Security Co-Processors

Thomas STEINBAUER

23.11.2022

• Not the CPU

- Not the CPU
- Optional accelerator

- Not the CPU
- Optional accelerator
- Perform special tasks

- Not the CPU
- Optional accelerator
- Perform special tasks
- Focus on performance

1965: IBM-360 - I/O Co-Processors [1]

Figure 1: "Ein IBM-System 360/20 im Deutschen Museum, München". Credits: [2]

- 1965: IBM-360 I/O Co-Processors [1]
 - CPU performance was degraded by IO tasks

Figure 1: "Ein IBM-System 360/20 im Deutschen Museum, München". Credits: [2]

History

- 1965: IBM-360 I/O Co-Processors [1]
 - CPU performance was degraded by IO tasks
 - I/O Co-Processors were introduced

Figure 1: "Ein IBM-System 360/20 im Deutschen Museum, München". Credits: [2] • 1980: Intel 8087 Co-Processor [1], [3]

Figure 2: "Intel C8087 Math Coprocessor". Credits: [4]

- 1980: Intel 8087 Co-Processor [1], [3]
 - Floating-point Co-Processor

Figure 2: "Intel C8087 Math Coprocessor". Credits: [4]

- 1980: Intel 8087 Co-Processor [1], [3]
 - Floating-point Co-Processor
 - Works with 8086 and 8088

Figure 2: "Intel C8087 Math Coprocessor". Credits: [4]

History

- 1980: Intel 8087 Co-Processor [1], [3]
 - Floating-point Co-Processor
 - Works with 8086 and 8088
 - Adds about 60 new instructions

Figure 2: "Intel C8087 Math Coprocessor". Credits: [4]

• 1980: Intel 8087 Co-Processor [3]

Table 1: 8086/8087 vs. 8086 Emulation

Instruction	Execution Time in µs	
	8086/8087	8086 Emu
Add/Subtract	10.6	1000
Multiply SP	11.9	1000
Divide	24.4	2000
Square Root	22.5	12250
Exp	62.5	10687

• From "Treated As Peripheral"

- From "Treated As Peripheral"
 - Likely on a chip separated from CPU

- From "Treated As Peripheral"
 - Likely on a chip separated from CPU
 - Use common interface e.g. USB, PCI(e), I2C, SPI

- From "Treated As Peripheral"
 - Likely on a chip separated from CPU
 - Use common interface e.g. USB, PCI(e), I2C, SPI
 - Co-Processor (kind of) independent

- From "Treated As Peripheral"
 - Likely on a chip separated from CPU
 - Use common interface e.g. USB, PCI(e), I2C, SPI
 - Co-Processor (kind of) independent
 - Asynchronous communication

• To "Part Of The CPU"

- To "Part Of The CPU"
 - located on CPU chip

- To "Part Of The CPU"
 - located on CPU chip
 - Co-Processor controlled by CPU

- To "Part Of The CPU"
 - located on CPU chip
 - Co-Processor controlled by CPU
 - CPU instruction set covers Co-Processor functionality

- To "Part Of The CPU"
 - located on CPU chip
 - Co-Processor controlled by CPU
 - CPU instruction set covers Co-Processor functionality
 - synchronous communication

Play games at high settings?

- Play games at high settings?
- Build a super computer?

- Play games at high settings?
- Build a super computer?
- Mine shiny crypto coins?

- Play games at high settings?
- Build a super computer?
- Mine shiny crypto coins?
- Graphics Processing Unit

Figure 3: "RTX 2080 FE". Credits: [5]

Enjoy noise-canceling headphones?

- Enjoy noise-canceling headphones?
- Take a photo with your new digital camera?

- Enjoy noise-canceling headphones?
- Take a photo with your new digital camera?
- Filter the signal received from the top secret government satellite?

- Enjoy noise-canceling headphones?
- Take a photo with your new digital camera?
- Filter the signal received from the top secret government satellite?
- Digital Signal Processor

Figure 4: "Nikon D90 - board 0 - Nikon Expeed El-149 - media processor". Credits: [6]

• Train a machine learning model?

- Train a machine learning model?
- And perform image recognition on footage from surveillance cameras?

- Train a machine learning model?
- And perform image recognition on footage from surveillance cameras?
- Machine Learning Accelerator

Figure 5: "Coral AI USB Accelerator". Credits: [7]

• Communicate in a secure but still fast way?
- Communicate in a secure but still fast way?
- Protect data on your computer?

- Communicate in a secure but still fast way?
- Protect data on your computer?
- Trust software and detect if it has been tampered with?

- Communicate in a secure but still fast way?
- Protect data on your computer?
- Trust software and detect if it has been tampered with?
- Use your computer to digitally proof your identity?

Security Co-Processor

Governments

- Governments
- Military

- Governments
- Military
- Financial Sector

- Governments
- Military
- Financial Sector
- Healthcare Sector

- Governments
- Military
- Financial Sector
- Healthcare Sector
- You and me!

Generate/store secrets

- Generate/store secrets
- Encrypt and decrypt

- Generate/store secrets
- Encrypt and decrypt
- Sign and verify

- Generate/store secrets
- Encrypt and decrypt
- Sign and verify
- Generate random numbers

• Smart cards [8]

- Smart cards [8]
 - Store keys and personal data

- Smart cards [8]
 - Store keys and personal data
 - Secret key never leaves the card!

- Smart cards [8]
 - Store keys and personal data
 - Secret key never leaves the card!
 - Activate using PIN or biometrics

• Smart cards [8]

- Smart cards [8]
 - Bank cards

- Smart cards [8]
 - Bank cards
 - E-card (Social Security Card)

- Smart cards [8]
 - Bank cards
 - E-card (Social Security Card)
 - Passport with biometrics [10]

- Smart cards [8]
 - Bank cards
 - E-card (Social Security Card)
 - Passport with biometrics [10]
 - TU Graz Student ID [11]

Advanced Encryption Standard

- Advanced Encryption Standard
 - Symmetric encryption and decryption

- Advanced Encryption Standard
 - Symmetric encryption and decryption
 - High performance is important!

- Advanced Encryption Standard
 - Symmetric encryption and decryption
 - High performance is important!
 - Available Hardware Acceleration

- Advanced Encryption Standard
 - Symmetric encryption and decryption
 - High performance is important!
 - Available Hardware Acceleration
 - ×86 AES-NI [12]

- Advanced Encryption Standard
 - Symmetric encryption and decryption
 - High performance is important!
 - Available Hardware Acceleration
 - x86 AES-NI [12]
 - ARMv8 CryptoExtension [13]

Advanced Encryption Standard

- Advanced Encryption Standard
 - Disk and file encryption

- Advanced Encryption Standard
 - Disk and file encryption
 - Communication (maybe multiple Layers)

Root of Trust

- Root of Trust
 - "Highly reliable hardware, firmware, and software components that perform specific, critical security functions. Because roots of trust are inherently trusted, they must be secure by design. Roots of trust provide a firm foundation from which to build security and trust." [14]

• Trusted Platform Modules [8]

- Trusted Platform Modules [8]
 - Root of Trust

- Trusted Platform Modules [8]
 - Root of Trust
 - Store secret keys
- Trusted Platform Modules [8]
 - Root of Trust
 - Store secret keys
 - Access to key only if system is in "good" state

- Trusted Platform Modules [8]
 - Root of Trust
 - Store secret keys
 - Access to key only if system is in "good" state
- Occurrences

- Trusted Platform Modules [8]
 - Root of Trust
 - Store secret keys
 - Access to key only if system is in "good" state
- Occurrences
 - Already integrated in modern CPUs

- Trusted Platform Modules [8]
 - Root of Trust
 - Store secret keys
 - Access to key only if system is in "good" state
- Occurrences
 - Already integrated in modern CPUs
 - PCs, Notebooks, Cars and more have them already included

- Trusted Platform Modules [8]
 - Root of Trust
 - Store secret keys
 - Access to key only if system is in "good" state
- Occurrences
 - Already integrated in modern CPUs
 - PCs, Notebooks, Cars and more have them already included
 - Windows 11 wants you to have TPM 2.0

Hardware Security Modules [8]

- Hardware Security Modules [8]
 - Used in enterprise environment

- Hardware Security Modules [8]
 - Used in enterprise environment
 - Symmetric and asymmetric encryption

- Hardware Security Modules [8]
 - Used in enterprise environment
 - Symmetric and asymmetric encryption
 - High availability and performance

- Hardware Security Modules [8]
 - Used in enterprise environment
 - Symmetric and asymmetric encryption
 - High availability and performance
 - Can provide tamper resistance and responsiveness

Hardware Security Modules

- Hardware Security Modules
 - Store master keys

- Hardware Security Modules
 - Store master keys
 - PKI key generation / Certificate Authority

- Hardware Security Modules
 - Store master keys
 - PKI key generation / Certificate Authority
 - Authorization for financial transactions

- Hardware Security Modules
 - Store master keys
 - PKI key generation / Certificate Authority
 - Authorization for financial transactions
 - Storage for crypto wallets

Provable Security[16]

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost
 - Parallelism

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost
 - Parallelism
 - Memory

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost
 - Parallelism
 - Memory
 - Precomputation

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost
 - Parallelism
 - Memory
 - Precomputation
 - Number of Targets

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost
 - Parallelism
 - Memory
 - Precomputation
 - Number of Targets
- Heuristic Security [16]

- Provable Security[16]
 - Proofs Relative to a Mathematical Problem
 - Proofs Relative to Another Crypto Problem
- Computational Security[16]
 - Security in bits
 - At most 2ⁿ bit secure (brute force)
 - Successful attacks lower that
 - Attack Cost
 - Parallelism
 - Memory
 - Precomputation
 - Number of Targets
- Heuristic Security [16]
- Certification e.g. CC, FIPS-140

Table 2: Ascon/ISAP with and without Hardware Accelerator

Implementation	Cycles / Byte 64 Bytes	Binary Size (Bytes)
Ascon-C (-O3)	164.3	11716
Ascon-ASM + HW-A	4.2	888
ISAP-A-128a-C (-O3)	1184.3	11052
ISAP-A-128a-ASM + HW-A	29.1	1844

• Silicon root of trust (RoT) chips

🔅 opentitan

Figure 8: OpenTitan Logo. Credits: [18]

Google OpenTitan

- Silicon root of trust (RoT) chips
- Uses Risc-V with Co-Processors

🔅 opentitan

Figure 8: OpenTitan Logo. Credits: [18]

Google OpenTitan

- Silicon root of trust (RoT) chips
- Uses Risc-V with Co-Processors
- Open source

🔅 opentitan

Figure 8: OpenTitan Logo. Credits: [18]

• Questions?

References i

- D. Etiemble, Coprocessors: Failures and successes, CoRR, vol. abs/1907.06948, 2019. arXiv: 1907.06948. [Online]. Available: http://arxiv.org/abs/1907.06948.
- [2] B. Franske, "ein ibm-system 360/20 im deutschen museum, münchen", CC BY 2.5, 2006. [Online]. Available: https://en.wikipedia.org/wiki/File:DM_IBM_S360.jpg (visited on 11/22/2022).
- [3] Intel, 8087 math coprocessor, (1989), [Online]. Available: http: //pdf.datasheetcatalog.com/datasheets/2300/45014_DS.pdf (visited on 11/22/2022).
- [4] D. Oppelt, "intel c8087 math coprocessor", CC BY 3.0, 2005. [Online]. Available: https://commons.wikimedia.org/wiki/File:Intel_C8087.jpg (visited on 11/22/2022).

References ii

- [5] MarcusBurns1977, "rtx 2080fe", CC BY 3.0, 2022. [Online]. Available: https://www.deviantart.com/marcusburns1977/art/Rtx-2080fe-907122029 (visited on 11/22/2022).
- [6] R. Spekking, "nikon d90 board 0 nikon expeed ei-149 media processor", CC BY 4.0, 2021. [Online]. Available: https://commons.wikimedia.org/wiki/File:Nikon_D90_-_board_0_-_Nikon_Expeed_EI-149-1769.jpg (visited on 11/22/2022).
- G. LLC, "coral ai usb accelerator", 2020. [Online]. Available: https://coral.ai/products/accelerator/ (visited on 11/22/2022).
- [8] N. Pohlmann, Cyber-Sicherheit: Das Lehrbuch für Konzepte, Prinzipien, Mechanismen, Architekturen und Eigenschaften von Cyber-Sicherheitssystemen in der Digitalisierung. Jan. 2019, ISBN: 978-3-658-25397-4. DOI: 10.1007/978-3-658-25398-1.
References iii

- [9] A. Greuet, "smart card with both contact pad and antenna", CC BY 4.0, 2021. [Online]. Available: https://commons.wikimedia.org/wiki/File:Dual_smart_card.svg (visited on 11/22/2022).
- [10] Electronic passport (epass), (), [Online]. Available: https://www.bsi.bund.de/EN/Themen/Oeffentliche-Verwaltung/Elektronische-Identitaeten/Elektronische-Ausweisdokumente/Elektronischer-Reisepass/elektronischerreisepass_node.html (visited on 11/22/2022).
- [11] Ö. .-. T. Graz, Smart card studierendenausweis, (2004), [Online]. Available: https://diglib.tugraz.at/download.php?id= 4cd160ab24fa7&location=browse (visited on 11/22/2022).

References iv

- [12] Intel, Intel ® advanced encryption standard (aes) new instructions set, (2010), [Online]. Available: https://www.intel.com/content/dam/doc/white-paper/advancedencryption-standard-new-instructions-set-paper.pdf (visited on 11/22/2022).
- [13] Armv8 crypto extension, (2020), [Online]. Available: https://en.wikichip.org/wiki/arm/armv8#Crypto_Extension (visited on 11/22/2022).
- [14] Nist, (), [Online]. Available: https://csrc.nist.gov/glossary/term/roots_of_trust (visited on 11/22/2022).
- [15] A ncipher nshield f3 hardware security module (hsm), (2008), [Online]. Available: https://commons.wikimedia.org/wiki/File: NCipher_nShield_F3_Hardware_Security_Module.jpg (visited on 11/22/2022).

- [16] J.-P. Aumasson, Serious Cryptography: A Practical Introduction to Modern Encryption. USA: No Starch Press, 2017, ISBN: 1593278268.
- [17] S. Steinegger and R. Primas, A fast and compact risc-v accelerator for ascon and friends, 2020. [Online]. Available: https://eprint.iacr.org/2020/1083.pdf.
- [18] IowRISC, "opentitan logo", Apache License, Version 2.0. [Online]. Available: https://github.com/lowRISC/opentitan (visited on 11/22/2022).