

SLAM Abstraction

Roderick Bloem

The Approach

Abstraction

- Represent complex program by simple program
 - original program is concrete, simple one is abstract
- Construction: if abstraction correct, then original correct
 - But: abstract program may fail even if the original is correct
 - We will look at refinement later
- Whenever we can not make a decision with certainty, we allow all possibilities

Predicate Abstraction

• Replace variables by predicates. E.g., instead of \times have the predicates

```
- b, meaning {x>0},
- c: {x<0},
- d: {x==0}</pre>
```

or replace x and y by

```
- e: {x==y}, or by
- f: {x<y}, or by
- g: {2x - y < 0},</pre>
```


Predicate Abstraction

Example: keep only the lowest bit of a number.

- b: {x is odd}
- assert (x!=38) becomes assert (b)
- assert (b) is stricter:
 - if assert (x!=38) fails then assert (b) fails
 - But not vice-versa
- if (x==5) then S1 else S2 fi becomes if (b?*:F) then S1 else S2 fi

(meaning: if b is true, try both branches, otherwise try only the else branch)

Construct abstract programs one statement at a time

Abstraction Example

For automatic abstraction, let's first check some basics.

Let's say we have one predicate:

$$b = \{x \le y\}$$

How do we abstract

$$x := y$$
?

$$y := y+1?$$

$$b = \{x \le y\}$$

Use Hoare's weakest precondition

$$x := y$$

x := y is abstracted to

$$b = \{x \le y\}$$

Use Hoare's weakest precondition

$$\{ y \leq y \}$$

$$x := y$$

$$\{ x \leq y \}$$

Thus, $y \le y$ before the statement iff $x \le y$ after

x := y is abstracted to b = true

Now for
$$y := y + 1$$
.
b = $\{x \le y\}$

Thus, $x \le y + 1$ before iff $x \le y$ after. In which cases can we guarantee $x \le y+1$?

b	b'
$\{x \leq y\}$	$\{x \le y+1\}$
Т	
F	

abstraction:

Now for y := y + 1.

$$\{x \le y + 1\}$$

 $y := y + 1$
 $\{x \le y\}$

Thus, $x \le y + 1$ before iff $x \le y$ after. In which cases can we guarantee $x \le y+1$?

b	b'
$\{x \leq y\}$	$\{x \le y+1\}$
Т	Т
F	*

We don't have enough information to decide whether x≤y+1 before, so we approximate.

abstraction: b = b? T : *;

Conservative Abstraction

Let us abstract x by $b: \{x < 0\}$.

We may loose some information Example:

```
x = -2;

x = x + 1;

assert(x<0);
```

is abstracted statement-by statement-to

The abstraction is *conservative*: bugs are preserved (but new bugs may occur).

Conservative Abstraction

Let us abstract x by $b: \{x < 0\}$.

We may loose some information Example:

```
x = -2;

x = x + 1;

assert(x<0);
```

is abstracted statement-by statement-to

```
b = true;
b = b ? * : false;
assert(b);
```

The abstraction is *conservative*: bugs are preserved (but new bugs may occur).

Multiple Predicates

Two predicates: $b=\{x \le y\}$ and $c=\{x=y+1\}$

preconditions:

b	b	b'	c'
x≤y	x=y+1	x≤y+1	x=y+2
Т	Т		
Т	F		
F	Т		
F	F		

Multiple Predicates

Two predicates: $b=\{x \le y\}$ and $c=\{x=y+1\}$

preconditions:

end

b	b		b'	c'
x≤y	x=y+1		x≤y+1	x=y+2
Т	Т	X		
Т	F	a ≤ b	Т	F
F	Т	a=b+1	Т	F
F	F	a>b+1	F	*

In general, simultaneous assignments are needed for abstract statements

Abstraction of Conditional

We use * to denote a nondeterministic value

b	
$\{x \text{ odd}\}$	$\{x = 5\}$
Т	
F	

Original Program

Abstract Program $b = \{x \text{ odd}\}$

Abstraction of Conditional

We use * to denote a nondeterministic value

b	
$\{x \text{ odd}\}$	$\{x = 5\}$
Т	*
F	F

Original Program

Abstract Program (b = $\{x \text{ odd}\}$)

Note:

- b=false is the same as x even, which implies x!=5.
- b=true means that x is odd, which means x may or may not be 5

Another Example

```
done = 0;
while(done == 0) {
   if(x != 0)
     x--;
   else
     done++;
}
assert(x == 0);
```

How do you argue that the program is correct?

Which predicates do you need to prove that?

Another Example

```
done = 0;
while(done == 0) {
   if(x != 0)
     x--;
   else
     done++;
}
assert(x == 0);
```


Function Calls

```
bool b; // y>0
int y;
f(){
                                f(){
  h(y);
                                void h(bool c){ // c: z = 0}
void h(int z){
  y = z;
```


Function Calls

```
bool b; // y>0
int y;
f(){
                             f(){
  h(y);
                                h(b?F:*)
void h(int z){
                             void h(bool c){// c: z = 0}
                                b = c?F:*;
  y = z;
```


Abstraction

- Tricky: find the proper abstraction!
 - You use the counterexamples, but how?
 - You can do it by hand
 - You can try to do it automatically
- Automatically finding the proper abstraction cannot always work. Why not?

Precisely: assignment

Original: x:= e Predicates p1,...,pn.

Suppose we have

```
{qi}
x := e;
{pi}
```

Let ai be the disjunction of assignments to p1...pn that imply qi.

let bi be the disjunction of assignments to p1...pn that imply $\neg qi$.

x := e is replaced by simultaneous p1 = a1 ? T : b1 ? F : * ...

pn = an ? T : bn ? F : *

end simultaneous

example

```
Assignment: b := b+1
Predicates: p1 = \{a \le b\} and p2 = \{a=b+1\}
\{a \le b + 1\} \{a = b + 2\}
b := b + 1
                b := b + 1
{a ≤ b}
                \{a = b + 1\}
Look at the table: row TT, TF, and FT have a T in
column a≤b and TT and FF have an F in that
column. Therefore:
p1 v p2
                     implies a \le b + 1
(p1 \land p2) \lor (\neg p1 \land \neg p2) implies a > b + 1
(note: false implies anything)
For the 2<sup>nd</sup> predicate:
p1 \wedge p2 implies a = b+2
p1 \vee ¬p2 implies a \neq b+2
b:=b+1 is abstracted to
simultaneous
\{a \le b\} := p1||p2 ? T : p1==p2 ? F : *
 \{a=b+1\} := p1\&\&p2 ? T : p1!=p2 ? F : *
end
```

(Cf. same example on an earlier slide)

	ρ.	P-				
	a≤b	a=b+1		a≤b+1	a=b+2	
	T	Т	×	T/F	T/F	
	Т	F	a≤b	Т	F	
	F	Т	a=b+1	Т	F	
_	F	F	a>b+1	F	*	

Roderick Bloem

V&T