
High-level synthesis

Besjana Jaçaj

January 11, 2024

1



History

• Software domain

• Machine code

• 1950s: Assembly language

• HLLs

• Hardware domain

• 1960s: ICs designed, optimized, and laid out

by hand

• early 1970s: Gate-level and cycle-based

simulation

• 1980s: schematic circuit capture, formal

verification and static timing analysis

• HDLs - Verilog(1986) and VHDL (1987)

• 1990s: First generation of HLS tools

• ...

• [1] [2]

2



Informal definition

High-Level Synthesis is an automated design process that takes an abstract

behavioral specification of a digital system and generates a register-transfer level

structure that realizes the given behavior.[3]

3



Informal definition pt2 [3]

HLS

• as a design process

• Macro Architecture

• Design Intent

• Constraints

• as a tool (automation provided by)

• FSM Generation

• Schedule of Operations

• Clock, Pipelining Registers (Micro Architecture)

• Sharing Resources

• Timing

• Verification

4



Benefits of HSL

• Productivity Gains

• are easier to write since they contain few implementation details

• create high-quality(optimized) and error-free RTL quickly

• are smaller and less complex than equivalent RTL descriptions

• are easier to understand and debug since they are more closely related to the

algorithm being developed

• are faster to simulate (typically) than an equivalent RTL description, promoting early

system verification

• Architecture / Goal Flexibility

• enable item re-use

• reduce verification time

5



Graphical definition

Specification

Formal Model

RTL architecture

Compilation

Scheduling

Binding

Allocation

CompilationGeneration

CompilationLogic Synthesis

Library

Figure 1: High-level synthesis design steps [4] 6



Input languages

Input specification written in HLLs such

as :

• ANSI C, C++

• System C

• ...

for HTL tools such as :

• Catapult C

• Cynthesizer

• CyberWorkbench

• PICO

• C-to-Sicilon

• ...

7



Allocation step

Resource allocation is the process of deciding how many and which kind of resources

can be used to a given implementation. [2]

Said resources:

• Functional units

• Storage components

• Connectivity components (such as buses or point-to-point connections)

The components are selected from the RTL component library.

8



Scheduling step

All operations required in the specification model must be scheduled into cycles.

Scheduling algorithms can be grouped into:

• unconstrained design

• constrained design

What are the constraints ? A design can be resource-constrained,

time-constrained, or both.[1]

Example: a = b op c

Depending on the functional component :

• operation can be scheduled within one clock cycle (or more)

• operations can be chained

• operations can be scheduled to execute in parallel

9



Binding step

STORAGE binding: Each variable that carries values across cycles must be bound to

a storage unit.

• several variables with mutually exclusive lifetimes can be bound to the same

storage units

FUNCTIONAL binding : Each operation in the specification must be bound to one of

functional units (capable of executing said instruction)

• more than one unit with same capability, the binding algorithm must optimized

the selection

CONNECTIVITY binding : Each transfer from components to component is bound by

a connection unit

10



Binding step

Figure 2: RTL description written with different binding details. [4] 11



Some commonly used abbreviations

• HDL - Hardware description language

• HSL - High-level synthesis

• HLL - High-level languages

• FSM - Finiti State Machine

• IC - Integrated chip

• RTL - Register-transfer level

12



References i

References

[1] D. Knapp, Behavioral Synthesis: Digital System Design Using the Synopsys
Behavioral Compiler. Prentice Hall, 1996.

[2] J. Elliot, Understanding Behavioral Synthesis: A Practical Guide to High-Level
Design. Kluwer Academic Publishers, 1999.

[3] X. Inc., Vitis High-level Synthesis User Guide,, [Online]. Available:
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction.

[4] P. Coussy, D. Gajski, M. Meredith, and A. Takach, An introduction to
high-level synthesis, Design Test of Computers, IEEE, vol. 26, pp. 8–17, Sep. 2009.

doi: 10.1109/MDT.2009.69.

13

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://doi.org/10.1109/MDT.2009.69

	References

