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Hardware Description Language (HDL): Overview of a Digital System

• Datapath
• Performs data processing

• Control Unit (Finite State Machine)
• Generates control signals to control the datapath

• Testbench
• Used to verify the functional correctness of the design (for simulation)

Control
Unit

Datapath
Control

Status

Test
Output

Test
Input

Testbench



Hardware Description Language (HDL): Definition

• It is NOT a programming language.

• It is used to describe any digital circuit.
• i.e., you can describe circuit elements and connections between them.

• Many languages available for RTL Modeling: VHDL, Verilog, SystemVerilog
• Verilog is simple and similar to C
• Verilog has more than half of the world digital design market
• Many free resources are available:

• http://www.asic-world.com/verilog/veritut.html
• https://www.chipverify.com/verilog/

http://www.asic-world.com/verilog/veritut.html
https://www.chipverify.com/verilog/


Hardware Description Language (HDL): Logic and Memory

• Register Transfer Level: An abstract level used to describe the operation of 
synchronous digital circuits.
• Logic Functions (computation)

• Any combinatorial computation
• Memory (update)

• Flip-Flop: edge sensitive
• Latch: level sensitive (WE WILL NOT USE)

Logic Memory



Verilog Operators

• Logical, arithmetic and conditional operators

Syntax Operation

~ Bit-wise negation

& AND

!& NAND

| OR

~| NOR

^ XOR

^~ or ~^ XNOR

Syntax Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

<< Left shift

>> Right shift

Syntax Operation

== Equality

!= Inequality

< Less than

<= Less than or equal

> Greater than

>= Greater than or 
equal

i.e., 

c = ~a;

c = a & b;

i.e., 

c = a + b;

c = a >> 2;

i.e., 

c = (a==b) ? 1 : 0;



Verilog Operators

• Operator precedence is important.

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html



Verilog Operators

• Operator precedence is important.

c0 = a + b << 2;

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

a = 4, b = 1

c0 = (5 << 2) = 20



Verilog Operators

• Operator precedence is important.

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

c0 = a + b << 2;

a = 4, b = 1

c0 = (5 << 2) = 20

c1 = a + (b << 2);

a = 4, b = 1

c1 = 4 + (1<<2) = 8



Verilog Operators - Example

• Using + operator to design an adder
• 4-bit inputs and 5-bit output

• { } operator is used to concatenate signals
• Carry is 1-bit
• Sum is 4-bit

• {{}} operator is used to repeat a signal
• Repeating Carry[0] bit four times

= A + B

Carry Sum

{Carry,Sum} = A + B;

{Carry[0],Carry[0],Carry[0],Carry[0]} --> {4{Carry[0]}}



Language Element - Literals

• Literals are constant numbers (in binary, octal, decimal and hexadecimal).
• Literals as represented as:

<size>’<signed><radix>value



Language Element - Literals

• Literals are constant numbers (in binary, octal, decimal and hexadecimal).
• Literals as represented as:

<size>’<signed><radix>value

• e.g., A = 16’d12987;

• 16 indicates the bit size of the signal
• d indicates decimal representation is used.

• b or B -> binary
• o or O -> octal
• d or D -> decimal
• h or H -> hexadecimal

• No s after ‘ shows it is unsigned
• e.g., B = 20;

• If bit size, sign and radix are not specified, default representation is 32-bit
unsigned decimal



Language Element - Literals

• Literals are constant numbers (in binary, octal, decimal and hexadecimal).
• Literals as represented as:

<size>’<signed><radix>value

• e.g., A = 16’d12987;

• 16 indicates the bit size of the signal
• d indicates decimal representation is used.

• b or B -> binary
• o or O -> octal
• d or D -> decimal
• h or H -> hexadecimal

• No s after ‘ shows it is unsigned
• e.g., B = 20;

• If bit size, sign and radix are not specified, default representation is 32-bit
unsigned decimal.



Language Elements – Data Types

• Bus definition
• n-bit data type declaration

• reg [n-1:0] a;

• wire [n-1:0] a;

• Part selection:

reg [31:0] a,b;

wire [16:0] sum;

assign sum = a[15:0]+ b[15:0];



Language Elements – Data Types

• Bus definition
• n-bit data type declaration

• reg [n-1:0] a;

• wire [n-1:0] a;

• Part selection:

• Verilog is case-sensitive
• reg [3:0] Rega, RegA;

• Net/Variable names cannot start with a number
• reg [3:0] 2num;

• reg [3:0] num2;

reg [31:0] a,b;

wire [16:0] sum;

assign sum = a[15:0]+ b[15:0];



Language Elements – Module and ports

• Verilog module declaration starts with module and ends with endmodule.

• Module ports (by default, ports are considered as type wire):
• input

• output

• inout

module module_name (<port list>);

// Module content

endmodule



Language Elements – Module and ports

• Example:

module add_unit (a,b,c);

input [3:0] a,b;

output[4:0] c;

assign c = a+b;

endmodule

module add_unit (input [3:0] a,b,

        output[4:0] c);

assign c = a+b;

endmodule



Language Elements – Statements

• Statements are used to drive nets
• There are two different methods to define Statements:

assign

Combinational (Blocking: =)
always

Combinational (Blocking: =)
Sequential (Non-blocking: <=)



Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.



Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule



Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

• When A changes, the new
values of t1, t2 and E are
computed concurrently

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule



Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

• When A changes, the new
values of t1, t2 and E are
computed concurrently

• Since t1 and t2 are
updated, D is re-evaluated

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule



Language Elements – assign Statement

• It is used to drive output and wire types. It is used to define combinational circuit parts.
• Order of assign statements is not important.
• When a variable at the RHS of assign statement changes, LHS is re-evaluated.

• When A changes, the new
values of t1, t2 and E are
computed concurrently

• Since t1 and t2 are
updated,D is re-evaluated

• D does not update any net

module Module_1 (A, B, C, D, E);

input [3:0] A, B, C;

output[11:0] D, E;

wire [4:0] t1, t2, t3;

assign t1 = A + B;

assign t2 = A - B;

assign t3 = (C << 1);

assign D = (t1 * t2) + t3;

assign E = A * C;

endmodule



• No combinatorial loops

Language Elements – assign Statement

wire [7:0] b;

assign b = b + 1;



Language Elements – always Statement

• It is used to drive reg types. It is used to define both combinational and sequential parts.
• A sensitivity list is defined for each always block.

• It has signals that trigger the execution of the logic defined in always block

• Syntax:

 Clock-sensitive synchronous design  Combinational design

always @(sensitivity list)

begin

<your logic>

end

always @(posedge clk)

begin

<your logic>

end

always @(*)

begin

<your logic>

end



Language Elements - Conditional Assignments

• Three ways to do conditional assignment.
• Method1: if/else if/else

• Method2: case/endcase

MUX

0

1

I0

I1

S

Y
always @ (*)

begin

if(S==1’b0)

Y = I0;

else

Y = I1;

end

always @ (*)

begin

case(S)

1’b0: Y = I0;

1’b1: Y = I1;

endcase

end

• Method3: 

always @ (*)

begin

Y =(S) ? I1 : I0;

end



Language Elements - Conditional Assignments

• Three ways to do conditional assignment.
• Method1: if/else if/else

• Method2: case/endcase

MUX

0

1

I0

I1

S

Y
always @ (*)

begin

if(S==1’b0)

Y = I0;

else

Y = I1;

end

always @ (*)

begin

case(S)

1’b0: Y = I0;

1’b1: Y = I1;

endcase

end

• Method3: 

always @ (*)

begin

Y =(S) ? I1 : I0;

end

For combinational circuits, 

never use incomplete
conditional assignments!



• module/endmodule is used to define the design

• A unique name must be given to each design in a project 

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

A Sample Design: Full Adder

FA

A

Cin

B

Carry

Sum



module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• All I/Os must be defined in argument list. Order of the list is not important

• The polarity of the ports (input or output) must be defined at the beginning.

A Sample Design: Full Adder



module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• There may be some interconnections between gates

• Gates are connected with nets which are defined as wire

w1

w2

w3

A Sample Design: Full Adder



module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• After the module is created and all I/Os and nets are defined, the interconnections may be
defined.

w1

w2

w3

A Sample Design: Full Adder



module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;

output Sum, Carry;

wire w1, w2, w3;

assign w1 = A & B;

assign w2 = A & Cin;

assign w3 = B & Cin;

assign Carry = w1 | w2| w3;

assign Sum = A ^ B ^ Cin;

endmodule

• After the module is created and all I/Os and nets are defined, the interconnections may be
defined.

w1

w2

w3

A Sample Design: Full Adder



• All interconnections do not have to be defined seperately.

• // (line comment) or /* */ (block comment) may be used to add comments.

module Full_Adder (A, B, Cin, Sum, Carry);

input A, B, Cin; //inputs

output Sum, Carry; /*outputs*/

assign Carry = (A & B)|(A & Cin)|(B & Cin);

assign Sum = A ^ B ^ Cin;

endmodule

A Sample Design: Full Adder



• Hierarchical Design

– A module may be used as a sub-module of another module.

A Sample Design: 3-bit Ripple Carry Adder



• Hierarchical Design

– A module may be used as a sub-module of another module.

A Sample Design: 3-bit Ripple Carry Adder

module RCA3 (A, B, Cin, S, Carry);

input [2:0] A, B;

input Cin;

output [2:0] S;

output Carry;

wire C_0, C_1;

Full_Adder FA0 (A[0], B[0], Cin, S[0], C_0);

Full_Adder FA1 (.A(A[1]), .B(B[1]), .Cin(C_0), .S(S[1]), .Carry(C_1));

Full_Adder FA2 (.S(S[2]), .B(B[2]), .Cin(C_1), .Carry(Carry), .A(A[2]));

endmodule



• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);



• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

– Finally, I/O connections of the module are defined. There are two methods:

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);



• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

– Finally, I/O connections of the module are defined. There are two methods:

• Method1: Signal names are written inside the parenthesis. Signals have to be 
written in the same order of submodule argument list.

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);

Full_Adder FA0 (A[0], B[0], Cin, S[0], C_0);



• Module Instantiation

– Firstly, the name of module, which is instantiated, is specified.

– Then, a unique name is given to each module.

– Finally, I/O connections of the module are defined. There are two methods:

• Method1: Signal names are written inside the parenthesis. Signals have to be 
written in the same order of submodule port list.

• Method2: Signals and ports are connected explicitly. Order of the signals is not 
important in this method.

A Sample Design: 3-bit Ripple Carry Adder

Full_Adder FA0 (<ports>);

Full_Adder FA0 (A[0], B[0], Cin, S[0], C_0);

Full_Adder FA0 (.A(A[0]), .B(B[0]), .Cin(Cin), .S(S[0]), 

.Carry(C_0));



Language Element – Generate Block

• A generate block is used to instantiate a module multiple times
• It must be coded in a module

genvar i;

generate

for(i=0; i<N; i=i+1) 

begin

<module instantiation>

end

endgenerate



Language Element – Generate Block

• C 

• Verilog

genvar i;

generate

for(i=0; i<4; i=i+1) begin

Full_Adder fa(…);

end

endgenerate

for(int i=0; i<4; i++) {

s = Full_Adder(…);

}



Language Element – Generate Block

• Example: 4-bit Carry Save Adder

C[0]

fa0

Y[0]X[0] Z[0]

S[0] C[1]

fa1

Y[1]X[1] Z[1]

S[1] C[2]

fa2

Y[2]X[2] Z[2]

S[2] C[3]

fa3

Y[3]X[3] Z[3]

S[3]

+

<<1C

S

P



Language Element – Generate Block

• Example: 4-bit Carry Save Adder

module CSA4 (X, Y, Z, P);

input [3:0] X, Y, Z;

output[5:0] P;

wire [3:0] C, S;

genvar i;

generate

for(i=0; i<4; i=i+1) begin

Full_Adder fa(X[i], Y[i], Z[i], S[i], C[i]);

end

endgenerate

assign P = S + (C << 1);

endmodule

C[0]

fa0

Y[0]X[0] Z[0]

S[0] C[1]

fa1

Y[1]X[1] Z[1]

S[1] C[2]

fa2

Y[2]X[2] Z[2]

S[2] C[3]

fa3

Y[3]X[3] Z[3]

S[3]

+

<<1C

S

P



Language Element – Parameter

• Parameters are constants that allow a module to be re-used with different specifications

parameter PARAMETER_NAME = <value>;



Language Element – Parameter

• Parameters are constants that allow a module to be re-used with different specifications

• Example:

parameter PARAMETER_NAME = <value>;

parameter N = 8;

wire [N-1:0] a,b;

wire [N:0] c;

assign c = a+b;



Language Element – Parameter

• Example: Parameterized module

module CSA #(parameter N=4) (X, Y, Z, P);

input [N-1:0] X, Y, Z;

output[N+1:0] P;

wire [N-1:0] C, S;

genvar i;

generate

for(i=0; i<N; i=i+1) begin

Full_Adder fa(X[i], Y[i], Z[i], S[i], C[i]);

end

endgenerate

assign P = S + (C << 1);

endmodule



Language Element – Parameter

• Example: Parameterized module

• How to instantiate a parameterized module?

CSA #(.N(8)) unit(X,Y,Z,P);

module CSA #(parameter N=4) (X, Y, Z, P);

input [N-1:0] X, Y, Z;

output[N+1:0] P;

wire [N-1:0] C, S;

genvar i;

generate

for(i=0; i<N; i=i+1) begin

Full_Adder fa(X[i], Y[i], Z[i], S[i], C[i]);

end

endgenerate

assign P = S + (C << 1);

endmodule



Combinational Design vs Sequential Design

• Combinational design
• Logic computation

• Sequential design
• Logic computation + Memory element



Sequential Design 

• Sequential circuits have memory elements and logic computation
• Flip-flops + Combinatorial part



Sequential Design 

• Sequential circuits have memory elements and logic computation
• Flip-flops + Combinatorial part

• Flip-flop outputs change (updated) at only edge of trigger signal
• Clock

• Positive clock edge (posedge)

• Negative clock edge (negedge)



Sequential Design 

• Sequential circuits have memory elements and logic computation
• Flip-flops + Combinatorial part

• Flip-flop outputs change (updated) at only edge of trigger signal
• Clock

• Positive clock edge (posedge)

• Negative clock edge (negedge)

• Reset (optional)
• Dependent to clock (synchronous)
• Independent from clock (asynchronous)



Sequential Design – Flip-Flops

• Result is only available after clock’s posedge/negedge transition

always @ (posedge CLK)

begin

r <= r_in;

end



Sequential Design – Flip-Flops

• Result is only available after clock’s posedge/negedge transition

    D flip-flop with synchronous reset            D flip-flop with asynchronous reset

always @ (posedge CLK)

begin

r <= r_in;

end

always @ (posedge CLK)

begin

if(RST)

r <= 0;

else

r <= r_in;

end

always @ (posedge CLK or posedge RST)

begin

if(RST)

r <= 0;

else

r <= r_in;

end



Sequential Design – Reset

• Some sequential elements require a reset signal to initialize the circuit with a
known state/value



Sequential Design – Reset

• Some sequential elements require a reset signal to initialize the circuit with a
known state/value

module mymod(clk, rst, in, out);

 input clk, rst;

 input [7:0] in;

 output [7:0] out;

 reg[7:0] v;

 always @(posedge clk)

 begin

  if (rst)

   v <= in;

  else

   v <= (v<<1) + 1;

 end

 assign out = v;

endmodule



Sequential Design – Reset

• Some sequential elements require a reset signal to initialize the circuit with a
known state/value

module mymod(clk, rst, in, out);

 input clk, rst;

 input [7:0] in;

 output [7:0] out;

 reg[7:0] v;

 always @(posedge clk)

 begin

  if (rst)

   v <= in;

  else

   v <= (v<<1) + 1;

 end

 assign out = v;

endmodule



Control Unit (FSM) with Datapath

• Basic idea: Control Unit and datapath exist as separate circuits.

• Control Unit:
• Controls the data flow
• An easy way to make a control unit: Finite State Machine (FSM)

• Datapath:
• Performs data processing operations



Design with FSM and Datapath Example – A pattern detection circuit

• A pattern detection circuit
• A circuit takes 1-bit input and outputs "1" when the last 3-bits that it takes are "110". 

Otherwise, it outputs "0".



Design with FSM and Datapath Example – A pattern detection circuit

• A pattern detection circuit
• A circuit takes 1-bit input and outputs "1" when the last 3-bits that it takes are "110". 

Otherwise, it outputs "0".

0

1/0

0/1

0/0 1

1/0

11

1/0

0/0



Design with FSM and Datapath Example – A pattern detection circuit

module PD(input clk, reset, bit_i,

     output bit_o);

reg [1:0] next_state;

reg [1:0] curr_state;

reg bit_o;

parameter ST_0  = 2'd0,

parameter ST_1  = 2'd1;

parameter ST_11 = 2'd2;

//State register

always@(posedge clk)

begin

 if(reset)

 curr_state <= ST_0;

 else

 curr_state <= next_state;

end



Design with FSM and Datapath Example – A pattern detection circuit

//Next state logic

always@(*) begin

 case (curr_state)

 ST_0 : next_state = (bit_i == 1) ? ST_1  : ST_0;

 ST_1 : next_state = (bit_i == 1) ? ST_11 : ST_0;

  ST_11: next_state = (bit_i == 1) ? ST_11 : ST_0;

  default: next_state = ST_0;

end

// output logic

always@(posedge clk) begin

  if(reset)

    bit_o <= 0;

  else

    bit_o <= (curr_state == ST_11 && bit_i == 0) ? 1 : 0;

end

endmodule

module PD(input clk, reset, bit_i,

     output bit_o);

reg [1:0] next_state;

reg [1:0] curr_state;

reg bit_o;

parameter ST_0  = 2'd0,

parameter ST_1  = 2'd1;

parameter ST_11 = 2'd2;

//State register

always@(posedge clk)

begin

 if(reset)

 curr_state <= ST_0;

 else

 curr_state <= next_state;

end



Verilog Testbench

• Used to simulate design and test its functional correctness.
• Simulation is much faster than testing/debugging on actual hardware.



Verilog Testbench

• How to generate a testbench for your combinatorial design module?

1. Create a new module for testbench (tb)
2. Create a reg for each input of your design in tb
3. Create a wire for each output of your design in tb
4. Create clock (if your design has a clock)
5. Instantiate your design in tb
6. Connect regs and wires to your design in tb
7. Give inputs to your input
8. Observe/verify outputs



Verilog Testbench

• How to generate a testbench for your combinatorial design module?

1. Create a new module for testbench (tb)
2. Create a reg for each input of your design in tb
3. Create a wire for each output of your design in tb
4. Create clock (if your design has a clock)
5. Instantiate your design in tb
6. Connect regs and wires to your design in tb
7. Give inputs to your input
8. Observe/verify outputs

• Let’s look at the pattern detector example.

module PD(input clk, reset, bit_i,

     output bit_o);



Verilog Testbench – Steps for writing testbench

1. Create a new module for testbench (tb) 

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0; 

 #20; // wait for 20 ns

 A=4; B=1; Cin=1; 

 #10; // wait for 10 ns

 A=7; B=5; Cin=0; 

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...



Verilog Testbench – Steps for writing testbench
2. Create a reg for each input of your design in tb

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0; 

 #20; // wait for 20 ns

 A=4; B=1; Cin=1; 

 #10; // wait for 10 ns

 A=7; B=5; Cin=0; 

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...



Verilog Testbench – Steps for writing testbench
3. Create a wire for each output of your design in tb

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0; 

 #20; // wait for 20 ns

 A=4; B=1; Cin=1; 

 #10; // wait for 10 ns

 A=7; B=5; Cin=0; 

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...



Verilog Testbench – Steps for writing testbench
4. Create a clock

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0; 

 #20; // wait for 20 ns

 A=4; B=1; Cin=1; 

 #10; // wait for 10 ns

 A=7; B=5; Cin=0; 

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...



Verilog Testbench – Steps for writing testbench
5+6. Instantiate your design in tb + Connect regs and wires to your design in tb

...

initial begin

 // initialize all to 0

 A=0; B=0; Cin=0; 

 #20; // wait for 20 ns

 A=4; B=1; Cin=1; 

 #10; // wait for 10 ns

 A=7; B=5; Cin=0; 

end

endmodule

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...



Verilog Testbench – Steps for writing testbench

7+8. Give inputs to your design and observe outputs

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

...

initial begin

 // initialize all to 0

  clk=0; reset=1; bit_i=0;

 #20; // wait for 20 ns

 reset=0;

 #10; // wait for 10 ns

  bit_i=1; #20;

 bit_i=0; #20;

end

endmodule



Verilog Testbench – Steps for writing testbench

7+8. Give inputs to your design and observe outputs

`timescale 1ns/1ps

module PD_tb();

reg clk, reset, bit_i;

wire bit_o;

always #5 clk = ~clk;

PD dut(clk,reset,bit_i,bit_o);

...

...

initial begin

 // initialize all to 0

  clk=0; reset=1; bit_i=0;

 #20; // wait for 20 ns

 reset=0;

 #10; // wait for 10 ns

  bit_i=1; #20;

 bit_i=0; #20;

end

endmodule



Common Mistakes/Bad Practices – Latches 

• Latches easily cause timing problems:
• In simulation: latches give correct results.,
• On hardware: they almost always cause wrong results.
• The tool throws warning when detecting latches in your design.
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Common Mistakes/Bad Practices – Latches 

• Latches easily cause timing problems:
• In simulation: latches give correct results.,
• On hardware: they almost always cause wrong results.
• The tool throws warning when detecting latches in your design.



Common Mistakes/Bad Practices – Multi-driven Nets 

• Multi-driven nets



Common Mistakes/Bad Practices – Combinatorial Loops 

• Combinatorial loops



Common Mistakes/Bad Practices – Mixed Control Unit and Datapath 

• Never use the same alwaysblock for control unit and datapath

• Advantages:
• Easier to maintain and read code
• Likely to lead to better critical path
• Easier for tool to synthesize

reg state;

reg [7:0] R1, R2;

always @(posedge clk) begin

 state <= state ^ 1;

 if (state==0)

  R1 <= R2 + 1;

 else

  R1 <= R2 << 2;

end

reg state;

reg[7:0] r;

always @(*) begin

 if (state==0)

  R1 <= R2 + 1;

 else

  R1 <= R2 << 2;

end

always @(posedge clk)

begin

 state <= state ^ 1;

end;

BAD GOOD
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