High-level synthesis

Besjana Jacaj
January 11, 2024

e Hardware domain

e 1960s: ICs designed, optimized, and laid out
by hand
e Software domain ° e.arly 19705: Gate-level and cycle-based
simulation

Machin .
o Wizeie ot e 1980s: schematic circuit capture, formal

e 1950s: Assembly language
e HLLs

verification and static timing analysis
e HDLs - Verilog(1986) and VHDL (1987)
e 1990s: First generation of HLS tools

1 12

Informal definition

High-Level Synthesis is an automated design process that takes an abstract
behavioral specification of a digital system and generates a register-transfer level
structure that realizes the given behavior.[3]

Informal definition pt2 [3]

HLS

e as a design process
e Macro Architecture
e Design Intent
e Constraints
e as a tool (automation provided by)

e FSM Generation
Schedule of Operations
Clock, Pipelining Registers (Micro Architecture)

Sharing Resources

Timing
Verification

Benefits of HSL

e Productivity Gains
e are easier to write since they contain few implementation details
e create high-quality(optimized) and error-free RTL quickly
e are smaller and less complex than equivalent RTL descriptions
e are easier to understand and debug since they are more closely related to the
algorithm being developed
e are faster to simulate (typically) than an equivalent RTL description, promoting early
system verification
e Architecture / Goal Flexibility

e enable item re-use
e reduce verification time

Graphical definition

Formal Model

| Allocation | | Scheduling |

Library >
=]

RTL architecture
Logic Synthesis

Figure 1: High-level synthesis design steps [4] 6

Input languages

for HTL tools such as :

Input specification written in HLLs such e Catapult C
as : e Cynthesizer
e ANSI C, C++ e CyberWorkbench
e System C e PICO
° .. e C-to-Sicilon
[]

Allocation step

Resource allocation is the process of deciding how many and which kind of resources

can be used to a given implementation. [2]

Said resources:

e Functional units
e Storage components

e Connectivity components (such as buses or point-to-point connections)

The components are selected from the RTL component library.

Scheduling step

All operations required in the specification model must be scheduled into cycles.
Scheduling algorithms can be grouped into:

e unconstrained design

e constrained design

What are the constraints 7 A design can be resource-constrained,
time-constrained, or both.[1]

Example: a=b op ¢

Depending on the functional component :

e operation can be scheduled within one clock cycle (or more)
e operations can be chained

e operations can be scheduled to execute in parallel

Binding step

STORAGE binding: Each variable that carries values across cycles must be bound to
a storage unit.

e several variables with mutually exclusive lifetimes can be bound to the same
storage units

FUNCTIONAL binding: Each operation in the specification must be bound to one of
functional units (capable of executing said instruction)

e more than one unit with same capability, the binding algorithm must optimized
the selection

CONNECTIVITY binding: Each transfer from components to component is bound by
a connection unit

10

Binding step

Without any binding:
state (n): a=>b + c;
go to state (n + 1) ;

With storage binding:
state (n): RF(1) = RF(3) + RF(4);
go to state (n + 1) ;

With functional-unit binding:
state (n): a = ALULl (+, b, c):
go to state (n + 1) ;

With storage and functional-unit binding:
state (n) : RF(1)=ALU1l (+, RF(3), RF(4));
go tostate (n+1);

With storage, functional-unit, and connectivity binding:
state (n): Busl = RF(3); Bus2 = RF(4) ;
Bus3 = ALU1l (+, Busl, Bus2);

RF(1l) = Bus3;
go to state (n + 1) ;

Figure 2: RTL description written with different binding details. [4] 11

Some commonly used abbreviations

e HDL - Hardware description language
e HSL - High-level synthesis

e HLL - High-level languages

e FSM - Finiti State Machine

e |C - Integrated chip

e RTL - Register-transfer level

12

References i

1]

2]

(3]

[4]

References

D. Knapp, Behavioral Synthesis: Digital System Design Using the Synopsys
Behavioral Compiler. Prentice Hall, 1996.

J. Elliot, Understanding Behavioral Synthesis: A Practical Guide to High-Level
Design. Kluwer Academic Publishers, 1999.

X. Inc., Vitis High-level Synthesis User Guide,, [Online]. Available:
https://docs.xilinx.com/r/en-US/ugl399-vitis-hls/Introduction.

P. Coussy, D. Gajski, M. Meredith, and A. Takach, An introduction to
high-level synthesis, Design Test of Computers, IEEE, vol. 26, pp. 8-17, Sep. 2009.
DOI: 10.1109/MDT. 2009.69.

13

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://doi.org/10.1109/MDT.2009.69

	References

