. stipulate specification as properties that must hold

2. abstract system into a model

• different modelling techniques available

• modelling possible at different stages (VHDL/Netlist)

3. verify algorithmically that model fits specification

or produce counter example if model doesn’t fit specification
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Model-Checking Approaches [1], [3]

• Different Model-Checking approaches

• CTL*/CTL/LTL Model-Checking

• symbolic state representation

• explicit state representation

• µ-calculus

• Trajectory Formulas

• . . .

• Different approaches also differ in expressiveness and runtime

→ rule of thumb: Consider the properties you need and choose approach

accordingly
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Temporal logic and explicit Model-Checking - Overview [1], [3]

• Hardware model is explicit (e.g. State Transition Graph/Kripke Structure)

• Specification provided in temporal logic

• Rough idea: allows specifying what propositions need to hold with respect to time

• Based on propositional logic extended with temporal operators and path quantifiers

• Many different temporal logics exit: CTL*/CTL/LTL)

• Verification effort depends on which temporal logic is used

• Expressiveness depends on which temporal logic is used
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Modelling hardware using state transition graphs

1module ha r dwa r e d e s i g n ( c l k , s , bad ) ;

2 i n pu t c l k ;

3 output r eg [ 1 : 0 ] s ;

4 output r eg bad ;

5 i n i t i a l s = 2 ’ b00 ;

6 i n i t i a l bad = 0 ;

7 a lways @( posedge c l k ) beg in

8 ca se ( s )

9 2 ’ b00 : s <= 2 ’ b10 ;

10 2 ’ b01 : s <= 2 ’ b01 ;

11 2 ’ b10 : s <= 2 ’ b01 ;

12 2 ’ b11 : beg in

13 s <= 2 ’ b10 ; bad <= 1 ;

14 end

15 endcase

16 end

17 endmodule

Figure 1: Hardware as state transition graph

M1
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State transition graph - Example [1]

Figure 2: Traffic light state transition graph [1]

• System consisting of two

traffic lights

• Atomic Propositions
([ns], [ew ])

• north-south

• east-west

• red, yellow, green colors
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Computation path/tree example [1], [3]

Figure 3: Possible

Computation Path
Figure 4: Full Computation Tree
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CTL*/CTL/LTL [1], [3]

• Discrete model of time

• Set of shared temporal operators

• Set of path quantifiers

• CTL*/CTL/LTL differ in what temporal operator and path quantifier

combinations are allowed

Temporal Operators:

• X : Next

• U: Until

• G : Globally

• F : Eventually

Path Quantifiers:

• A: for all paths

• E : there exists a path

We will focus on CTL for in this presentation
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Temporal operators visualized

Figure 5: Temporal operators visualized

12



CTL Definition [1]

• ∀p ∈ AP is a CTL formula

• If f1 and f2 are CTL formulas, then ¬f1, f1 ∧ f2, AXf1, EXf1, A(f1 U f2) and
E (f1 U f2) are also CTL formulas

• AXf holds for s0 if along all paths f holds in all direct successor states

• EXf holds for s0 if there exists a path on which f holds for the direct succesor state

• A(f1Uf2) holds for s0 if along all paths f1 always holds until f2 holds

• E (f1Uf2) holds for s0 if there exists a path on which f1 always holds until f2 holds

• even more ”composite” operators available:

• EFf = E(true U f ) holds if there exists a path on which f eventually holds

• AGf = ¬EF¬f holds if along all paths f holds for every state

• ...
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CTL verification using explicit Model-Checking [1]

• Based on labeling states of State Transition Graph

• Every operator pair (eg. EXp, AFp) comes with a graph-search based algorithm

Example: For the pair EXp: a state is labeled EXp if some of its successors have

the label p in O(|S |+ |R|)
• For a given CTL formula f and an initial state s0:

1. Break up f into all of its subformulas (inside-out)

2. Apply labels to the Graph using these subformulas

3. If s0 is labeled with f then M, s0 |= f

• Complexity: O(|f |(|S |+ |R|))
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CTL Model-Checking - Example

• f = AF (EXq), where q = ([ew ] = g)

• s0 = (r , r)

Figure 6: Traffic light state transition graph M [1]
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CTL Model-Checking - Example

• f = AF (EXq), where q = ([ew ] = g)

• s0 = (r , r)

Figure 7: Traffic light state transition graph M [1]
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CTL Model-Checking - Example

• f = AF (EXq), where q = ([ew ] = g)

• s0 = (r , r)

Figure 8: Traffic light state transition graph M [1]
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CTL Model-Checking - Example

• f =AF (EXq), where q = ([ew ] = g)

• s0 = (r , r)

• M, s0 |= f

Figure 9: Traffic light state transition graph M [1] 18



Specifying high level models [1]



Specifying high level models

• High level model serves as system specification

• Implementation is the refinement of high level model (i.e implementation details

are abstracted away from high level model)

• Sometimes multiple abstraction layers between high level model and

implementation

• Different abstraction approaches (out of scope for this paper)

• Refinement-Checking: Use mathematically sound reasoning to verify that your

hardware is an implementation of the model
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Combining property-based and high

level model based approaches



Combining different techniques to formally verify a SoC [2]

• IP cores can be verified, or come with specification and are pre-verified by vendors

• Standard SoC bus can also be verified using SMV Model-Checker

• IP cores may expect different bus protocol
→ ”glue” logic required to connect standard bus to IP core

• collection of abstractions between standard bus other protocols can be

model-checked

• verify that implementation of glue logic is a refinement of previously defined

abstraction

• using the IP core specs, glue-abstraction specification, bus-specification, verify

that the whole SoC complies to its specification
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Conclusions



Conclusions

• Verification is based on mathematical sound properties and requires a formal

specification

• Verification is executed on models → can’t guarantee Hardware was manufactured

correctly

• Two main approaches: High Level Model Specification vs Property Based

Approach

• Different techniques require different assumptions and have different

expressiveness and runtime requirements
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