
October 3, 2023
Ahmet Can Mert

ahmet.mert@iaik.tugraz.at

Verilog HDL Review

mailto:Ahmet.mert@iaik.tugraz.at

Hardware Description Language (HDL): Overview of a Digital System

• Datapath
• Performs data processing

• Control Unit (Finite State Machine)
• Generates control signals to control the datapath

• Testbench
• Used to verify the functional correctness of the design (for simulation)

Control
Unit

Datapath
Control

Status

Test
Output

Test
Input

Testbench

Hardware Description Language (HDL): Definition

• It is NOT a programming language.

• It is used to describe any digital circuit.
• i.e., you can describe circuit elements and connections between them.

• Many languages available for RTL Modeling: VHDL, Verilog, SystemVerilog
• Verilog is simple and similar to C
• Verilog has more than half of the world digital design market
• Many free resources are available:

• http://www.asic-world.com/verilog/veritut.html
• https://www.chipverify.com/verilog/

http://www.asic-world.com/verilog/veritut.html
https://www.chipverify.com/verilog/

Hardware Description Language (HDL): Logic and Memory

• Register Transfer Level: An abstract level used to describe the operation of
synchronous digital circuits.
• Logic Functions (computation)

• Any combinatorial computation
• Memory (update)

• Flip-Flop: edge sensitive
• Latch: level sensitive (WE WILL NOT USE)

Logic Memory

Verilog Operators

• Logical, arithmetic and conditional operators

Syntax Operation

~ Bit-wise negation

& AND

!& NAND

| OR

~| NOR

^ XOR

^~ or ~^ XNOR

Syntax Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

<< Left shift

>> Right shift

Syntax Operation

== Equality

!= Inequality

< Less than

<= Less than or equal

> Greater than

>= Greater than or
equal

i.e.,

c = ~a;

c = a & b;

i.e.,

c = a + b;

c = a >> 2;

i.e.,

c = (a==b) ? 1 : 0;

Verilog Operators

• Operator precedence is important.

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

Verilog Operators

• Operator precedence is important.

c0 = a + b << 2;

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

a = 4, b = 1

c0 = (5 << 2) = 20

Verilog Operators

• Operator precedence is important.

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

c0 = a + b << 2;

a = 4, b = 1

c0 = (5 << 2) = 20

c1 = a + (b << 2);

a = 4, b = 1

c1 = 4 + (1<<2) = 8

Verilog Operators - Example

• Using + operator to design an adder
• 4-bit inputs and 5-bit output

• { } operator is used to concatenate signals
• Carry is 1-bit
• Sum is 4-bit

• {{}} operator is used to repeat a signal
• Repeating Carry[0] bit four times

= A + B

Carry Sum

{Carry,Sum} = A + B;

{Carry[0],Carry[0],Carry[0],Carry[0]} --> {4{Carry[0]}}

Language Element - Literals

• Literals are constant numbers (in binary, octal, decimal and hexadecimal).
• Literals as represented as:

<size>’<signed><radix>value

Language Element - Literals

• Literals are constant numbers (in binary, octal, decimal and hexadecimal).
• Literals as represented as:

<size>’<signed><radix>value

• e.g., A = 16’d12987;

• 16 indicates the bit size of the signal
• d indicates decimal representation is used.

• b or B -> binary
• o or O -> octal
• d or D -> decimal
• h or H -> hexadecimal

• No s after ‘ shows it is unsigned
• e.g., B = 20;

• If bit size, sign and radix are not specified, default representation is 32-bit
unsigned decimal

Language Element - Literals

• Literals are constant numbers (in binary, octal, decimal and hexadecimal).
• Literals as represented as:

<size>’<signed><radix>value

• e.g., A = 16’d12987;

• 16 indicates the bit size of the signal
• d indicates decimal representation is used.

• b or B -> binary
• o or O -> octal
• d or D -> decimal
• h or H -> hexadecimal

• No s after ‘ shows it is unsigned
• e.g., B = 20;

• If bit size, sign and radix are not specified, default representation is 32-bit
unsigned decimal.

Language Elements – Data Types

• Bus definition
• n-bit data type declaration

• reg [n-1:0] a;

• wire [n-1:0] a;

• Part selection:

reg [31:0] a,b;

wire [16:0] sum;

assign sum = a[15:0]+ b[15:0];

Language Elements – Data Types

• Bus definition
• n-bit data type declaration

• reg [n-1:0] a;

• wire [n-1:0] a;

• Part selection:

• Verilog is case-sensitive
• reg [3:0] Rega, RegA;

• Net/Variable names cannot start with a number
• reg [3:0] 2num;

• reg [3:0] num2;

reg [31:0] a,b;

wire [16:0] sum;

assign sum = a[15:0]+ b[15:0];

Language Elements – Module and ports

• Verilog module declaration starts with module and ends with endmodule.

• Module ports (by default, ports are considered as type wire):
• input

• output

• inout

module module_name (<port list>);

// Module content

endmodule

Language Elements – Module and ports

• Example:

module add_unit (a,b,c);

input [3:0] a,b;

output[4:0] c;

assign c = a+b;

endmodule

module add_unit (input [3:0] a,b,

 output[4:0] c);

assign c = a+b;

endmodule

Language Elements – Statements

• Statements are used to drive nets
• There are two different methods to define Statements:

assign

Combinational (Blocking: =)
always

Combinational (Blocking: =)
Sequential (Non-blocking: <=)

Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule

Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

• When A changes, the new
values of t1, t2 and E are
computed concurrently

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule

Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

• When A changes, the new
values of t1, t2 and E are
computed concurrently

• Since t1 and t2 are
updated, D is re-evaluated

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule

Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

• When A changes, the new
values of t1, t2 and E are
computed concurrently

• Since t1 and t2 are
updated,D is re-evaluated

• D does not update any net

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule

• No combinatorial loops

Language Elements – assign Statement

wire [7:0] b;

assign b = b + 1;

Language Elements – always Statement

• It is used to drive reg types. It is used to define both combinational and sequential parts.
• A sensitivity list is defined for each always block.

• It has signals that trigger the execution of the logic defined in always block

• Syntax:

 Clock-sensitive synchronous design Combinational design

always @(sensitivity list)

begin

<your logic>

end

always @(posedge clk)

begin

<your logic>

end

always @(*)

begin

<your logic>

end

Language Elements - Conditional Assignments

• Three ways to do conditional assignment.
• Method1: if/else if/else

• Method2: case/endcase

MUX

0

1

I0

I1

S

Y
always @ (*)

begin

if(S==1’b0)

Y = I0;

else

Y = I1;

end

always @ (*)

begin

case(S)

1’b0: Y = I0;

1’b1: Y = I1;

endcase

end

• Method3:

always @ (*)

begin

Y =(S) ? I1 : I0;

end

Language Elements - Conditional Assignments

• Three ways to do conditional assignment.
• Method1: if/else if/else

• Method2: case/endcase

MUX

0

1

I0

I1

S

Y
always @ (*)

begin

if(S==1’b0)

Y = I0;

else

Y = I1;

end

always @ (*)

begin

case(S)

1’b0: Y = I0;

1’b1: Y = I1;

endcase

end

• Method3:

always @ (*)

begin

Y =(S) ? I1 : I0;

end

For combinational circuits,

never use incomplete
conditional assignments!

• module/endmodule is used to define the design

• A unique name must be given to each design in a project

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

A Sample Design: Full Adder

FA

A

Cin

B

Carry

Sum

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• All I/Os must be defined in argument list. Order of the list is not important

• The polarity of the ports (input or output) must be defined at the beginning.

A Sample Design: Full Adder

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• There may be some interconnections between gates

• Gates are connected with nets which are defined as wire

w1

w2

w3

A Sample Design: Full Adder

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• After the module is created and all I/Os and nets are defined, the interconnections may be
defined.

w1

w2

w3

A Sample Design: Full Adder

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• After the module is created and all I/Os and nets are defined, the interconnections may be
defined.

w1

w2

w3

A Sample Design: Full Adder

• All interconnections do not have to be defined seperately.

• // (line comment) or /* */ (block comment) may be used to add comments.

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin; //inputs

output Sum, Carry; /*outputs*/

assign Carry = (A & B)|(A & Cin)|(B & Cin);

assign Sum = A ^ B ^ Cin;

endmodule

A Sample Design: Full Adder

• Hierarchical Design

– A module may be used as a sub-module of another module.

A Sample Design: 3-bit Ripple Carry Adder

• Hierarchical Design

– A module may be used as a sub-module of another module.

A Sample Design: 3-bit Ripple Carry Adder

module RCA3 (A, B, Cin, S, Carry);

input [2:0] A, B;

input Cin;

output [2:0] S;

output Carry;

wire C_0, C_1;

Full_Adder FA0 (A[0], B[0], Cin, S[0], C_0);

Full_Adder FA1 (.A(A[1]), .B(B[1]), .Cin(C_0), .S(S[1]), .Carry(C_1));

Full_Adder FA2 (.S(S[2]), .B(B[2]), .Cin(C_1), .Carry(Carry), .A(A[2]));

endmodule

• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);

• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

– Finally, I/O connections of the module are defined. There are two methods:

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);

• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

– Finally, I/O connections of the module are defined. There are two methods:

• Method1: Signal names are written inside the parenthesis. Signals have to be
written in the same order of submodule argument list.

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);

Full_Adder FA0 (A[0], B[0], Cin, S[0], C_0);

• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

– Finally, I/O connections of the module are defined. There are two methods:

• Method1: Signal names are written inside the parenthesis. Signals have to be
written in the same order of submodule port list.

• Method2: Signals and ports are connected explicitly. Order of the signals is not
important in this method.

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);

Full_Adder FA0 (A[0], B[0], Cin, S[0], C_0);

Full_Adder FA0 (.A(A[0]), .B(B[0]), .Cin(Cin), .S(S[0]),

.Carry(C_0));

Language Element – Generate Block

• A generate block is used to instantiate a module multiple times
• It must be coded in a module

genvar i;

generate

for(i=0; i<N; i=i+1)

begin

<module instantiation>

end

endgenerate

Language Element – Generate Block

• C

• Verilog

genvar i;

generate

for(i=0; i<4; i=i+1) begin

Full_Adder fa(…);

end

endgenerate

for(int i=0; i<4; i++) {

s = Full_Adder(…);

}

Language Element – Generate Block

• Example: 4-bit Carry Save Adder

C[0]

fa0

Y[0]X[0] Z[0]

S[0] C[1]

fa1

Y[1]X[1] Z[1]

S[1] C[2]

fa2

Y[2]X[2] Z[2]

S[2] C[3]

fa3

Y[3]X[3] Z[3]

S[3]

+

<<1C

S

P

Language Element – Generate Block

• Example: 4-bit Carry Save Adder

module CSA4 (X, Y, Z, P);

input [3:0] X, Y, Z;

output[5:0] P;

wire [3:0] C, S;

genvar i;

generate

for(i=0; i<4; i=i+1) begin

Full_Adder fa(X[i], Y[i], Z[i], S[i], C[i]);

end

endgenerate

assign P = S + (C << 1);

endmodule

C[0]

fa0

Y[0]X[0] Z[0]

S[0] C[1]

fa1

Y[1]X[1] Z[1]

S[1] C[2]

fa2

Y[2]X[2] Z[2]

S[2] C[3]

fa3

Y[3]X[3] Z[3]

S[3]

+

<<1C

S

P

Language Element – Parameter

• Parameters are constants that allow a module to be re-used with different specifications

parameter PARAMETER_NAME = <value>;

Language Element – Parameter

• Parameters are constants that allow a module to be re-used with different specifications

• Example:

parameter PARAMETER_NAME = <value>;

parameter N = 8;

wire [N-1:0] a,b;

wire [N:0] c;

assign c = a+b;

Language Element – Parameter

• Example: Parameterized module

module CSA #(parameter N=4) (X, Y, Z, P);

input [N-1:0] X, Y, Z;

output[N+1:0] P;

wire [N-1:0] C, S;

genvar i;

generate

for(i=0; i<N; i=i+1) begin

Full_Adder fa(X[i], Y[i], Z[i], S[i], C[i]);

end

endgenerate

assign P = S + (C << 1);

endmodule

Language Element – Parameter

• Example: Parameterized module

• How to instantiate a parameterized module?

CSA #(.N(8)) unit(X,Y,Z,P);

module CSA #(parameter N=4) (X, Y, Z, P);

input [N-1:0] X, Y, Z;

output[N+1:0] P;

wire [N-1:0] C, S;

genvar i;

generate

for(i=0; i<N; i=i+1) begin

Full_Adder fa(X[i], Y[i], Z[i], S[i], C[i]);

end

endgenerate

assign P = S + (C << 1);

endmodule

Combinational Design vs Sequential Design

• Combinational design
• Logic computation

• Sequential design
• Logic computation + Memory element

Sequential Design

• Sequential circuits have memory elements and logic computation
• Flip-flops + Combinatorial part

Sequential Design

• Sequential circuits have memory elements and logic computation
• Flip-flops + Combinatorial part

• Flip-flop outputs change (updated) at only edge of trigger signal
• Clock

• Positive clock edge (posedge)

• Negative clock edge (negedge)

Sequential Design

• Sequential circuits have memory elements and logic computation
• Flip-flops + Combinatorial part

• Flip-flop outputs change (updated) at only edge of trigger signal
• Clock

• Positive clock edge (posedge)

• Negative clock edge (negedge)

• Reset (optional)
• Dependent to clock (synchronous)
• Independent from clock (asynchronous)

Sequential Design – Flip-Flops

• Result is only available after clock’s posedge/negedge transition

always @ (posedge CLK)

begin

r <= r_in;

end

Sequential Design – Flip-Flops

• Result is only available after clock’s posedge/negedge transition

 D flip-flop with synchronous reset D flip-flop with asynchronous reset

always @ (posedge CLK)

begin

r <= r_in;

end

always @ (posedge CLK)

begin

if(RST)

r <= 0;

else

r <= r_in;

end

always @ (posedge CLK or posedge RST)

begin

if(RST)

r <= 0;

else

r <= r_in;

end

Sequential Design – Reset

• Some sequential elements require a reset signal to initialize the circuit with a
known state/value

Sequential Design – Reset

• Some sequential elements require a reset signal to initialize the circuit with a
known state/value

module mymod(clk, rst, in, out);

 input clk, rst;

 input [7:0] in;

 output [7:0] out;

 reg[7:0] v;

 always @(posedge clk)

 begin

 if (rst)

 v <= in;

 else

 v <= (v<<1) + 1;

 end

 assign out = v;

endmodule

Sequential Design – Reset

• Some sequential elements require a reset signal to initialize the circuit with a
known state/value

module mymod(clk, rst, in, out);

 input clk, rst;

 input [7:0] in;

 output [7:0] out;

 reg[7:0] v;

 always @(posedge clk)

 begin

 if (rst)

 v <= in;

 else

 v <= (v<<1) + 1;

 end

 assign out = v;

endmodule

Control Unit (FSM) with Datapath

• Basic idea: Control Unit and datapath exist as separate circuits.

• Control Unit:
• Controls the data flow
• An easy way to make a control unit: Finite State Machine (FSM)

• Datapath:
• Performs data processing operations

Design with FSM and Datapath Example – A pattern detection circuit

• A pattern detection circuit
• A circuit takes 1-bit input and outputs "1" when the last 3-bits that it takes are "110".

Otherwise, it outputs "0".

Design with FSM and Datapath Example – A pattern detection circuit

• A pattern detection circuit
• A circuit takes 1-bit input and outputs "1" when the last 3-bits that it takes are "110".

Otherwise, it outputs "0".

0

1/0

0/1

0/0 1

1/0

11

1/0

0/0

Design with FSM and Datapath Example – A pattern detection circuit

module PD(input clk, reset, bit_i,

 output bit_o);

reg [1:0] next_state;

reg [1:0] curr_state;

reg bit_o;

parameter ST_0 = 2'd0,

parameter ST_1 = 2'd1;

parameter ST_11 = 2'd2;

//State register

always@(posedge clk)

begin

 if(reset)

 curr_state <= ST_0;

 else

 curr_state <= next_state;

end

Design with FSM and Datapath Example – A pattern detection circuit

//Next state logic

always@(*) begin

 case (curr_state)

 ST_0 : next_state = (bit_i == 1) ? ST_1 : ST_0;

 ST_1 : next_state = (bit_i == 1) ? ST_11 : ST_0;

 ST_11: next_state = (bit_i == 1) ? ST_11 : ST_0;

 default: next_state = ST_0;

end

// output logic

always@(posedge clk) begin

 if(reset)

 bit_o <= 0;

 else

 bit_o <= (curr_state == ST_11 && bit_i == 0) ? 1 : 0;

end

endmodule

module PD(input clk, reset, bit_i,

 output bit_o);

reg [1:0] next_state;

reg [1:0] curr_state;

reg bit_o;

parameter ST_0 = 2'd0,

parameter ST_1 = 2'd1;

parameter ST_11 = 2'd2;

//State register

always@(posedge clk)

begin

 if(reset)

 curr_state <= ST_0;

 else

 curr_state <= next_state;

end

Verilog Testbench

• Used to simulate design and test its functional correctness.
• Simulation is much faster than testing/debugging on actual hardware.

Verilog Testbench

• How to generate a testbench for your combinatorial design module?

1. Create a new module for testbench (tb)
2. Create a reg for each input of your design in tb
3. Create a wire for each output of your design in tb
4. Create clock (if your design has a clock)
5. Instantiate your design in tb
6. Connect regs and wires to your design in tb
7. Give inputs to your input
8. Observe/verify outputs

Verilog Testbench

• How to generate a testbench for your combinatorial design module?

1. Create a new module for testbench (tb)
2. Create a reg for each input of your design in tb
3. Create a wire for each output of your design in tb
4. Create clock (if your design has a clock)
5. Instantiate your design in tb
6. Connect regs and wires to your design in tb
7. Give inputs to your input
8. Observe/verify outputs

• Let’s look at the pattern detector example.

module PD(input clk, reset, bit_i,

 output bit_o);

Verilog Testbench – Steps for writing testbench

1. Create a new module for testbench (tb)

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0;

 #20; // wait for 20 ns

 A=4; B=1; Cin=1;

 #10; // wait for 10 ns

 A=7; B=5; Cin=0;

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

Verilog Testbench – Steps for writing testbench
2. Create a reg for each input of your design in tb

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0;

 #20; // wait for 20 ns

 A=4; B=1; Cin=1;

 #10; // wait for 10 ns

 A=7; B=5; Cin=0;

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

Verilog Testbench – Steps for writing testbench
3. Create a wire for each output of your design in tb

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0;

 #20; // wait for 20 ns

 A=4; B=1; Cin=1;

 #10; // wait for 10 ns

 A=7; B=5; Cin=0;

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

Verilog Testbench – Steps for writing testbench
4. Create a clock

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0;

 #20; // wait for 20 ns

 A=4; B=1; Cin=1;

 #10; // wait for 10 ns

 A=7; B=5; Cin=0;

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

Verilog Testbench – Steps for writing testbench
5+6. Instantiate your design in tb + Connect regs and wires to your design in tb

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0;

 #20; // wait for 20 ns

 A=4; B=1; Cin=1;

 #10; // wait for 10 ns

 A=7; B=5; Cin=0;

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

Verilog Testbench – Steps for writing testbench

7+8. Give inputs to your design and observe outputs

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

...

initial begin

 // initialize all to 0

 clk=0; reset=1; bit_i=0;

 #20; // wait for 20 ns

 reset=0;

 #10; // wait for 10 ns

 bit_i=1; #20;

 bit_i=0; #20;

end

endmodule

Verilog Testbench – Steps for writing testbench

7+8. Give inputs to your design and observe outputs

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

...

initial begin

 // initialize all to 0

 clk=0; reset=1; bit_i=0;

 #20; // wait for 20 ns

 reset=0;

 #10; // wait for 10 ns

 bit_i=1; #20;

 bit_i=0; #20;

end

endmodule

Common Mistakes/Bad Practices – Latches

• Latches easily cause timing problems:
• In simulation: latches give correct results.,
• On hardware: they almost always cause wrong results.
• The tool throws warning when detecting latches in your design.

Common Mistakes/Bad Practices – Latches

• Latches easily cause timing problems:
• In simulation: latches give correct results.,
• On hardware: they almost always cause wrong results.
• The tool throws warning when detecting latches in your design.

Common Mistakes/Bad Practices – Latches

• Latches easily cause timing problems:
• In simulation: latches give correct results.,
• On hardware: they almost always cause wrong results.
• The tool throws warning when detecting latches in your design.

Common Mistakes/Bad Practices – Multi-driven Nets

• Multi-driven nets

Common Mistakes/Bad Practices – Combinatorial Loops

• Combinatorial loops

Common Mistakes/Bad Practices – Mixed Control Unit and Datapath

• Never use the same alwaysblock for control unit and datapath

• Advantages:
• Easier to maintain and read code
• Likely to lead to better critical path
• Easier for tool to synthesize

reg state;

reg [7:0] R1, R2;

always @(posedge clk) begin

 state <= state ^ 1;

 if (state==0)

 R1 <= R2 + 1;

 else

 R1 <= R2 << 2;

end

reg state;

reg[7:0] r;

always @(*) begin

 if (state==0)

 R1 <= R2 + 1;

 else

 R1 <= R2 << 2;

end

always @(posedge clk)

begin

 state <= state ^ 1;

end;

BAD GOOD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

