Model Checking (SS 2023) Homework 4

Deadline: April 27, 2023, 4:00 pm

Send your solution to modelchecking@iaik.tugraz.at
Homework can be done in groups of 1 or 2 students.
The groups need not be the same for each homework.

Consider the following Kripke structure K, with states $(x_1, x_2, x_3) \in \{0, 1\}^3$ and atomic proposition p, which holds in all states except 111. We want to use PDR to prove whether the property AGp is true. We begin the algorithm, obtaining frames F_0 and F_1 as shown in the figure.

Task 1. [3 points] Starting from the figure, carry out two iterations of the first variant of PDR shown in class (from k = 1 until k = 3). Clearly indicate the steps and the frames at the end of each iteration. Is the property AGp verified in the end? Explain why or why not.

Task 2. [**3 points**] As in Task 1, perform two iterations of PDR starting from k = 1, but this time use *naive generalization* during the removal of bad states, as shown in class. Is the property AGp verified in the end? Explain why or why not.

Task 3. [**4 points**] For each of the following statements, explain whether they are true or false. Justify your answer.

- 1. The set $\neg x_1$ is inductive.
- 2. The set $\neg x_3$ is inductive.
- 3. The set $\neg x_2$ is inductive relative to $\neg x_1$.
- 4. The set $\neg x_3$ is inductive relative to $\neg x_1$.