Integer and Prime Field Arithmetic

October 10, 2023
Ahmet Can Mert

ahmet.mert@iaik.tugraz.at

Modular Reduction Algorithms

e Well-known modular reduction methods:
e Barrett reduction
 Montgomery reduction

* Modular reduction for special primes

* Modular reduction using Table/LUT

Barrett Modular Reduction Algorithm

e Analgorithm for computing C=A - B(mod q) where A, B, and g are k-bit numbers

IMPLEMENTING THE
RIVEST SHAMIR AND ADLEMAN
PUBLIC KEY ENCRYPTION ALGORITHM
ON A
STANDARD DIGITAL SIGNAL PROCESSOR

Paul Barrett, MSc (Oxon)
COMPUTER SECURITY LTD
August 1986

ABSTRACT

A description of the techniques employed at Oxford University te
obtain a high speed implementation of the RSA encryption algorithm on
an "off-the-shelf" digital signal processing chip. Using these
techniques a two and a half second (average) encrypt time (for 512 bit
exponent and modulus) was achieved on a first generation DSP (The
Texas Instruments TMS 32010) and times below one second are achievable
on second generation parts. Furthermore the technigues of algorithm
development employed lead to a provably correct implementation.

Barrett Modular Reduction Algorithm

e Barrett Reduction: a (mod q)
* a<qg?
o 2kl<qg<2k(k-bit modulus)

Barrett Modular Reduction Algorithm

e Barrett Reduction: a (mod q)
* a<qg?
o 2kl<qg<2k(k-bit modulus)

e Main idea:

a(modg)=a-|la/q]|-q

Barrett Modular Reduction Algorithm
e Barrett Reduction: a (mod q)

* a<qg?
o 2kl<qg<2k(k-bit modulus)

e Main idea:

a(modg)=a-|la/q]|-q

Approximatea/qas (a-(R/q)/R)=(a-|R/q|/R)

Barrett Modular Reduction Algorithm

e Barrett Reduction: a (mod q)
* a<qg?
o 2kl<qg<2k(k-bit modulus)

e Main idea:

a(modg)=a-la/q]-q
Approximatea/qas (a-(R/q)/R)=(a-|R/q|/R)
a(modqg)=a-|a-|R/|/R]-q

Barrett Modular Reduction Algorithm

* Barrett Reduction: a (mod g)
* a<qg?
o 2kl<qg<2k(k-bit modulus)

e Main idea:

a(modg)=a-la/q]-q
Approximatea/qas (a-(R/q)/R)=(a-|R/q|/R)
a(modqg)=a-|a-|R/|/R]-q

Division by g is converted to division by R.

Barrett Modular Reduction Algorithm

* Reduction: a (modgq), a<g? 2K1<qg< 2k

a (mod CI) =da- [a/q J °q Division is expensive

Barrett Modular Reduction Algorithm

* Reduction: a (modgq), a<g? 2K1<qg< 2k

a (mod CI) =da- [a/q J °q Division is expensive
a(mod CI)=(J- [a- lR/QJ/RJ g Approximate a/qg

Barrett Modular Reduction Algorithm

* Reduction: a (modgq), a<g? 2K1<qg< 2k

a (mod CI) =da- [a/q J °q Division is expensive
a(mod CI)=(J- [a- lR/QJ/RJ g Approximate a/qg

Select R = 2k, | R/q | can be precomputed

Barrett Modular Reduction Algorithm

* Reduction: a (modgq), a<g? 2K1<qg< 2k

a (mod CI) =da- [a/q J °q Division is expensive
a(mod CI)=(J- [a- lR/QJ/RJ g Approximate a/qg

Select R = 2k, | R/q | can be precomputed
Select R = 2%k, division by R is simple shift

Barrett Modular Reduction Algorithm

* Reduction: a (modgq), a<g? 2K1<qg< 2k

a (mod CI) =da- [a/q J °q Division is expensive
a(mod CI)=(J- [a- lR/QJ/RJ g Approximate a/qg

Select R = 2k, | R/q | can be precomputed
Select R = 2%k, division by R is simple shift

a(modg)=a-|a-s]|-q
=a-la-(LR/I/R)|-q
=a-la-(12*/4q]/2%)] -q |x]=x—e, 0<e<1

Barrett Modular Reduction Algorithm

* Reduction: a (modgq), a<g? 2K1<qg< 2k

a (mod CI) =da- [a/q J °q Division is expensive
a(mod CI)=(J- [a- lR/QJ/RJ g Approximate a/qg

Select R = 2k, | R/q | can be precomputed
Select R = 2%k, division by R is simple shift

a(modg)=a-|a-s]|-q
=a-la-(LR/I/R)|-q
=a-la-(12*/4q]/2%)] -q |x]=x—e, 0<e<1

a (mod Q) =q - (61. CI/R + 62) a (modg)< 2 -q (final subtraction is needed)

Barrett Modular Reduction Algorithm

« Takes D=A - Bas input and generates C= D (mod q)
* A B<q D=A-B<g?
¢ 2klcqg< 2k
* u=12%/q]

Input: D=A-8B,qg, u

Output: C=D (mod q)

1:s=(D - u)>> 2k

2:r=s5-q

3:u=D-r
4:if(u>qg)thenC=u—-qgelseC=u
5:returnC

Barrett Modular Reduction Algorithm

* Try Barrett algorithmin sage.
 https://sagecell.sagemath.org/

k =5
qg = 19
mu= 2" (2*k) // g

D = 120
u =D - ((D*mu) >> 2*k)*qg
u = u-gq if(u > gq) else u

print ("D mod g:", D%q)
print ("BR(D,qg) :", u)

Barrett Modular Reduction Algorithm (Reducing Multiplier Size)[1]

« Takes D=A - Bas input and generates C= D (mod q)
* A B<q D=A-B<g?
¢ 2klcqg< 2k
. H=l22k+3/QJ

Input: D=A-8B,q, u

Output: C=D (mod q)

:t=D >> (k-2)

:S=t-u

:r=5>> (k+5)
:u=D-r-q(mod 2k1)
cif(u>g)thenC=u—-qgelseC=u
:return C

£ WINDNPR

ul

[1] https://uwspace.uwaterloo.ca/bitstream/handle/10012/15191/Roma_Crystal.pdf?sequence=3 &isAllowe d=y

Montgomery Modular Reduction Algorithm

An algorithm for computing C=A - B (mod q) where A, B, and g are k-bit numbers
It computes the resulting k-bit number C without performing a division by g
* Division by g is replaced by division by a power of 2

MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 170
APRIL. 19K5. PAGES 519-521

Modular Multiplication Without Trial Division
By Peter L. Montgomery

Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues)
modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so

this method is useful only if several computations are done modulo one N. The addition and
subtraction algorithms are unchanged.

Montgomery Modular Reduction Algorithm: Classical Montgomery

Takes C=A - B as input and generates D= C- R (mod q)
e A B<q C=A-B<g?
¢ 2klcqg< 2k
e R=2KRI=2%(modQq)
* gcd(g,R)=1, qgis odd

Montgomery reduction also requires a quantity u = (-g)* (mod R).

C+(C.p (mod R)).q
R

D =

This only guarantees that D is less

than 2.q, we need a final conditional
subtraction to bring result into [0,q).

Montgomery Modular Reduction Algorithm: Classical Montgomery

 Takes C=A - Basinput and generates D= C - R!(mod q)
e A B<q C=A-B<g?
¢ 2klcqg< 2k
e R=2KRI=2%(modQq)
* gcd(g,R)=1, qgis odd

* Montgomery reduction also requires a quantity u = (-q)1 (mod R).

Input: C=A-B, g, u, R=2k

Output: D =C- R (mod q)

:m =C-u(modR)

:u=C+m-q

:u=u/R
cif(u>qg)thenD=u—-qgelseD=u
:returnD

ubH wWwN R

Montgomery Modular Reduction Algorithm: Classical Montgomery

* Montgomery Algorithm for an input C

> If this bit is 1, add g

CH C|_ 1
n q
——> |f this bit is 1, add 2%q
1{0
n q
———> If this bit is 1, add 2%¢
1{0]0
|

000 .. o000 =C + x.q

Montgomery Modular Reduction Algorithm: Classical Montgomery

* Whatis x?
C+x-q=0(mod 2) where C=C,- 2K+ C,

C,-2k+C +x-q=0(mod 2¥)
€~2+C +x-q=0(mod 2¥)

x=C, - (~g) (mod 29
We define R = 2Kand u = (-q)~1 (mod R). Then,
x=C,.u(modR)
x=C.u(modR)

e Whatis reduction result?
~ C+xg n— C+(C.p (mod R)).q

D —
2k R

Montgomery Modular Reduction Algorithm: Classical Montgomery

* There is R~ in the result. Therefore, output needs to be multiplied by R.
Alternatively, one of the inputs may be converted to Montgomery form by
multiplying with R.

* Not suitable for a single modular multiplication

In#1 | In#2 Qutput Correction

A B C = (A.B).R~' (mod q) C.R (mod q)
A.R B C =(A.B.R).R™! (mod q) -

A B.R | C=(A.B.R).R! (mod q) -

AR | B.R | C=(A.B.R?>).R! (mod q) | C.R™! (mod q)

Montgomery Modular Reduction Algorithm: Classical Montgomery

* There is R~ in the result. Therefore, output needs to be multiplied by R.
Alternatively, one of the inputs may be converted to Montgomery form by
multiplying with R.

* Not suitable for a single modular multiplication

In#1 | In#2 Qutput Correction

A B C = (A.B).R~' (mod q) C.R (mod q)
A.R B C =(A.B.R).R™! (mod q) -

A B.R | C=(A.B.R).R! (mod q) -

AR | B.R | C=(A.B.R?>).R! (mod q) | C.R™! (mod q)

When to use Montgomery Modular Reduction?

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Let a and b are two integers modulo N.

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Let a and b are two integers modulo N.

Instead of multiplying a and b directly, first bring them to the ‘Montgomery domain’.

PI——

a mod N A=a*RmodN
b modN B=b*R mod N

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

PI——

a mod N A=a*RmodN
b modN B=b*R mod N

Efficiency trick:

Now multiply them: C=A*B = (a*R)*(b*R) mod N.

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Montgomery domain
a modN A=a*Rmod N
b mod N B=b*RmodN

Now multiply them: C=A*B = (a*R)*(b*R) mod N.
Now perform Montgomery reduction. It produces
C*R1mod N =a*b*R mod N
= c*R mod N where c =a*b is the ‘normal domain” multiplication.

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Montgomery domain
a mod N A=a*Rmod N
b modN B=b*RmodN

Now multiply them: C=A*B = (a*R)*(b*R) mod N.
Now perform Montgomery reduction. It produces
C*R1mod N =a*b*R mod N
here c = a*b is the ‘normal domain’ multiplication.

Note that the result the Montgomery domain representation of c.

Modular exponentiation in RSA

c=memodN

m

|

Domain
conversion

m*R mod N

v

Montgomery Domain

Perform all multiplications during
exponentiation in this domain.
Here, variables have the R factor.

| c*Rmod N

Domain
conversion
| cmod N

Montgomery Modular Reduction Algorithm: Classical Montgomery

* Try Montgomery algorithm in sage.
 https://sagecell.sagemath.org/

qg = 19
R =275
qe= -9~ (-1) 5 R

D = 129

u = (D + (D*gp % R)*q)/R
u = u-gq if(u > gq) else u

print ("D mod g:", D%q)
print ("MR (D, qg) :", u)
print ("u*R mod g:", u*R % Q)

Run the code.

Modular Reduction for Special Primes

e Barrett and Montgomery are generics algorithms
 Might not be optimum for numbers with special form

* Some cryptographic protocols use primes with special form:
e E.g.,ECCuses2192-264—-1
 E.g.,Some ZKP/HE applications use 264 —232+1
* E.g., NIST-selected PQC scheme Kyber uses 13 - 28 -1

* Mersenne primes: 2k —1
* Generalized Mersenne primes (Solinas primes): 2k—c

Modular Reduction for Special Primes

* Modular reduction for g = 2k—c¢

g =0(mod q)

Modular Reduction for Special Primes

* Modular reduction for g = 2k—c¢

g =0(mod q)
2k—c=0(modq)

Modular Reduction for Special Primes

* Modular reduction for g = 2k—c¢

g =0(mod q)
2k—c=0(modq)
2k=c(modq)

Modular Reduction for Special Primes

* Modular reduction for g = 2k—c¢

g =0(mod q)
2k—c=0(modq)
2k=c(modq)

* Perform A (mod q) for 2k-bit A

A=A, -2+ A,(mod q)
A=A,-c+A,(modg)

Table-based Reduction

* Table-based reduction method uses a table to store pre-computed values for
most-significant bits of input in (mod q).
* Store pre-computed values ry, . 2¥ (mod q) for input r

Table-based Reduction

* Table-based reduction method uses a table to store pre-computed values for
most-significant bits of input in (mod q).
* Store pre-computed values ry, . 2¥ (mod q) for input r

m-bit k-bit

Table-based Reduction

* Table-based reduction method uses a table to store pre-computed values for
most-significant bits of input in (mod q).
* Store pre-computed values ry, . 2¥ (mod q) for input r

Il

| k-pit | m-bit k-bit

i (mod g)

o (mod qg)

5 (mod g)

o (mod q)
a

(mod g)

_ (mod qg)

Table-based Reduction

* Table-based reduction method uses a table to store pre-computed values for
most-significant bits of input in (mod q).
* Store pre-computed values ry, . 2¥ (mod q) for input r

Il

| k-bit | m-bit Kbit

i (mod g) |
o (mod qg)
5 (mod g)
o (mod q)
a

(mod g)
_ (mod g) R

Table-based Reduction

* Table-based reduction method uses a table to store pre-computed values for
most-significant bits of input in (mod q).
* Store pre-computed values ry, . 2¥ (mod q) for input r

Il

| k-bit | m-bit Kbit

i (mod g) |
o (mod q)
5 (mod g)
o (mod q)
a

(mod g) !
_ (mod qg) g

Table-based Reduction

* Table-based reduction method uses a table to store pre-computed values for
most-significant bits of input in (mod q).
* Store pre-computed values ry, . 2¥ (mod q) for input r

Iy
| k-bit | m-bit Kbit

i (mod g) |
o (mod qg)
5 (mod g)
o (mod q)
E\l o

(mod g) !
_ (mod qg) g

A final correction is required to
bring k+1-bit result back to [0,q).

