Grazm
Hardware Acceleration Opportunities in
Homomorphic Encryption
Cryptography on Hardware Platform 2023
=

Sujoy Sinha Roy
sujoy.sinharoy@iaik.tugraz.at

A

mmmgom o

m Hr—r—r-uru-r-— - l.!l.ll‘»



mailto:sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation
data

—

Diabetic Retinopathy [Chao et al., 2019]

User wants to compute foo(data) in the cloud without loosing privacy.



Fully Homomorphic Encryption (FHE)

FHE enables computation on encrypted data

data

Enc(data)

Enc( foo(data) )

Dec() gives foo(data) Cloud homomorphically

evaluates foo()



Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods

4. Results



Definition: Homomorphic Encryption

An encryption scheme ENc(-, :) is homomorphic for an operation

on the message space iff

Enc(m, L4 m,, k;)=Enc(m,, k;) o Enc(m,, k. )

with O operation on the ciphertext.

e |f LI=+then ENnc(:, ) is additively homomorphic.

* |If L1=xthen Enc(:, -) is multiplicatively homomorphic.




Example: Textbook RSA is multiplicatively homomorphic
* You have encryption of two messages m, and m, where

c;=m;*mod N

— e
c, =m,*mod N

* By multiplying c, and c, you get

C3=C;*C,=(m;-m,)*modN

* Hence, c; is encryption of m; - m,



Can we get ‘Additive & Multiplicative’ Homomorphic
Encryption?

Popular constructions of FHE use augmented
Ring-LWE public-key encryption



Recap -- Ring LWE Public-Key Encryption (PKE)
Encryption:
d Input: pk = (p,,p,), message m
d Output: ct = (ct,,ct,)
u e,

P1 *‘% *‘G » L =pute

T(l,o,l,o,...)

Multiplication by q/2

(a/2,0,a/2,0)

» Cty = py.U + €, + Enc(m)
= P,.U + €y + m-q/2



Recap -- Ring LWE Public-Key Encryption (PKE)
U Decryption:

d Input: ct = (ct,, ct,), sk=s

[ Output: m after decoding

3 ct,
l l (Erroneous Message Poly) 3&/4

m’ =Enc{m) + €
¢t, —@—@ Sl T

ct, + ct;.s = m’= Enc(m) + (e.s’ + e”’ + €’.s)

= Enc(m) + e,



Recap -- Ring LWE Public-Key Encryption (PKE)
U Decryption:

QInput: ct = (ct,, ct,), sk=s 1 : 0
U Output: m after decoding a/2 0
s ct,
l l (Erroneous Message Poly) 3(:']/4
m’ = Enc(m) + e,

Ctl 4’@—’@ g4 Lecode m

ct, + ct;.s = m’= Enc(m) + (e.s’ + e”’ + €’.s)

= Enc(m) + e,

Equivalently, I-Cto i Ctl'sJ mod?2=m
q/2




Ring-LWE PKE — Written with different symbols

Let scale factor A = g/t and t be plaintext modulus, e.g., t = 2.
Scalars are in red.
All polynomials are in blue.

Encryption Decryption

ey, €4, U € error();

Cty=Py-u+te+A-m > m=|-Ct0+—Ct1'SJ mod t
ct,=p,-u+e, A




Ring-LWE PKE shows Homomorphism

Encryption Decryption

,e., u < error();
* |- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ctg = {cty,,ctg,}

€00 Eprr Uy € error(); €50, €51, Ug € error();
Ctag=Pg - Up+t€ptA-my Ctgg = Pg - Ug + €pp + A - My
Clyy = Py Uy + €y Clg; =Py - Ug + €p4




Ring-LWE PKE: Additive Homomorphism

Encryption
,e., u < error();

+

Decryption

20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

A

€00 €y Uy € error(); /\
CtAo Po-Upyt€pt+tA-my :2/:
Clyy =Py Uyt €y

y

€50, €51, Ug € error();
Ctgg = Pg - Ug + €pg + A - My
Clg; =Py - Ug+ €p

Cteg = Pg - (Uptug) + (€p0F €50) + A - (M4 + M)
Cte; = Py - (Uptug) + (e, + €54)




Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption
, e, u < error();

+ 20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€x0r €a1s Up < error(); €gor €g1s Up < error( );
ctAO Po° uA+eAO+A m Ctgp =Po - uB+eBO+A mg
=Py Up T €, Clg =Py - Ug + €p4

Polynomial multiplication
Ctyg * Ctgy =2 (nOisy crap) + A% - (m, x my)




Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption

,e., u < error();
" I- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€a0r €p1, Uy € error(); €50, €51, Ug € error();
CtAo Po-UptepthH-my Clgg=Pg - Ugt+ €+ A-mg
=P1Upyt €y Clg; =Py - Ug t+e€p

Polynomial multiplication

Intuition > Ctyg * Ctyy = (noisy crap) + A% - (m, x my)

After dividing the expression by A we get:
(noisy crap)/A + A - (m, x my)




Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption

,e., u < error();
" I- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€50, €51, Ug € error();
Po-Ug+egy+A-mg
Ug + €5

€a0r €p1, Uy € error();
ctAO Po° uA+eAO+A m Ctyp =
=Py Up T €, Clg, =Py -

This looks I.Ike Polynomial multiplication
an encryption of | ct, *ct. > (noisy crap) + A2 (m, x my)

(mA X mB) After dividing the expression by A we get:
(noisy crap)/A + A - (myx mp)




Ring-LWE PKE: Multiplicative Homomorphism

Encryption
,e., u < error();

+

Decryption

20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€a0r €p1, Uy € error();
ctAO Po° uA+eAO+A my

=Pq Uy T €,

€50, €51, Ug € error();
Clgg = Pg - Ug + €59+ A Mg
Clg; =Py - Ug+ €p4

Polynomial multiplication

(noisy crap)/A + A - (m,x mg)

That is the basic idea

Ctyg * Ctyy = (noisy crap) + A% - (m, x my) only.

After dividing the expression by A we get: Actual Mult is a lot

more complex!




The Biggest Problem in FHE

Enc(data)

Enc( foo(data) )

Dec() gives foo(data) Cloud homomorphically
evaluates foo()

foo(data) —_ > foo(Enc(data))

Takes 1s Takes 10*to 10° s
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FHE does lots of (large) polynomial arithmetic.

How to accelerate FHE?



Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods

4. Results



What makes acceleration of FHE very challenging?

* Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic
— Long integer arithmetic

e Memory management
— Ciphertexts could be several MBs
— On-Chip memory is limited
— Off-Chip data transfer is very slow



What makes acceleration of FHE very challenging?

* Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic
— Long integer arithmetic This problem is solved using CRT

* Memory management
— Ciphertexts could be several MBs
— On-Chip memory is limited
— Off-Chip data transfer is very slow



Dealing with long-int coefficients using RNS

L-1
1. Take a modulus Q =T[q; where g, are coprime.
0

2. Use Residue Number System (RNS).

Arithmetic mod q, Chinese

Arithmetic mod q, | Remainder

Arithmetic mod Q H Theorem
Arithmetic mod q, , (CRT) I

RNS arithmetic Result mod Q

* Small coefficients
e Parallel computation



E.g., Parallel computation flow with CRT

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

... L parallel threads

mod g, mod q, mod g, 4

|

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)




... (1) Residue polynomial arithmetic layer

... L parallel threads
mod q, mod g, mod g, ,
module module L parallel modules module
RPAU,( ) RPAU,() P RPAU, ,( )

*RPAU stands for ‘Residue Polynomial Arithmetic Unit’

Data flow
diagram

Hardware
acceleration



... (2) Residue polynomial layer «<=» CRT layer

... L parallel threads Residue poly
layer

mod g, mod g, mod q, ;
/' /

Data dependency on all

v
— ... L+1 parallel threads CRT
layer
mod g, mod g, modg,;, modgq,

Each thread in CRT layer combines all threads from previous layer.



... (3) Residue polynomial layer <«=» CRT layer

Therefore, threads or RPAUs need to exchange data with each other.

| module

Example RPAU,( )
module > module
RPAUO( ) RPAUZ( )

module

RPAU,( )



Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)
3. Hardware architecture design challenges and methods

4. Results



System-level view

Off-Chip

Storage
8 Accelerator

Ciphertexts,

Keys,
Constants,
etc.

Host-
Processor




System-level view: Main challenges

Exchange of large

Off-Chip polynomials (MBs)
Storage ‘

Arithmetic on
@‘ge polynomials

/

Accelerator

Ciphertexts,

Keys, I
Constants, V- B
etc.
Host-
Processor

. J




How to multiply two very large polynomials?

* Schoolbook multiplication: O(n?)
« Karatsuba multiplication: O(n'%>)
« Toom-Cook (generalization of Karatsuba)

* Fast Fourier Transform (FFT) multiplication: O(n log n)

FFT is the best choice
Asymptotic complexity plays its role.

33



NTT-based Polynomial Multiplication

A(x)

Dyadic
multiplication
O(n)

O(nlogn) [RE

B(x) A(x)*B(x)

NTT or Number Theoretic Transform is special FFT with integers.



Let’s consider an application example.

Polynomial size n = 21>
And log( g,) = 60



NTT and of a polynomial A[] .
Simplified NTT loops

A[n-1] for(m=",; m<=n; m=’m) {
A[n-2] for (§J=0; J<=m/2-1; J++){
for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);
Butterfly (A[index],A[index+m/”]) ;

— —> }

}

}

>(>|> >
SlR|IN|Y




NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

NTT starts with m=2
Butterfly(A[O], A[1])

>(>|>|>
Slr|IN|Y




NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

... with m=2
Butterfly(A[2], A[3])

>|>|>|>
SR|IN|Y




NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

... with m=2, finally
Butterfly(A[n-2], A[n-1])

>(>|> >
SlR|IN|Y




NTT and Memory access
Y Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

Next, m increments to m=4.

>|>|>|>
Slr|IN|Y

Butterfly(A[O], A[2]), Butterfly(A[4], A[6]) ...



NTT and Memory access
Y Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, j, k);

}
}

Butterfly (A[index],A[index+m/”]) ;

)
|

| Next, m increments to m=4.

>|>|>|>
Slr|N|Y

Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) ...



Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes



Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Is parallel NTT easy to implement?

Answer: Complexity of implementation increases with number of cores



Parallel NTT
Challenge 1: Port limitation in BRAM or SRAM

BRAM
— Or | Problem:
SRAM  One BRAM has only two ports.
 Each NTT core needs two ports




Parallel NTT
Challenge 1: Port limitation in BRAM or SRAM

BRAM

Problem:
* One BRAM has only two ports.
 Each NTT core needs two ports

SRAM

Solution: Use BRAMs in parallel.

New problem: How to distribute data?




Parallel NTT

Challenge 2: Memory access conflicts

Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

: ; | I 1 l_
| BRAM B
| | Problem:
. Two cores are trying to access
BRAM a | | the same BRAM.

L,




Parallel NTT

Challenge 2: Memory access conflicts

Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

| BRAM |

Problem:
Two cores are trying to access
the same BRAM.

| BRAM |

Solution: Make BRAM accesses
mutually exclusive.

aYashdee




Parallel NTT
Challenge 3: Data routing

Core requires data from distant BRAM memory
- Long routing of data wires = slow clock frequency

Problem:
Core is reading data
from far memory.

| BRAM | |

|BRAM |-

¥t det




Parallel NTT
Challenge 3: Data routing

Core requires data from distant BRAM memory
- Long routing of data wires = slow clock frequency

Problem:
Core is reading data
from far memory.

| BRAM | |

Solution: There is no solution

to this problem.

a | Localizing read or write (not both)
oram is possible.

|BRAM |-

¥t det




i
_____ |
I ‘ x
I . . Compute
* * Core-C
I * *
| . .
x . . .
5 i Data-write paths are
This paper localizes 1 E:" I+ ’ x - heavily pipelined.
the read operation. 5 b : Compute
‘;’ . . Core-1 |
(] Il = *
BRAM is exclusively || 3 .
| _ |
read by only one — B Pipeline
register
COre. Compute [x] Cgefﬁcientof a polynomial
Core-0 |
I NTT
Cores

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023



System-level view: Main challenges

. Exchange of large
Off-Chip polynomials (MBs)

Storage
5 = | Accelerator

Arithmetic on
large polynomials

Ciphertexts,

Keys,
Constants,
etc.
Host-
Processor
« J

Next topic: Memory management



Memory organization and management

Off-Chi
ip p N
Storage
Ciphertexts, Accelerator
Keys,
Constants, = Lt L )

etc.

Common techniques
* Lots of on-chip memory (BRAM/SRAM) for storing operands



Memory organization and management

Off-Chip ~
Storage
Ciphertexts, Accelerator
Keys,
= U U )

Constants, -

etc.

Common techniques
* Lots of on-chip memory (BRAM/SRAM) for storing operands
* Perform communication-computation parallelism using cache



Memory organization and management

\
High - = =
bandwidth Accelerator
memory
J

Common techniques

* Lots of on-chip memory (BRAM/SRAM) for storing operands

* Perform communication-computation parallelism using cache
* High-bandwidth off-chip memory and with multiple channels



Tutorial outline

1. FHE concepts
2. Parallel processing opportunities in FHE (from high-level)

3. Hardware architecture design challenges and methods
+* Implementation

4. Results



Implementations

There are two main tracks
1. True accelerator prototype in ASIC/FPGA
2. Simulation-based modelling of accelerator

4 N\ 4 N
Real HW prototypes: Simulation-based works:
HEAWS[]'], HEAX[Z], COFHEE[3], Medhal4 F1[5]’ BTS[6]’ CraterLakeW]’
\_ J . J

[1] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.

[2] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[3] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[4] Mert et al. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data. CHES 2023.

[5] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[6] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[7] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.



Briefly talk about



Next, FHE accelerator

}

Crypto
(FHE)

/DOIynomial arithmetic\
/ Coefficient arithmetic \

60



High level computation flow

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

J NTTs, INTTs,

... L parallel threads Coeff-wise add,
) sub, mult, etc.

mod g, mod g, mod q, ,

F Residue polynomial arithmetic in parallel

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)




... Residue polynomial arithmetic layer

... L parallel threads

mod g, mod q, mod q, ,

module module L parallel modules module
RPAU,( ) RPAU,() P RPAU, ,( )

*RPAU stands for Residue Polynomial Arithmetic Unit

Data flow
diagram

Arch. block
diagram



... Residue polynomial layer <=» CRT layer

... L parallel threads Residue poly
layer
mod g, mod g, mod g, ,
/ Data dependency on all
— ... L+1 parallel threads CRT
layer
mod g, mod q, modgq,; modgq,

Each thread in CRT layer combines all threads from previous layer.



module
RPAU( )

module
RPAU,( )

{

|

... Residue polynomial layer <=» CRT layer

... parallel RPAU modules

Therefore, RPAUs need to exchange data with each other.

module
RPAU, ( )

{

N —




RPAU ()

Memory
Access
Controller

Unified Butterfly
) and Dyadic Core-15

Y

Dyadic
Core-3

< —" Eﬂd'zc Unified Butterfly
ore- “—1 and Dyadic Core-2

Dyadic Unified Butterfl
S— Y
Core-1 ~—1 and Dyadic Core-1

Dyadic Unified Butterfly
Core-0 1 and Dyadic Core-0

Memory for Residue Polynomial 6 f—2 -y

Memory for Residue Polynomial 0 f—

Memory for KeySwitching-Key-1
Memory for KeySwitching-Key-0

Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores.
Polynomials are stored in ‘Memory’ made of BRAMs.

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023



Instruction Parallelism in RPAU ()
Parallel execution of instructions

do; + &g * &,
J g C05 . HE. Mult RPAU.A11 RPAU.Dyadic

:d10<—c01*c11+c“*cod

:dzd <—c|J*c,J SN = = < e e e iR - iaasaasassasasaoassasasoy
" ooon d INTT(d» - d01+—coJ*coJ

{560 0 HE. Relin 24 ¢ INTT{day)

: d2vj : 2 Im(d 2.j) templ < EO,j *(-3'1 :

. J
‘fori =0toL — 1do o SRR _ . . . . x x  x x x x x xx x X x % %X XX EX
| Obtain dy ; from RPAU; ra0 ¢ Coeff . Reduce(dsy,q;) feripn = iy E;J

r2; < Coeff. Reduce(ds;,q;) )
t’(— NTT(r2 i) to ¢ NTT(rz0) Ju « temp, + temps
Coi & cOl + KSKo; * t SyNC.- - qeenssnannsensnesnesansans- LREEEEENESEEREESRERERESERA

ra1 ¢ Coeff.Reduce(ds1,q;) 2

n -~
"
o0 < €00 + KSKg o * tg

! (:1'4——0l +KSKy; »t
: end for ty +NTI(ra;) €10 + € o +KSKio * 0

: (dog,dyj) I.C ‘P J o T B e sy g e T e e tha |
Homomorphic multiplication & S+ oy R kR
key-switching.

(The most expensive operation)

" " -
€, < ¢, +KSKyg *t

This reduces 40% cycle count



Placement of RPAUs

CRT requires combining the residues.
- Therefore, RPAUs need to communicate with each other

How to interconnect the RPAUs in large 3D FPGAs?

... L parallel threads

mod g, mod g, mod g,

|

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)




Large SLR FPGA

Large FPGAs are multi-die
» The FPGA is split into four SLRs.
» Connected by a limited number of wires.

High-Bandwidth,
Low-Latency Connections

Microbumps

Through Silicon Vias (TSV)

C4 Bumps

Slice 4 4 28 nm FPGA Die Slices

[E——xi=14 [E——7q{34 Silicon Interposer
) O & & o4 ¢ & 6 o 6 06 6 6 &

Package Substrate

BGA Solder Balls



Large SLR FPGA - top view

Dynamic
Region
SLR3 Slice 3 There are a limited number
of interconnects.
Dynamic
Region L .
: Large design cannot be spread
. Slice 2 @ € CESIE P
@ arbitrarily across SLRs.
I
, Bas
Togon S
SI | 1 DDR[1]
SLR1 Ige \r_ ;
oynamic Xilinx Alveo U250 FPGA. This FPGA is 1000x
Region larger than the FPGA used in this course.

SLRO Slice 0




Placement-friendly interconnection of RPAUs

* FPGA Constraints

» The FPGA is split into four SLRs. ‘!
» Connected by a limited number of wires. . \

* Some operations require exchanging the residue D
polynomials between RPAUs -

* Naive solution: A ”star-like” network

Region

SLR1

Dynamic
Region

SLRO

B one RPAU



Placement-friendly interconnection of RPAUs

* FPGA Constraints -
» The FPGA is split into four SLRs. = e ]
» Connected by a limited number of wires. o

* Some operations require exchanging the residue ] | D;e’mc L]

polynomials between RPAUs

* Naive solution: A ”star-like” network

‘ I))'namic ‘ Shell
Region Region

SLRT

Base
Reqion

"~ DDRI1]
- >

Dynamic

SLRO

Region .

B one RPAU



Placement-friendly interconnection of RPAUs

* FPGA Constraints
» The FPGA is split into four SLRs. ‘Q
» Connected by a limited number of wires. s \
* Some operations require exchanging the residue o
polynomials between RPAUs e

Naive solution: A ”star-like” network | oo

SLR1

.A l
Region
Complicates the routing

SLRO

Large number of nets crossing the SLRs
Reduces the clock frequency to around 50 MHz or less




Placement-friendly interconnection of RPAUs

FPGA Constraints
» The FPGA is split into four SLRs. gt
» Connected by a limited number of wires. .

* Some operations require exchanging the residue
polynomials between RPAUs

SLR2

T(0)

o\

Solution: A “ring” interconnection of RPAUs namic Shell

Region Region Region

"~ DDRI1]
SLR1 — >

Dynamic \
Region
Only two neighbour RPAUs are connected. L ’

SLRO
Data sent to an RPAU through a chain of RPAUs.
No additional computation overhead

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023



Placement-friendly interconnection of RPAUs

* FPGA Constraints
» The FPGA is split into four SLRs.
» Connected by a limited number of wires.

* Some operations require exchanging the residue
polynomials between RPAUs

* Placement of 10 RPAUs using “ring” interconnect

SLRO SLR1  SLR2  SLR3
. I o ! :' ------- \'I

| RPAUHT-[-RPAU#6{ RRAU#LRPAU#S !

N i i
:::::::::‘ ':::::‘.f::—-_-:__:q;y::::::‘. Riﬁi‘n‘;"cﬁzsu
| RPAU#8-T-RPAUAG || RPAUHS || RPAU#D !
h:::::::--::::::-‘ :_—_-_—'--_—'.."::::Z:::‘ <:>

: ) . 1‘ 1 : External
:Communlcatlon : ' RPAU#0 :!: RPAU#1 ![ communication

Platform

..............................

Region
5LR3

DOR[1] >

C
ion
SLR2 S
&
o
namic Shell B
Region Region Region
SLR1 =
Dynamic
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Floorplan of the design
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Full system overview

Host CPU

Software Stack Xilinx Alveo U250 FPGA Board

Application
Microblaze

HE Library
(SEAL)

XDMA BRAM/URAM

Figure 8: CPU-FPGA interface and software stack

FPGA is used as an accelerator card of a server. HW/SW codesign is

used to run applications.
Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023



FPGA Acceleration results

foo(data) ) foo(Enc(data))

Takes 1s Takes 10*to 10° s

Overhead
down to

10%2to 103 s

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023



Our Group’s research: Open Problems in FHE
1. How to make hardware accelerators for larger parameter sets?

2. How to support different parameters?
3. How to support different FHE schemes?
4. How to implement FHE Bootstrapping?
5. From FPGA to ASIC accelerators

- More parallel processing

- Custom memory
- Higher clock frequency and lower power consumption
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