Grazm
Hardware Acceleration Opportunities in
Homomorphic Encryption
Cryptography on Hardware Platform 2023
=

Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at

A

mmmgom o

m Hr—r—r-uru-r-— - l.!l.ll‘»

mailto:sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation
data

—

Diabetic Retinopathy [Chao et al., 2019]

User wants to compute foo(data) in the cloud without loosing privacy.

Fully Homomorphic Encryption (FHE)

FHE enables computation on encrypted data

data

Enc(data)

Enc(foo(data))

Dec() gives foo(data) Cloud homomorphically

evaluates foo()

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods

4. Results

Definition: Homomorphic Encryption

An encryption scheme ENc(-, :) is homomorphic for an operation

on the message space iff

Enc(m, L4 m,, k;)=Enc(m,, k;) o Enc(m,, k.)

with O operation on the ciphertext.

e |f LI=+then ENnc(:,) is additively homomorphic.

* |If L1=xthen Enc(:, -) is multiplicatively homomorphic.

Example: Textbook RSA is multiplicatively homomorphic
* You have encryption of two messages m, and m, where

c;=m;*mod N

— e
c, =m,*mod N

* By multiplying c, and c, you get

C3=C;*C,=(m;-m,)*modN

* Hence, c; is encryption of m; - m,

Can we get ‘Additive & Multiplicative’ Homomorphic
Encryption?

Popular constructions of FHE use augmented
Ring-LWE public-key encryption

Recap -- Ring LWE Public-Key Encryption (PKE)
Encryption:
d Input: pk = (p,,p,), message m
d Output: ct = (ct,,ct,)
u e,

P1 *‘% *‘G » L =pute

T(l,o,l,o,...)

Multiplication by q/2

(a/2,0,a/2,0)

» Cty = py.U + €, + Enc(m)
= P,.U + €y + m-q/2

Recap -- Ring LWE Public-Key Encryption (PKE)
U Decryption:

d Input: ct = (ct,, ct,), sk=s

[Output: m after decoding

3 ct,
l l (Erroneous Message Poly) 3&/4

m’ =Enc{m) + €
¢t, —@—@ Sl T

ct, + ct;.s = m’= Enc(m) + (e.s’ + e”’ + €’.s)

= Enc(m) + e,

Recap -- Ring LWE Public-Key Encryption (PKE)
U Decryption:

QInput: ct = (ct,, ct,), sk=s 1 : 0
U Output: m after decoding a/2 0
s ct,
l l (Erroneous Message Poly) 3(:']/4
m’ = Enc(m) + e,

Ctl 4’@—’@ g4 Lecode m

ct, + ct;.s = m’= Enc(m) + (e.s’ + e”’ + €’.s)

= Enc(m) + e,

Equivalently, I-Cto i Ctl'sJ mod?2=m
q/2

Ring-LWE PKE — Written with different symbols

Let scale factor A = g/t and t be plaintext modulus, e.g., t = 2.
Scalars are in red.
All polynomials are in blue.

Encryption Decryption

ey, €4, U € error();

Cty=Py-u+te+A-m > m=|-Ct0+—Ct1'SJ mod t
ct,=p,-u+e, A

Ring-LWE PKE shows Homomorphism

Encryption Decryption

,e., u < error();
* |- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ctg = {cty,,ctg,}

€00 Eprr Uy € error(); €50, €51, Ug € error();
Ctag=Pg - Up+t€ptA-my Ctgg = Pg - Ug + €pp + A - My
Clyy = Py Uy + €y Clg; =Py - Ug + €p4

Ring-LWE PKE: Additive Homomorphism

Encryption
,e., u < error();

+

Decryption

20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

A

€00 €y Uy € error(); /\
CtAo Po-Upyt€pt+tA-my :2/:
Clyy =Py Uyt €y

y

€50, €51, Ug € error();
Ctgg = Pg - Ug + €pg + A - My
Clg; =Py - Ug+ €p

Cteg = Pg - (Uptug) + (€p0F €50) + A - (M4 + M)
Cte; = Py - (Uptug) + (e, + €54)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption
, e, u < error();

+ 20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€x0r €a1s Up < error(); €gor €g1s Up < error();
ctAO Po° uA+eAO+A m Ctgp =Po - uB+eBO+A mg
=Py Up T €, Clg =Py - Ug + €p4

Polynomial multiplication
Ctyg * Ctgy =2 (nOisy crap) + A% - (m, x my)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption

,e., u < error();
" I- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€a0r €p1, Uy € error(); €50, €51, Ug € error();
CtAo Po-UptepthH-my Clgg=Pg - Ugt+ €+ A-mg
=P1Upyt €y Clg; =Py - Ug t+e€p

Polynomial multiplication

Intuition > Ctyg * Ctyy = (noisy crap) + A% - (m, x my)

After dividing the expression by A we get:
(noisy crap)/A + A - (m, x my)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption

,e., u < error();
" I- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€50, €51, Ug € error();
Po-Ug+egy+A-mg
Ug + €5

€a0r €p1, Uy € error();
ctAO Po° uA+eAO+A m Ctyp =
=Py Up T €, Clg, =Py -

This looks I.Ike Polynomial multiplication
an encryption of | ct, *ct. > (noisy crap) + A2 (m, x my)

(mA X mB) After dividing the expression by A we get:
(noisy crap)/A + A - (myx mp)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption
,e., u < error();

+

Decryption

20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€a0r €p1, Uy € error();
ctAO Po° uA+eAO+A my

=Pq Uy T €,

€50, €51, Ug € error();
Clgg = Pg - Ug + €59+ A Mg
Clg; =Py - Ug+ €p4

Polynomial multiplication

(noisy crap)/A + A - (m,x mg)

That is the basic idea

Ctyg * Ctyy = (noisy crap) + A% - (m, x my) only.

After dividing the expression by A we get: Actual Mult is a lot

more complex!

The Biggest Problem in FHE

Enc(data)

Enc(foo(data))

Dec() gives foo(data) Cloud homomorphically
evaluates foo()

foo(data) —_ > foo(Enc(data))

Takes 1s Takes 10*to 10° s

Polynomial size

500
450
400
350
300
250
200

150

Size of coefficient

100

50

0 2000

Post-quantum crypto

4000 6000 8000 10000 12000 14000 16000

Number of coefficients in polynomial

Increases with
complexity of
FHE application.

T —t—— FHE

18000

FHE does lots of (large) polynomial arithmetic.

How to accelerate FHE?

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods

4. Results

What makes acceleration of FHE very challenging?

* Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic
— Long integer arithmetic

e Memory management
— Ciphertexts could be several MBs
— On-Chip memory is limited
— Off-Chip data transfer is very slow

What makes acceleration of FHE very challenging?

* Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic
— Long integer arithmetic This problem is solved using CRT

* Memory management
— Ciphertexts could be several MBs
— On-Chip memory is limited
— Off-Chip data transfer is very slow

Dealing with long-int coefficients using RNS

L-1
1. Take a modulus Q =T[q; where g, are coprime.
0

2. Use Residue Number System (RNS).

Arithmetic mod q, Chinese

Arithmetic mod q, | Remainder

Arithmetic mod Q H Theorem
Arithmetic mod q, , (CRT) I

RNS arithmetic Result mod Q

* Small coefficients
e Parallel computation

E.g., Parallel computation flow with CRT

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

... L parallel threads

mod g, mod q, mod g, 4

|

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)

... (1) Residue polynomial arithmetic layer

... L parallel threads
mod q, mod g, mod g, ,
module module L parallel modules module
RPAU,() RPAU,() P RPAU, ,()

*RPAU stands for ‘Residue Polynomial Arithmetic Unit’

Data flow
diagram

Hardware
acceleration

... (2) Residue polynomial layer «<=» CRT layer

... L parallel threads Residue poly
layer

mod g, mod g, mod q, ;
/' /

Data dependency on all

v
— ... L+1 parallel threads CRT
layer
mod g, mod g, modg,;, modgq,

Each thread in CRT layer combines all threads from previous layer.

... (3) Residue polynomial layer <«=» CRT layer

Therefore, threads or RPAUs need to exchange data with each other.

| module

Example RPAU,()
module > module
RPAUO() RPAUZ()

module

RPAU,()

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods

4. Results

System-level view

Off-Chip

Storage
8 Accelerator

Ciphertexts,

Keys,
Constants,
etc.

Host-
Processor

System-level view: Main challenges

Exchange of large

Off-Chip polynomials (MBs)
Storage ‘

Arithmetic on
@‘ge polynomials

/

Accelerator

Ciphertexts,

Keys, I
Constants, V- B
etc.
Host-
Processor

. J

How to multiply two very large polynomials?

* Schoolbook multiplication: O(n?)
« Karatsuba multiplication: O(n'%>)
« Toom-Cook (generalization of Karatsuba)

* Fast Fourier Transform (FFT) multiplication: O(n log n)

FFT is the best choice
Asymptotic complexity plays its role.

33

NTT-based Polynomial Multiplication

A(x)

Dyadic
multiplication
O(n)

O(nlogn) [RE

B(x) A(x)*B(x)

NTT or Number Theoretic Transform is special FFT with integers.

Let’s consider an application example.

Polynomial size n = 21>
And log(g,) = 60

NTT and of a polynomial A[] .
Simplified NTT loops

A[n-1] for(m=",; m<=n; m=’m) {
A[n-2] for (§J=0; J<=m/2-1; J++){
for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);
Butterfly (A[index],A[index+m/”]) ;

— —> }

}

}

>(>|> >
SlR|IN|Y

NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

NTT starts with m=2
Butterfly(A[O], A[1])

>(>|>|>
Slr|IN|Y

NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

... with m=2
Butterfly(A[2], A[3])

>|>|>|>
SR|IN|Y

NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

... with m=2, finally
Butterfly(A[n-2], A[n-1])

>(>|> >
SlR|IN|Y

NTT and Memory access
Y Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

Next, m increments to m=4.

>|>|>|>
Slr|IN|Y

Butterfly(A[O], A[2]), Butterfly(A[4], A[6]) ...

NTT and Memory access
Y Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

Butterfly (A[index],A[index+m/”]) ;

)
|

| Next, m increments to m=4.

>|>|>|>
Slr|N|Y

Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) ...

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Is parallel NTT easy to implement?

Answer: Complexity of implementation increases with number of cores

Parallel NTT
Challenge 1: Port limitation in BRAM or SRAM

BRAM
— Or | Problem:
SRAM One BRAM has only two ports.
 Each NTT core needs two ports

Parallel NTT
Challenge 1: Port limitation in BRAM or SRAM

BRAM

Problem:
* One BRAM has only two ports.
 Each NTT core needs two ports

SRAM

Solution: Use BRAMs in parallel.

New problem: How to distribute data?

Parallel NTT

Challenge 2: Memory access conflicts

Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

: ; | I 1 l_
| BRAM B
| | Problem:
. Two cores are trying to access
BRAM a | | the same BRAM.

L,

Parallel NTT

Challenge 2: Memory access conflicts

Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

| BRAM |

Problem:
Two cores are trying to access
the same BRAM.

| BRAM |

Solution: Make BRAM accesses
mutually exclusive.

aYashdee

Parallel NTT
Challenge 3: Data routing

Core requires data from distant BRAM memory
- Long routing of data wires = slow clock frequency

Problem:
Core is reading data
from far memory.

| BRAM | |

|BRAM |-

¥t det

Parallel NTT
Challenge 3: Data routing

Core requires data from distant BRAM memory
- Long routing of data wires = slow clock frequency

Problem:
Core is reading data
from far memory.

| BRAM | |

Solution: There is no solution

to this problem.

a | Localizing read or write (not both)
oram is possible.

|BRAM |-

¥t det

i
_____ |
I ‘ x
I . . Compute
* * Core-C
I * *
| . .
x . . .
5 i Data-write paths are
This paper localizes 1 E:" I+ ’ x - heavily pipelined.
the read operation. 5 b : Compute
‘;’ . . Core-1 |
(] Il = *
BRAM is exclusively || 3 .
| _ |
read by only one — B Pipeline
register
COre. Compute [x] Cgefﬁcientof a polynomial
Core-0 |
I NTT
Cores

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

System-level view: Main challenges

. Exchange of large
Off-Chip polynomials (MBs)

Storage
5 = | Accelerator

Arithmetic on
large polynomials

Ciphertexts,

Keys,
Constants,
etc.
Host-
Processor
« J

Next topic: Memory management

Memory organization and management

Off-Chi
ip p N
Storage
Ciphertexts, Accelerator
Keys,
Constants, = Lt L)

etc.

Common techniques
* Lots of on-chip memory (BRAM/SRAM) for storing operands

Memory organization and management

Off-Chip ~
Storage
Ciphertexts, Accelerator
Keys,
= U U)

Constants, -

etc.

Common techniques
* Lots of on-chip memory (BRAM/SRAM) for storing operands
* Perform communication-computation parallelism using cache

Memory organization and management

\
High - = =
bandwidth Accelerator
memory
J

Common techniques

* Lots of on-chip memory (BRAM/SRAM) for storing operands

* Perform communication-computation parallelism using cache
* High-bandwidth off-chip memory and with multiple channels

Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)

3. Hardware architecture design challenges and methods
+* Implementation

4. Results

Implementations

There are two main tracks
1. True accelerator prototype in ASIC/FPGA
2. Simulation-based modelling of accelerator

4 N\ 4 N
Real HW prototypes: Simulation-based works:
HEAWS[]'], HEAX[Z], COFHEE[3], Medhal4 F1[5]’ BTS[6]’ CraterLakeW]’
_ J . J

[1] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.

[2] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[3] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[4] Mert et al. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data. CHES 2023.

[5] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[6] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[7] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.

Briefly talk about

Next, FHE accelerator

}

Crypto
(FHE)

/DOIynomial arithmetic\
/ Coefficient arithmetic \

60

High level computation flow

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

J NTTs, INTTs,

... L parallel threads Coeff-wise add,
) sub, mult, etc.

mod g, mod g, mod q, ,

F Residue polynomial arithmetic in parallel

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)

... Residue polynomial arithmetic layer

... L parallel threads

mod g, mod q, mod q, ,

module module L parallel modules module
RPAU,() RPAU,() P RPAU, ,()

*RPAU stands for Residue Polynomial Arithmetic Unit

Data flow
diagram

Arch. block
diagram

... Residue polynomial layer <=» CRT layer

... L parallel threads Residue poly
layer
mod g, mod g, mod g, ,
/ Data dependency on all
— ... L+1 parallel threads CRT
layer
mod g, mod q, modgq,; modgq,

Each thread in CRT layer combines all threads from previous layer.

module
RPAU()

module
RPAU,()

{

|

... Residue polynomial layer <=» CRT layer

... parallel RPAU modules

Therefore, RPAUs need to exchange data with each other.

module
RPAU, ()

{

N —

RPAU ()

Memory
Access
Controller

Unified Butterfly
) and Dyadic Core-15

Y

Dyadic
Core-3

< —" Eﬂd'zc Unified Butterfly
ore- “—1 and Dyadic Core-2

Dyadic Unified Butterfl
S— Y
Core-1 ~—1 and Dyadic Core-1

Dyadic Unified Butterfly
Core-0 1 and Dyadic Core-0

Memory for Residue Polynomial 6 f—2 -y

Memory for Residue Polynomial 0 f—

Memory for KeySwitching-Key-1
Memory for KeySwitching-Key-0

Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores.
Polynomials are stored in ‘Memory’ made of BRAMs.

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Instruction Parallelism in RPAU ()
Parallel execution of instructions

do; + &g * &,
J g C05 . HE. Mult RPAU.A11 RPAU.Dyadic

:d10<—c01*c11+c“*cod

:dzd <—c|J*c,J SN = = < e e e iR - iaasaasassasasaoassasasoy
" ooon d INTT(d» - d01+—coJ*coJ

{560 0 HE. Relin 24 ¢ INTT{day)

: d2vj : 2 Im(d 2.j) templ < EO,j *(-3'1 :

. J
‘fori =0toL — 1do o SRR _ x x x x x x x xx x X x % %X XX EX
| Obtain dy ; from RPAU; ra0 ¢ Coeff . Reduce(dsy,q;) feripn = iy E;J

r2; < Coeff. Reduce(ds;,q;))
t’(— NTT(r2 i) to ¢ NTT(rz0) Ju « temp, + temps
Coi & cOl + KSKo; * t SyNC.- - qeenssnannsensnesnesansans- LREEEEENESEEREESRERERESERA

ra1 ¢ Coeff.Reduce(ds1,q;) 2

n -~
"
o0 < €00 + KSKg o * tg

! (:1'4——0l +KSKy; »t
: end for ty +NTI(ra;) €10 + € o +KSKio * 0

: (dog,dyj) I.C ‘P J o T B e sy g e T e e tha |
Homomorphic multiplication & S+ oy R kR
key-switching.

(The most expensive operation)

" " -
€, < ¢, +KSKyg *t

This reduces 40% cycle count

Placement of RPAUs

CRT requires combining the residues.
- Therefore, RPAUs need to communicate with each other

How to interconnect the RPAUs in large 3D FPGAs?

... L parallel threads

mod g, mod g, mod g,

|

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)

Large SLR FPGA

Large FPGAs are multi-die
» The FPGA is split into four SLRs.
» Connected by a limited number of wires.

High-Bandwidth,
Low-Latency Connections

Microbumps

Through Silicon Vias (TSV)

C4 Bumps

Slice 4 4 28 nm FPGA Die Slices

[E——xi=14 [E——7q{34 Silicon Interposer
) O & & o4 ¢ & 6 o 6 06 6 6 &

Package Substrate

BGA Solder Balls

Large SLR FPGA - top view

Dynamic
Region
SLR3 Slice 3 There are a limited number
of interconnects.
Dynamic
Region L .
: Large design cannot be spread
. Slice 2 @ € CESIE P
@ arbitrarily across SLRs.
I
, Bas
Togon S
SI | 1 DDR[1]
SLR1 Ige \r_ ;
oynamic Xilinx Alveo U250 FPGA. This FPGA is 1000x
Region larger than the FPGA used in this course.

SLRO Slice 0

Placement-friendly interconnection of RPAUs

* FPGA Constraints

» The FPGA is split into four SLRs. ‘!
» Connected by a limited number of wires. . \

* Some operations require exchanging the residue D
polynomials between RPAUs -

* Naive solution: A ”star-like” network

Region

SLR1

Dynamic
Region

SLRO

B one RPAU

Placement-friendly interconnection of RPAUs

* FPGA Constraints -
» The FPGA is split into four SLRs. = e]
» Connected by a limited number of wires. o

* Some operations require exchanging the residue] | D;e’mc L]

polynomials between RPAUs

* Naive solution: A ”star-like” network

‘ I))'namic ‘ Shell
Region Region

SLRT

Base
Reqion

"~ DDRI1]
- >

Dynamic

SLRO

Region .

B one RPAU

Placement-friendly interconnection of RPAUs

* FPGA Constraints
» The FPGA is split into four SLRs. ‘Q
» Connected by a limited number of wires. s \
* Some operations require exchanging the residue o
polynomials between RPAUs e

Naive solution: A ”star-like” network | oo

SLR1

.A l
Region
Complicates the routing

SLRO

Large number of nets crossing the SLRs
Reduces the clock frequency to around 50 MHz or less

Placement-friendly interconnection of RPAUs

FPGA Constraints
» The FPGA is split into four SLRs. gt
» Connected by a limited number of wires. .

* Some operations require exchanging the residue
polynomials between RPAUs

SLR2

T(0)

o\

Solution: A “ring” interconnection of RPAUs namic Shell

Region Region Region

"~ DDRI1]
SLR1 — >

Dynamic \
Region
Only two neighbour RPAUs are connected. L ’

SLRO
Data sent to an RPAU through a chain of RPAUs.
No additional computation overhead

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Placement-friendly interconnection of RPAUs

* FPGA Constraints
» The FPGA is split into four SLRs.
» Connected by a limited number of wires.

* Some operations require exchanging the residue
polynomials between RPAUs

* Placement of 10 RPAUs using “ring” interconnect

SLRO SLR1 SLR2 SLR3
. I o ! :' ------- \'I

| RPAUHT-[-RPAU#6{ RRAU#LRPAU#S !

N i i
:::::::::‘ ':::::‘.f::—-_-:__:q;y::::::‘. Riﬁi‘n‘;"cﬁzsu
| RPAU#8-T-RPAUAG || RPAUHS || RPAU#D !
h:::::::--::::::-‘ :_—_-_—'--_—'.."::::Z:::‘ <:>

:) . 1‘ 1 : External
:Communlcatlon : ' RPAU#0 :!: RPAU#1 ![communication

Platform

..............................

Region
5LR3

DOR[1] >

C
ion
SLR2 S
&
o
namic Shell B
Region Region Region
SLR1 =
Dynamic
Region
SLRO

Floorplan of the design

B RrRPAUO
(1] RPAU1
RPAU2
B RPAU3
0 rRPAU4
] RPAUS
[l RPAUG
1] RPAU7
[I] RPAUS

B RrRPAUP
B platform_i

Full system overview

Host CPU

Software Stack Xilinx Alveo U250 FPGA Board

Application
Microblaze

HE Library
(SEAL)

XDMA BRAM/URAM

Figure 8: CPU-FPGA interface and software stack

FPGA is used as an accelerator card of a server. HW/SW codesign is

used to run applications.
Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

FPGA Acceleration results

foo(data)) foo(Enc(data))

Takes 1s Takes 10*to 10° s

Overhead
down to

10%2to 103 s

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Our Group’s research: Open Problems in FHE
1. How to make hardware accelerators for larger parameter sets?

2. How to support different parameters?
3. How to support different FHE schemes?
4. How to implement FHE Bootstrapping?
5. From FPGA to ASIC accelerators

- More parallel processing

- Custom memory
- Higher clock frequency and lower power consumption

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Recap -- Ring LWE Public-Key Encryption (PKE)
	Slide 9: Recap -- Ring LWE Public-Key Encryption (PKE)
	Slide 10: Recap -- Ring LWE Public-Key Encryption (PKE)
	Slide 11: Ring-LWE PKE – Written with different symbols
	Slide 12: Ring-LWE PKE shows Homomorphism
	Slide 13: Ring-LWE PKE: Additive Homomorphism
	Slide 14: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 15: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 16: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 17: Ring-LWE PKE: Multiplicative Homomorphism
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

