

Modular Reduction Algorithms

- Well-known modular reduction methods:
 - Barrett reduction
 - Montgomery reduction
- Modular reduction for special primes
- Modular reduction using Table/LUT

• An algorithm for computing $C = A \cdot B$ (mod q) where A, B, and q are k-bit numbers

IMPLEMENTING THE
RIVEST SHAMIR AND ADLEMAN
PUBLIC KEY ENCRYPTION ALGORITHM
ON A
STANDARD DIGITAL SIGNAL PROCESSOR

Paul Barrett, MSc (Oxon) COMPUTER SECURITY LTD August 1986

ABSTRACT

A description of the techniques employed at Oxford University to obtain a high speed implementation of the RSA encryption algorithm on an "off-the-shelf" digital signal processing chip. Using these techniques a two and a half second (average) encrypt time (for 512 bit exponent and modulus) was achieved on a first generation DSP (The Texas Instruments TMS 32010) and times below one second are achievable on second generation parts. Furthermore the techniques of algorithm development employed lead to a provably correct implementation.

- Barrett Reduction: a (mod q)
 - $a < q^2$
 - $2^{k-1} < q < 2^k$ (k-bit modulus)

- Barrett Reduction: a (mod q)
 - $a < q^2$
 - $2^{k-1} < q < 2^k$ (k-bit modulus)
- Main idea:

$$a \pmod{q} = a - |a/q| \cdot q$$

- Barrett Reduction: a (mod q)
 - $a < q^2$
 - $2^{k-1} < q < 2^k$ (k-bit modulus)
- Main idea:

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

Approximate a/q as $(a \cdot (R/q)/R) \approx (a \cdot [R/q]/R)$

- Barrett Reduction: a (mod q)
 - $a < q^2$
 - $2^{k-1} < q < 2^k$ (k-bit modulus)
- Main idea:

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

Approximate
$$a/q$$
 as $(a \cdot (R/q)/R) \approx (a \cdot \lfloor R/q \rfloor/R)$

$$a \pmod{q} = a - [a \cdot [R/q]/R] \cdot q$$

- Barrett Reduction: a (mod q)
 - $a < q^2$
 - $2^{k-1} < q < 2^k$ (k-bit modulus)
- Main idea:

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

Approximate
$$a/q$$
 as $(a \cdot (R/q)/R) \approx (a \cdot \lfloor R/q \rfloor/R)$

$$a \pmod{q} = a - \lfloor a \cdot \lfloor R/q \rfloor / R \rfloor \cdot q$$

Division by q is converted to division by R.

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - |a/q| \cdot q$$

Division is expensive

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

 $a \pmod{q} = a - \lfloor a \cdot \lfloor R/q \rfloor / R \rfloor \cdot q$

Division is expensive

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

 $a \pmod{q} = a - \lfloor a \cdot \lfloor R/q \rfloor / R \rfloor \cdot q$

Select $R = 2^{2k}$, $\lfloor R/q \rfloor$ can be precomputed

Division is expensive

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

 $a \pmod{q} = a - \lfloor a \cdot \lfloor R/q \rfloor / R \rfloor \cdot q$

Select $R = 2^{2k}$, $\lfloor R/q \rfloor$ can be precomputed Select $R = 2^{2k}$, division by R is simple shift Division is expensive

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

 $a \pmod{q} = a - \lfloor a \cdot \lfloor R/q \rfloor / R \rfloor \cdot q$

Select $R = 2^{2k}$, $\lfloor R/q \rfloor$ can be precomputed Select $R = 2^{2k}$, division by R is simple shift

$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$

$$= a - \lfloor a \cdot (\lfloor R/q \rfloor/R) \rfloor \cdot q$$

$$= a - \lfloor a \cdot (\lfloor 2^{2k}/q \rfloor/2^{2k}) \rfloor \cdot q$$

Division is expensive

$$[x] = x - e$$
, $0 \le e < 1$

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$

 $a \pmod{q} = a - \lfloor a \cdot \lfloor R/q \rfloor / R \rfloor \cdot q$

Select $R = 2^{2k}$, $\lfloor R/q \rfloor$ can be precomputed Select $R = 2^{2k}$, division by R is simple shift

$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$

$$= a - \lfloor a \cdot (\lfloor R/q \rfloor/R) \rfloor \cdot q$$

$$= a - \lfloor a \cdot (\lfloor 2^{2k}/q \rfloor/2^{2k}) \rfloor \cdot q$$

...

$$a \pmod{q} = q \cdot (e_1. \ q/R + e_2)$$

Division is expensive

Approximate a/q

$$|x| = x - e, 0 \le e < 1$$

 $a \pmod{q} < 2 \cdot q$ (final subtraction is needed)

- Takes $D = A \cdot B$ as input and generates $C = D \pmod{q}$
 - $A, B < q, D = A \cdot B < q^2$
 - $2^{k-1} < q < 2^k$
 - $\mu = \lfloor 2^{2k}/q \rfloor$

Input:
$$D = A \cdot B$$
, q , μ

Output: $C = D \pmod{q}$

1: $s = (D \cdot \mu) >> 2k$

2: $r = s \cdot q$

3: $u = D - r$

4: if $(u \ge q)$ then $C = u - q$ else $C = u$

5: return C

- Try Barrett algorithm in sage.
 - https://sagecell.sagemath.org/

```
mu = 2^{(2*k)} // q
D = 120
u = D - ((D*mu) >> 2*k)*q
u = u - q if(u >= q) else u
print("D mod q:", D%q)
print("BR(D,q):", u)
```

Barrett Modular Reduction Algorithm (Reducing Multiplier Size)[1]

- Takes $D = A \cdot B$ as input and generates $C = D \pmod{q}$
 - $A, B < q, D = A \cdot B < q^2$
 - $2^{k-1} < q < 2^k$
 - $\mu = [2^{2k+3}/q]$

Input: $D = A \cdot B$, q, μ

Output: $C = D \pmod{q}$

1: $t = D \gg (k-2)$

2: $s = t \cdot \mu$

2: $r = s \gg (k+5)$

3: $u = D - r \cdot q \pmod{2^{k+1}}$

4: if $(u \ge q)$ then C = u - q else C = u

5: **return** *C*

Montgomery Modular Reduction Algorithm

- An algorithm for computing $C = A \cdot B$ (mod q) where A, B, and q are k-bit numbers
- It computes the resulting k-bit number C without performing a division by q
 - Division by q is replaced by division by a power of 2

MATHEMATICS OF COMPUTATION VOLUME 44, NUMBER 170 APRIL 1985, PAGES 519-521

Modular Multiplication Without Trial Division

By Peter L. Montgomery

Abstract. Let N > 1. We present a method for multiplying two integers (called *N-residues*) modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one N. The addition and subtraction algorithms are unchanged.

- Takes $C = A \cdot B$ as input and generates $D = C \cdot R^{-1}$ (mod q)
 - $A, B < q, C = A \cdot B < q^2$
 - $2^{k-1} < q < 2^k$
 - $R = 2^k$, $R^{-1} = 2^{-k} \pmod{q}$
 - gcd(q, R) = 1, q is odd
- Montgomery reduction also requires a quantity $\mu = (-q)^{-1} \pmod{R}$.

$$D = \frac{C + (C.\mu \pmod{R}).q}{R}$$

This only guarantees that D is less than 2.q, we need a final conditional subtraction to bring result into [0,q).

- Takes $C = A \cdot B$ as input and generates $D = C \cdot R^{-1}$ (mod q)
 - $A, B < q, C = A \cdot B < q^2$
 - $2^{k-1} < q < 2^k$
 - $R = 2^k$, $R^{-1} = 2^{-k} \pmod{q}$
 - gcd(q, R) = 1, q is odd
- Montgomery reduction also requires a quantity $\mu = (-q)^{-1} \pmod{R}$.

Input:
$$C = A \cdot B$$
, q , μ , $R = 2^k$
Output: $D = C \cdot R^{-1}$ (mod q)

1: $m = C \cdot \mu$ (mod R)

2: $u = C + m \cdot q$

3: $u = u/R$

4: if $(u \ge q)$ then $D = u - q$ else $D = u$

5: return D

Montgomery Algorithm for an input C

• What is x?

$$C + x \cdot q \equiv 0 \ (mod \ 2^k) \ \text{where} \ C = C_H \cdot 2^k + C_L$$

$$C_H \cdot 2^k + C_L + x \cdot q \equiv 0 \ (mod \ 2^k)$$

$$C_H \cdot 2^k + C_L + x \cdot q \equiv 0 \ (mod \ 2^k)$$

$$x \equiv C_L \cdot (-q)^{-1} \ (mod \ 2^k)$$
We define $R = 2^k$ and $\mu = (-q)^{-1} \ (mod \ R)$. Then,

 $x = C_i . \mu \pmod{R}$

 $x = C \cdot \mu \pmod{R}$

What is reduction result?

$$D = \frac{C + x \cdot q}{2^k} \longrightarrow D = \frac{C + (C \cdot \mu \pmod{R}) \cdot q}{R}$$

- There is R^{-1} in the result. Therefore, output needs to be multiplied by R.

 Alternatively, one of the inputs may be converted to Montgomery form by multiplying with R.
 - Not suitable for a single modular multiplication

In#1	In#2	•	Correction
\overline{A}	В		$C.R \pmod{q}$
A.R	В	$C = (A.B.R).R^{-1} \pmod{q}$	_
Α	B.R	$C = (A.B.R).R^{-1} \pmod{q}$	_
A.R	B.R	$C = (A.B.R^2).R^{-1} \pmod{q}$	$C.R^{-1} \pmod{q}$

- There is R^{-1} in the result. Therefore, output needs to be multiplied by R. Alternatively, one of the inputs may be converted to Montgomery form by multiplying with R.
 - Not suitable for a single modular multiplication

In#1	In#2	Output	Correction
A		$C = (A.B).R^{-1} \pmod{q}$	$C.R \pmod{q}$
A.R	В	$C = (A.B.R).R^{-1} \pmod{q}$	_
Α	B.R	$C = (A.B.R).R^{-1} \pmod{q}$	_
A.R	B.R	$C = (A.B.R^2).R^{-1} \pmod{q}$	$C.R^{-1} \pmod{q}$

When to use Montgomery Modular Reduction?

$$c = m^e \mod N$$

... here we do all operations in the mod N ring.

Efficiency trick:

Let a and b are two integers modulo N.

$$c = m^e \mod N$$

... here we do all operations in the mod N ring.

Efficiency trick:

Let a and b are two integers modulo N.

Instead of multiplying a and b directly, first bring them to the 'Montgomery domain'.

Normal domain	Montgomery domain
a mod N	$A = a*R \mod N$
b mod N	$B = b*R \mod N$

$$c = m^e \mod N$$

... here we do all operations in the mod N ring.

Efficiency trick:

Normal domain	Montgomery domain
a mod N	$A = a*R \mod N$
b mod N	$B = b*R \mod N$

Now multiply them: $C = A*B = (a*R)*(b*R) \mod N$.

$$c = m^e \mod N$$

... here we do all operations in the mod N ring.

Efficiency trick:

Normal domain	Montgomery domain
a mod N	$A = a*R \mod N$
b mod N	$B = b*R \mod N$

Now multiply them: $C = A*B = (a*R)*(b*R) \mod N$.

Now perform Montgomery reduction. It produces

 $C^*R^{-1} \mod N = a^*b^*R \mod N$

= $c*R \mod N$ where c = a*b is the 'normal domain' multiplication.

$$c = m^e \mod N$$

... here we do all operations in the mod N ring.

Efficiency trick:

Normal domain	Montgomery domain
a mod N	$A = a*R \mod N$
b mod N	$B = b*R \mod N$

Now multiply them: $C = A*B = (a*R)*(b*R) \mod N$.

Now perform Montgomery reduction. It produces

$$C^*R^{-1} \mod N = a^*b^*R \mod N$$

 $= c*R \mod N$ where c = a*b is the 'normal domain' multiplication.

Note that the result the Montgomery domain representation of c.

 $c = m^e \mod N$

c*R mod N

Domain

conversion

c mod N

- Try Montgomery algorithm in sage.
 - https://sagecell.sagemath.org/

```
R = 2^5
qp = -q^{(-1)} % R
D = 129
u = (D + (D*qp % R)*q)/R
u = u-q if(u >= q) else u
print("D mod q:", D%q)
print("MR(D,q):", u)
print("u*R mod q:", u*R % q)
```

Run the code.

- Barrett and Montgomery are generics algorithms
 - Might not be optimum for numbers with special form
- Some cryptographic protocols use primes with special form:
 - E.g., ECC uses $2^{192} 2^{64} 1$
 - E.g., Some ZKP/HE applications use $2^{64} 2^{32} + 1$
 - E.g., NIST-selected PQC scheme Kyber uses 13 · 28 1
- Mersenne primes: $2^k 1$
- Generalized Mersenne primes (Solinas primes): $2^k c$

• Modular reduction for $q = 2^k - c$

$$q = 0 \pmod{q}$$

• Modular reduction for $q = 2^k - c$

$$q = 0 \pmod{q}$$
$$2^k - c = 0 \pmod{q}$$

• Modular reduction for $q = 2^k - c$

$$q = 0 \pmod{q}$$

 $2^k - c = 0 \pmod{q}$
 $2^k = c \pmod{q}$

• Modular reduction for $q = 2^k - c$

$$q = 0 \pmod{q}$$

$$2^k - c = 0 \pmod{q}$$

$$2^k = c \pmod{q}$$

• Perform $A \pmod{q}$ for 2k-bit A

$$A = A_1 \cdot 2^k + A_0 \pmod{q}$$

$$A = A_1 \cdot c + A_0 \pmod{q} \quad (\text{using } 2^k = c \pmod{q})$$

- Table-based reduction method uses a table to store pre-computed values for most-significant bits of input in (mod q).
 - Store pre-computed values r_H . $2^k \pmod{q}$ for input r

- Table-based reduction method uses a table to store pre-computed values for most-significant bits of input in (mod q).
 - Store pre-computed values r_H . $2^k \pmod{q}$ for input r

- Table-based reduction method uses a table to store pre-computed values for most-significant bits of input in (mod q).
 - Store pre-computed values r_H . $2^k \pmod{q}$ for input r

- Table-based reduction method uses a table to store pre-computed values for most-significant bits of input in (mod q).
 - Store pre-computed values r_H . $2^k \pmod{q}$ for input r

- Table-based reduction method uses a table to store pre-computed values for most-significant bits of input in (mod q).
 - Store pre-computed values r_H . $2^k \pmod{q}$ for input r

- Table-based reduction method uses a table to store pre-computed values for most-significant bits of input in (mod q).
 - Store pre-computed values r_H . $2^k \pmod{q}$ for input r

