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History



First FPGA in space

e Used in data processing unit of
SAMPEX spacecraft in 1992

e Six A1020 chips for redundancy
e 547 logic cells

Figure 1: Sampex data processing unit [2]



Why use FPGA in space?

e Space missions are getting more and more complex

Comparison to microcontrollers:
e More efficient in energy and space consumption
e Higher computing power (parallelism)
e More expensive, longer development times
e Comparison to ASICs:
e Less efficient in energy and space consumption
e Less computing power
e [ess expensive, shorter time to launch

Conclusion: FPGAs are the sweet-spot between ASICs and uCs



FPGA vs. ASIC per mission

e Immarsat 4: Communication satellite, launched in 2008
e Bepicolombo: Orbiter, launched in 2018
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Figure 2: ICs per space mission [1]



FPGA vs. ASIC over time

IC overview vs. Launch date
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Figure 3: IC overview vs. launch date [1]



IC usage vs. cost

IC overview vs. Cost
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Figure 4: 1C usage vs. cost [1]



Challenges in space



Challenges in space

e Exposure to radiation

Temperature

Weight and space limits

e Power consumption



Emitted by the sun

e Non-ionizing radiation can be shielded by the right materials

lonizing radiation can't be shielded, charged particles travel through substances

Change in behaviour of semiconductors



Problems caused by radiation




Long term effects
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e Might lead to total failure Figure 5: Radiation in MOS oxide [3]
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Single event latchup (SEL)

CMOS has intrinsic transistors in substrate

Creates latch-up circuit

Radiation might trigger the latch-up

Low impedance connection between V4 and gnd leads to permanent damage
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Figure 6: Latch-up circuit in CMOS [4]
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Single event upset (SEU)

e When radiation passes through device, charge is transferred between nodes

e |If critical charge is exceeded, a change in voltage level happens
e This results in a bitflip

e Temporal error
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Figure 7: Example of SEU in combinational logic [5]

12



FPGA architecture vulnerabilities

e Because of its large space consumption, memory is very vulnerable to bitflips
e Especially upsets in configuration memory, which takes most of the memory
space, will lead to different logic behaviour
e Types of configuration memory:
e Antifuse: only programable once, immune to SEU

e Flash: limited programming cycles, immune to SEU
e SRAM: unlimited programming cycles, vulnerable to SEU
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FPGA Architecture Vulnerabilities

e Example bitflip in configuration memory:
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Mitigations




Triple modular redundancy (TMR)

e Can be realized within single FPGA or

on three seperate FPGAs

e Single SEU allowed in one branch

e Big overhead in space and power

consumption

Figure 9: Triple modular redundancy [6]
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Configuration scrubbing

e Frequently check integrity of configuration in SRAM by comparing to source

memory
e Repair upsets when difference is noticed
e No guarantee for protection against temporal errors
e Often used in combination with TMR
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Figure 10: Hybrid scrubbing [7] 16



Protection on physical level

Special manufacturing processes for MOS technology

Thinner oxide to reduce probability of electron holes

Isolating wells from the substrate to prevent latch-up

Different transistor shapes and sizes
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Manufacturers of space FPGAs




Overview of Space Graded IC Manufacturers

ASIC FPGA Microprocessor Standard ASIC
Aeroflex ACTEL (Microsemi) Aeroflex Aeroflex
AMIS Aeroflex ATMEL ATMEL
ATMEL ALTERA DYNEX DYNEX
Honeywell ATMEL FREESCALE HONEYWELL
INFINEON XILINX HONEYWELL IBM

Figure 11: IC manufacturers for space application [1]
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e Radiation Tolerant (RT) Kintex UltraScale XQRKU060
First 20nm (predecessor was 65nm) FPGA for space applications
726000 (predecessor had 81900) logic cells
38Mb (predecessor had 12Mb) of memory
e Uses TMR and external scrubbing
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Figure 12: Radio tolerance of QRKU060 [8]
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e RT PolarFire

e 28nm process technology

e 481000 logic cells

e 33Mb of memory

e Synthesis support for TMR and scrubbing
e Radiation tolerance:

e 100 Krad total ionizing dose

e No SEUs in configuration memory

e Data upset rate of 10~ %errors/bit / day
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Lessons learned




The WIRE power-up mishap [9]

NASA Wide Field Infrared Explorer (WIRE) spacecraft was launched in 1999

Synchronous reset to force FPGA logic into a safe state

Start-up time of crystal oscillator was not considered

Circuit was in non-deterministic state during this time

Problem: lack of documentation of FPGA behaviour, default states were not

considered

e WIRE went out of hydrogen and could not perform operations
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ESA FPGA Task Force [10]

e In 2001 European Space Agency (ESA) set up task force to perform investigations
on FPGA implantations
e Results:

e Designers unaware of how synthesis tools work

o Little effort in testing of SEU correction implementation
e lack of documentation for FPGA behaviour

e Reviews on completed designs are extremely costly
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Conclusion

FPGAs have been in space since 1990s

Trends show rise in FPGA vs. ASIC use
FPGA chips need to be protected against radiation:

e On physical level (transistors, shielding)
e Single event correction: TMR, scrubbing, ECC

Manufacturers improving technologies

Mistakes made in the past
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