

Model Checking

Roderick Bloem,
Bettina Könighofer, Vedad Hadzic
IAIK

Today

Administrative Motivation

- **Lecture:** Thursday 4 5:30P
- Practicals: Right after, only if there is something to discuss
- Question Hours: Right after, only if there is something to discuss
- Webpage: https://www.iaik.tugraz.at/course/model-checking-705080-sommersemester-2023/
- Discord: https://discord.gg/2wY64jUD2P, channel mc (robot)
- Email: <u>Vedad.Hadzic@iaik.tugraz.at</u>,

Bettina.koenighofer@iaik.tugraz.at roderick.bloem@iaik.tugraz.at

IIAIK

Time Line

Date	Lecture: 4-5:30PM, IFEG042	Exercise: 5:30P,IFEG042	
2023-03-09	Intro		
2023-03-16	Modeling Systems – Chapter 3	Handout warmup assignment	
2023-03-23	SAT-Based Model Checking – Ch. 10	Tutorial Z3 Intro	
2023-03-30	SAT-Based Model Checking – Ch. 10	Handout BMC assignment	
2023-04-02		Deadline Warmup Assignment	
04-06, 04-13	Easter break		
2023-04-20	SAT-Based Model Checking – Ch.10	Tutorial Modeling with Yosys, BTOR	
2023-04-27	Temporal Logic – Chapter 4	Handout k-induction	
2023-04-30		Deadline BMC assignment	
2023-05-04	CTL Model Checking – Chapter 5		
2023-05-11	CTL Model Checking - Chapter 5		
2023-05-18	Ascension		
2023-05-21		Deadline k-induction	
2023-05-25	LTL Model Checking -Chapter 7		
2023-06-01	LTL Model Checking -Chapter 7		
2023-06-15	Probabilistic Model Checking 1		
2023-06-22	Probabilistic Model Checking 2		
2023-06-29	Research		

LIAIK

How to get a grade?

Lecture: Two options

- Do weekly homework (by yourself), do a good job.
 Course grade = homework grade, OR
- 2. Take the exam (Not happy with homework grade? Take exam!)

Practical:

Three assignments with point distribution 30/40/30.

737 Max

IIAIK

"The people who wrote the code for the original MCAS system were obviously terribly far out of their league and did not know it" – Gregory Travis, tinyurl.com/4cx8wctc "The MCAS software didn't have any basic sanity checks to confirm the data was bad," – Gregory Travis tinyurl.com/229frw2b 346 deaths

HAIK

Deductive Verification?

```
{false == false} ↔ {true}

    (Manual) Proofs

r = false;
\{r == (\bigvee_{j=0}^{-1} a[j] == x)\} \leftrightarrow \{r == false\}

    No diagnostics

i = 0;

    Full specifications

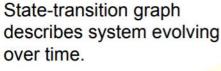
\{r == (\bigvee_{j=0}^{i-1} a[j] == x) \}

    Concurrency is hard

while (i != n) {
   \{(r == (\bigvee_{i=0}^{i-1} a[j] == x)) \land i != n\}
   \{r == (\bigvee_{i=0}^{i-1} a[j] == x)\}
                                                                                                         (But: things have gotten better!)
    if(a[i] == x) {
       \{(r == (\bigvee_{i=0}^{i-1} a[j] == x)) \land a[i] == x\}
        \{(\mathsf{true} == (\bigvee_{i=0}^{i} \mathsf{a[j]} == \mathsf{x})) \land \mathsf{a[i]} == \mathsf{x}\} \leftrightarrow \{\mathsf{true} \land \mathsf{a[i]} == \mathsf{x}\} \leftrightarrow \{\mathsf{a[i]} == \mathsf{x}\}
        r = true;
       \{r == (V_{i=0}^{i} a[j] == x)\}
    } else {
      \{ (\texttt{r} == ( \bigvee_{j=0}^{i} \texttt{a}[\texttt{j}] == \texttt{x})) \land \texttt{a}[\texttt{i}] != \texttt{x} \} \leftrightarrow \{ (\texttt{r} == (\bigvee_{j=0}^{i-1} \texttt{a}[\texttt{j}] == \texttt{x})) \land \texttt{a}[\texttt{i}] != \texttt{x} \} 
    \{r == (\bigvee_{i=0}^{l} a[j] == x)\}
   i = i + 1;
   \{r == (\bigvee_{i=0}^{i-1} a[j] == x)\}
\{\texttt{r} \ == \ ( \bigvee_{j=0}^{n-1} \texttt{a[j]} \ == \ \texttt{x} ) \ \land \ \texttt{i} \ == \ \texttt{n} \} \ \leftrightarrow \ \{\texttt{r} \ == \ ( \bigvee_{j=0}^{i-1} \texttt{a[j]} \ == \ \texttt{x} ) \ \land \ \texttt{i} \ == \ \texttt{n} \}
\{r == (V_{i=0}^{n-1} a[j] == x)\}
```


Automatic Verification!

- Program = state machine = graph
- Bug hunting = efficient graph search
- "Interesting" properties = "complicated" graph searches
 - Need language to express interesting things!
- But how to search a graph efficiently?



Model of computation

What properties are interesting?

Slide by Ed Clarke

- 1981: EMC Model checker ~10^4 states
- 1992 BDDs:

Symbolic Model Checking: 10²⁰ States and Beyond*

J. R. Burch, E. M. Clarke, and K. L. McMillan

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

AND

D. L. DILL AND L. J. HWANG

Stanford University, Stanford, California 94305

1999 SAT

Symbolic Model Checking without BDDs*

Armin Biere¹, Alessandro Cimatti², Edmund Clarke¹, and Yunshan Zhu¹

IIAIK

Efficiency

1992 Abstraction

Construction of Abstract State Graphs with PVS

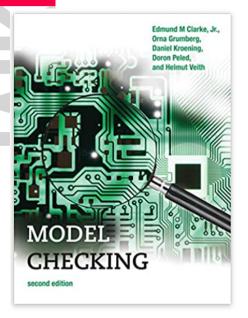
Susanne Graf and Hassen Saidi VERIMAG¹ {graf,saidi}@imag.fr

~1995: Partial Order Reduction


~2000: Software The SLAM Toolkit

Thomas Ball and Sriram K. Rajamani

Microsoft Research
http://www.research.microsoft.com/slam/



The Book

Model Checking, second ed	lition (Cyber Physica	al Systems		
Series) Gebundene Aus	sgabe – 4. Dezei	mber		
2018 Englisch Ausgabe von Edmund M. Clarke Jr. (Autor), & 4 mehr ★★★★ × 2 Sternebewertungen				
> Alle Formate und Ausgaben anzeigen				
Kindle 42,97 €	Gebundenes Buch 60,24 €			
Lesen Sie mit unserer kostenfreien App	4 Gebraucht ab 46,97 € 8 Neu ab 57,00 €			
GRATIS Lieferung: Montag, 8. Mär. S	Siehe Details.			

Neu kaufen

60,24 €

Preisangaben inkl. USt. Abhängig von der Lieferadresse kann die USt. an der Kasse variieren. Weitere Informationen.

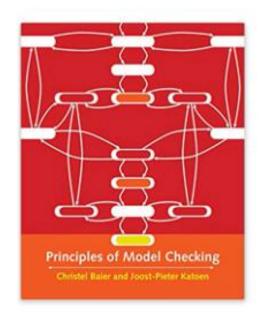
Nur noch 1 auf Lager (mehr ist unterwegs).

Verfügbar als Kindle eBook. Kindle eBooks können mit der kostenlosen Kindle-App auf allen Geräten gelesen werden.

Verkauf und Versand durch Amazon.

Menge: 1 🗸

Clarke, Grumberg, Kroening, Peled, Veith, *Model Checking*, MIT Press 2018 (This is the second edition. The first has a shorter author list.)


An expanded and updated edition of a comprehensive presentation of the

The Book

Baier, Katoen, Principles of Model checking, MITPress 2008

Other good books:

Clarke, Henzinger, Veith, Bloem, Handbook of Model Checking, Springer 2018

