
Cryptography on Hardware Platform 2023
Sujoy Sinha Roy

sujoy.sinharoy@iaik.tugraz.at

Hardware Acceleration Opportunities in
Homomorphic Encryption

mailto:sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation
data

User wants to compute foo(data) in the cloud without loosing privacy.

foo()

Diabetic Retinopathy [Chao et al., 2019]

Fully Homomorphic Encryption (FHE)

data foo()
Enc(data)

Enc(foo(data))

Cloud homomorphically
evaluates foo()

Dec() gives foo(data)

3

FHE enables computation on encrypted data

Tutorial outline

1. FHE concepts

2. Parallel processing opportunities in FHE (from high-level)

3. Hardware architecture design challenges and methods

4. Results

An encryption scheme Enc(· , ·) is homomorphic for an operation

☐ on the message space iff

Enc(m1☐m2 , kE) = Enc(m1 , kE) ○ Enc(m2 , kE)

with ○ operation on the ciphertext.

• If ☐ = + then Enc(·, ·) is additively homomorphic.

• If ☐ = × then Enc(·, ·) is multiplicatively homomorphic.

Definition: Homomorphic Encryption

• You have encryption of two messages m1 and m2 where

c1 = m1
e mod N

c2 = m2
e mod N

• By multiplying c1 and c2 you get

c3 = c1 · c2 = (m1 · m2)e mod N

• Hence, c3 is encryption of m1 · m2

Example: Textbook RSA is multiplicatively homomorphic

Popular constructions of FHE use augmented
Ring-LWE public-key encryption

Can we get ‘Additive & Multiplicative’ Homomorphic
Encryption?

x +p0 +

Enc(m)

ct0 = p0.u + e0 + Enc(m)

= p0.u + e0 + m·q/2

(1, 0, 1, 0, . . .)

(q/2, 0, q/2, 0)

Encryption:
❑ Input: pk = (p0,p1), message m
❑Output: ct = (ct0,ct1)

m

Encodeu e0
Multiplication by q/2

Recap -- Ring LWE Public-Key Encryption (PKE)

x +p1

u e1

ct1 = p1.u + e1

x -ct1

s ct0

m’ = Enc(m) + esmall
Decode

(Erroneous Message Poly)

m

❑Decryption:
❑ Input: ct = (ct0, ct1), sk = s
❑Output: m after decoding

0 q/2

01

ct0 + ct1.s = m’= Enc(m) + (e.s’ + e’’ + e’.s)
= Enc(m) + esmall

Recap -- Ring LWE Public-Key Encryption (PKE)

q/4

3q/4

x -ct1

s ct0

m’ = Enc(m) + esmall
Decode

(Erroneous Message Poly)

m

❑Decryption:
❑ Input: ct = (ct0, ct1), sk = s
❑Output: m after decoding

0 q/2

01

ct0 + ct1.s = m’= Enc(m) + (e.s’ + e’’ + e’.s)
= Enc(m) + esmall

Recap -- Ring LWE Public-Key Encryption (PKE)

q/4

3q/4

ct0 + ct1·s
q/2

mod 2 = mEquivalently,

Ring-LWE PKE – Written with different symbols

Let scale factor ∆ = q/t and t be plaintext modulus, e.g., t = 2.
Scalars are in red.
All polynomials are in blue.

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s
∆

m = mod t

Ring-LWE PKE shows Homomorphism

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA0 + ∆ · mA

ctA1 = p1 · uA + eA1

eB0, eB1, uB error();
ctB0 = p0 · uB + eB0 + ∆ · mB

ctB1 = p1 · uB + eB1

Ring-LWE PKE: Additive Homomorphism

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA0 + ∆ · mA

ctA1 = p1 · uA + eA1

eB0, eB1, uB error();
ctB0 = p0 · uB + eB0 + ∆ · mB

ctB1 = p1 · uB + eB1

ctC0 = p0 · (uA+uB) + (eA0+ eB0) + ∆ · (mA + mB)
ctC1 = p1 · (uA+uB) + (eA1+ eB1)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA0 + ∆ · mA

ctA1 = p1 · uA + eA1

eB0, eB1, uB error();
ctB0 = p0 · uB + eB0 + ∆ · mB

ctB1 = p1 · uB + eB1

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA0 + ∆ · mA

ctA1 = p1 · uA + eA1

eB0, eB1, uB error();
ctB0 = p0 · uB + eB0 + ∆ · mB

ctB1 = p1 · uB + eB1

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

After dividing the expression by ∆ we get:
(noisy crap)/∆ + ∆ · (mA × mB)

Intuition →

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA0 + ∆ · mA

ctA1 = p1 · uA + eA1

eB0, eB1, uB error();
ctB0 = p0 · uB + eB0 + ∆ · mB

ctB1 = p1 · uB + eB1

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

After dividing the expression by ∆ we get:
(noisy crap)/∆ + ∆ · (mA × mB)

This looks like
an encryption of
(mA × mB)

Ring-LWE PKE: Multiplicative Homomorphism

e0, e1, u error();
ct0 = p0 · u + e0 + ∆ · m
ct1 = p1 · u + e1

Encryption Decryption

ct0 + ct1·s

∆
mod t

Now consider two ciphertexts CtA = {ctA0,ctA1} and CtB = {ctB0,ctB1}

eA0, eA1, uA error();
ctA0 = p0 · uA + eA0 + ∆ · mA

ctA1 = p1 · uA + eA1

eB0, eB1, uB error();
ctB0 = p0 · uB + eB0 + ∆ · mB

ctB1 = p1 · uB + eB1

Polynomial multiplication
ctA0 * ctB0→ (noisy crap) + ∆2 · (mA × mB)

After dividing the expression by ∆ we get:
(noisy crap)/∆ + ∆ · (mA × mB)

That is the basic idea
only.

Actual Mult is a lot
more complex!

The Biggest Problem in FHE

foo(data) foo(Enc(data))

Takes 1s Takes 104 to 105 s

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Si
ze

 o
f

co
ef

fi
ci

en
t

Number of coefficients in polynomial

Polynomial size

FHE

Post-quantum crypto

Increases with
complexity of
FHE application.

FHE does lots of (large) polynomial arithmetic.

How to accelerate FHE?

Tutorial outline

1. FHE concepts

2. Parallel processing opportunities in FHE (from high-level)

3. Hardware architecture design challenges and methods

4. Results

What makes acceleration of FHE very challenging?

• Lots of polynomial arithmetic operations

– Large degree polynomial arithmetic

– Long integer arithmetic

• Memory management

– Ciphertexts could be several MBs

– On-Chip memory is limited

– Off-Chip data transfer is very slow

What makes acceleration of FHE very challenging?

• Lots of polynomial arithmetic operations

– Large degree polynomial arithmetic

– Long integer arithmetic

• Memory management

– Ciphertexts could be several MBs

– On-Chip memory is limited

– Off-Chip data transfer is very slow

This problem is solved using CRT

Dealing with long-int coefficients using RNS

1. Take a modulus Q = ∏qi where qi are coprime.

2. Use Residue Number System (RNS).

Arithmetic mod Q

Arithmetic mod q0

Arithmetic mod q1

…
Arithmetic mod qL-1

Result mod QRNS arithmetic
• Small coefficients
• Parallel computation

L-1

0

Chinese
Remainder
Theorem
(CRT)

E.g., Parallel computation flow with CRT

Ciphertexts are polynomials in RQ = ZQ/<Xn + 1>
E.g., log(Q) = 500, n = 215

Let Q = ∏qi where qi are NTT primes.
Apply Residue Number System (RNS)

mod q0 mod q1 mod qL-1

… L parallel threads

Chinese Remainder Theorem (CRT) to obtain RQ

(Used during modulus switching steps)

… (1) Residue polynomial arithmetic layer

mod q0 mod q1 mod qL-1

… L parallel threads Data flow
diagram

module
RPAU0()

module
RPAU1()

module
RPAUL-1()

Hardware
acceleration

… L parallel modules

*RPAU stands for ‘Residue Polynomial Arithmetic Unit’

… (2) Residue polynomial layer CRT layer

mod q0 mod q1 mod qL-1

… L parallel threads Residue poly
layer

mod q0 mod q1 mod qL-1

… L+1 parallel threads

mod qL

CRT
layer

Data dependency on all

Each thread in CRT layer combines all threads from previous layer.

… (3) Residue polynomial layer CRT layer

module
RPAU0()

module
RPAU1()

Therefore, threads or RPAUs need to exchange data with each other.

module
RPAU2()

module
RPAU3()

Example

Tutorial outline

1. FHE concepts

2. Parallel processing opportunities in FHE (from high-level)

3. Hardware architecture design challenges and methods

4. Results

System-level view

Off-Chip
Storage

Ciphertexts,
Keys,

Constants,
etc.

Accelerator

Host-
Processor

System-level view: Main challenges

Off-Chip
Storage

Ciphertexts,
Keys,

Constants,
etc.

Accelerator

Host-
Processor

Arithmetic on
large polynomialsExchange of large

polynomials (MBs)

Arithmetic on
large polynomials

• Schoolbook multiplication: O(n2)

• Karatsuba multiplication: O(n1.585)

• Toom-Cook (generalization of Karatsuba)

• Fast Fourier Transform (FFT) multiplication: O(n log n)

FFT is the best choice

How to multiply two very large polynomials?
33

Asymptotic complexity plays its role.

NTT-based Polynomial Multiplication

C(x) =
A(x)*B(x)

FFT
O(n log n)

FFT
O(n log n)

Dyadic
multiplication

O(n)

Inv-FFT
O(n log n)

B(x)

A(x) NTT
O(n log n)

NTT
O(n log n)

Dyadic
multiplication

O(n)

Inv-NTT
O(n log n)

B(x)

A(x)

NTT or Number Theoretic Transform is special FFT with integers.

Let’s consider an application example.

Polynomial size n = 215

And log(qi) = 60

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and of a polynomial A[]

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

NTT starts with m=2
Butterfly(A[0], A[1])

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

… with m=2
Butterfly(A[2], A[3])

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

… with m=2, finally
Butterfly(A[n-2], A[n-1])

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

Next, m increments to m=4.
Butterfly(A[0], A[2]), Butterfly(A[4], A[6]) …

A[0]

A[1]

A[2]

A[3]

A[n-1]

A[n-2]

Simplified NTT loops

for(m=2; m<=n; m=2m){

for(j=0; j<=m/2-1; j++){

for(k=0; j<n; k=k+m){

index = f(m, j, k);

Butterfly(A[index],A[index+m/2]);

}

}

}

NTT and Memory access

Next, m increments to m=4.
Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) …

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Is parallel NTT easy to implement?

Answer: Complexity of implementation increases with number of cores

BRAM
Or

SRAM

Parallel NTT
Challenge 1: Port limitation in BRAM or SRAM

Problem:
• One BRAM has only two ports.
• Each NTT core needs two ports

BRAM
Or

SRAM

Parallel NTT
Challenge 1: Port limitation in BRAM or SRAM

Solution: Use BRAMs in parallel.

BRAM
Or

SRAM

Problem:
• One BRAM has only two ports.
• Each NTT core needs two ports

New problem: How to distribute data?

Parallel NTT

Challenge 2: Memory access conflicts
Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

Problem:
Two cores are trying to access
the same BRAM.

Problem:
Two cores are trying to access
the same BRAM.

Solution: Make BRAM accesses
mutually exclusive.

Parallel NTT

Challenge 2: Memory access conflicts
Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

Core requires data from distant BRAM memory
- Long routing of data wires → slow clock frequency

Parallel NTT

Challenge 3: Data routing

Problem:
Core is reading data
from far memory.

Core requires data from distant BRAM memory
- Long routing of data wires → slow clock frequency

Problem:
Core is reading data
from far memory.

Parallel NTT

Challenge 3: Data routing

Solution: There is no solution
to this problem.
Localizing read or write (not both)
is possible.

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

BRAMs

NTT
Cores

Data-write paths are
heavily pipelined.This paper localizes

the read operation.

BRAM is exclusively
read by only one
core.

System-level view: Main challenges

Off-Chip
Storage

Ciphertexts,
Keys,

Constants,
etc.

Accelerator

Host-
Processor

Arithmetic on
large polynomialsExchange of large

polynomials (MBs)

Next topic: Memory management

Memory organization and management

Off-Chip
Storage

Ciphertexts,
Keys,

Constants,
etc.

Accelerator

Common techniques
• Lots of on-chip memory (BRAM/SRAM) for storing operands

Memory organization and management

Off-Chip
Storage

Ciphertexts,
Keys,

Constants,
etc.

Accelerator

Common techniques
• Lots of on-chip memory (BRAM/SRAM) for storing operands
• Perform communication-computation parallelism using cache

Memory organization and management

High
bandwidth

memory
Accelerator

Common techniques
• Lots of on-chip memory (BRAM/SRAM) for storing operands
• Perform communication-computation parallelism using cache
• High-bandwidth off-chip memory and with multiple channels

Tutorial outline

1. FHE concepts

2. Parallel processing opportunities in FHE (from high-level)

3. Hardware architecture design challenges and methods
❖ Implementation

4. Results

Simulation-based works:
F1[5], BTS[6], CraterLake[7], …

[1] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.
[2] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.
[3] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.
[4] Mert et al. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data. CHES 2023.
[5] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.
[6] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.
[7] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.

Implementations
There are two main tracks
1. True accelerator prototype in ASIC/FPGA
2. Simulation-based modelling of accelerator

Real HW prototypes:
HEAWS[1], HEAX[2], CoFHEE[3], Medha[4]

Briefly talk about

Next, FHE accelerator

Coefficient arithmetic

Polynomial arithmetic

Crypto
(FHE)

60

High level computation flow

Ciphertexts are polynomials in RQ = ZQ/<Xn + 1>
E.g., log(Q) = 500, n = 215

Let Q = ∏qi where qi are NTT primes.
Apply Residue Number System (RNS)

mod q0 mod q1 mod qL-1

… L parallel threads

Chinese Remainder Theorem (CRT) to obtain RQ

(Used during modulus switching steps)

NTTs, INTTs,
Coeff-wise add,
sub, mult, etc.

Residue polynomial arithmetic in parallel

… Residue polynomial arithmetic layer

mod q0 mod q1 mod qL-1

… L parallel threads Data flow
diagram

module
RPAU0()

module
RPAU1()

module
RPAUL-1()

Arch. block
diagram

… L parallel modules

*RPAU stands for Residue Polynomial Arithmetic Unit

… Residue polynomial layer CRT layer

mod q0 mod q1 mod qL-1

… L parallel threads Residue poly
layer

mod q0 mod q1 mod qL-1

… L+1 parallel threads

mod qL

CRT
layer

Data dependency on all

Each thread in CRT layer combines all threads from previous layer.

… Residue polynomial layer CRT layer

module
RPAU0()

module
RPAU1()

module
RPAUL ()

… parallel RPAU modules

Therefore, RPAUs need to exchange data with each other.

RPAU ()

Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores.
Polynomials are stored in ‘Memory’ made of BRAMs.

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Instruction Parallelism in RPAU ()

Homomorphic multiplication &
key-switching.
(The most expensive operation)

Parallel execution of instructions

This reduces 40% cycle count

Placement of RPAUs

mod q0 mod q1 mod qL-1

… L parallel threads

Chinese Remainder Theorem (CRT) to obtain RQ

(Used during modulus switching steps)

CRT requires combining the residues.
→ Therefore, RPAUs need to communicate with each other

How to interconnect the RPAUs in large 3D FPGAs?

Large FPGAs are multi-die
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

Large SLR FPGA

Large SLR FPGA – top view

Slice 0

Slice 1

Slice 2

Slice 3 There are a limited number
of interconnects.

Large design cannot be spread
arbitrarily across SLRs.

Xilinx Alveo U250 FPGA. This FPGA is 1000x
larger than the FPGA used in this course.

Placement-friendly interconnection of RPAUs

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Naïve solution: A ”star-like” network

One RPAU

Placement-friendly interconnection of RPAUs

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Naïve solution: A ”star-like” network

One RPAU

Each RPAU has its own connections

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Naïve solution: A ”star-like” network

• Complicates the routing
• Large number of nets crossing the SLRs
• Reduces the clock frequency to around 50 MHz or less

Placement-friendly interconnection of RPAUs

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Solution: A ”ring” interconnection of RPAUs

• Only two neighbour RPAUs are connected.
• Data sent to an RPAU through a chain of RPAUs.
• No additional computation overhead

Placement-friendly interconnection of RPAUs

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

• FPGA Constraints
➢ The FPGA is split into four SLRs.
➢ Connected by a limited number of wires.

• Some operations require exchanging the residue
polynomials between RPAUs

• Placement of 10 RPAUs using “ring” interconnect

Placement-friendly interconnection of RPAUs

Floorplan of the design

Full system overview

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

FPGA is used as an accelerator card of a server. HW/SW codesign is
used to run applications.

FPGA Acceleration results

foo(data) foo(Enc(data))

Takes 1s Takes 104 to 105 s

Overhead
down to

102 to 103 s

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Our Group’s research: Open Problems in FHE
1. How to make hardware accelerators for larger parameter sets?

2. How to support different parameters?

3. How to support different FHE schemes?

4. How to implement FHE Bootstrapping?

5. From FPGA to ASIC accelerators
- More parallel processing
- Custom memory
- Higher clock frequency and lower power consumption

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Recap -- Ring LWE Public-Key Encryption (PKE)
	Slide 9: Recap -- Ring LWE Public-Key Encryption (PKE)
	Slide 10: Recap -- Ring LWE Public-Key Encryption (PKE)
	Slide 11: Ring-LWE PKE – Written with different symbols
	Slide 12: Ring-LWE PKE shows Homomorphism
	Slide 13: Ring-LWE PKE: Additive Homomorphism
	Slide 14: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 15: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 16: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 17: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

