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Introduction



What is the bitstream?

� Is the configuration for an FPGA

� Can be seen as ”binary” for the hardware
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What is the bitstream?

SYNC

Configuration Header

HMAC Header

Configuration Header

Fabric Data

(Configuration) Footer

HMAC Footer

Configuration Footer

Figure 1: The structure of the bitstream (green rows are encrypted) [1] [2]
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Why do we need the encryption?

� Prevents reading and reverse engineering (Confidentiality)

� Prevents manipulation of the design (Authenticity and integrity)

� Prevents hardware Trojans
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Encryption on Xilinx 7 Series

� Board features a AES decryption logic

[3]

� Decryption logic can only be used for

decrypting the bitstream

� Key can be set via JTAG

� Board uses a SHA-256 Hash Message

Authentication Code (HMAC) [4] for

verifying authenticity

Figure 2: Xilinx Kintex-7 FPGA [5]
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The encryption process



Overview

1. Selecting the key storage

2. Generate bitstream and encrypt

3. Decrypting and interpreting the bitstream
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Key storage options

� Battery backed RAM - BBRAM

� eFuse

7



Key storage options

� Battery backed RAM - BBRAM

� eFuse

7



Battery Backed RAM - BBRAM

� Volatile storage

� Needs continuous power to keep data

� Key can cleared / changed
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eFuse

� Nonvolatile one-time-programmable technology

� Once programmed it cannot be changed anymore

� No battery required

� Key cannot be cleared
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Setting the AES key (via JTAG)

1. Board enters special key-access mode

2. All memory inclusive key configuration gets cleared

3. Then the key can be set

4. Board exits the mode

5. Key cannot be read anymore
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Encrypting the bitstream

� Xilinx uses AES Cipher Block

Chaining mode (CBC)

� The encryption can be done by the

Vivado bitstream generator

(write bitstream)

� Key storage, key and HMAC key need

to be configured in the constrains file

� Generated bitstream will be encrypted

and written to .bit file

E E E

P0

IV

C0

P1 P2

C1 C2

...
K K K

Figure 3: CBC encryption
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Executing the encrypted bitstream

� Board uses a special AES decryption logic

� Debug output and readout is disabled

� Bitstream gets authenticated
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Authentication of the bitstream

� Encrypted bitstream can still be

manipulated and therefore

authentication is needed

� Xilinx boards use a MAC-then-encrypt

scheme [1]

� HMAC gets generated from the data

and the HMAC key [6]

� Generated HMAC gets compared to

stored HMAC

� If both HMACs are equal the

execution will continue

Ciphertext

D

Plaintext HMAC

H

Verification

Key

HMAC
Key


Figure 4: Verification of MAC-then-encrypt
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Attacking the encryption



� The security of the FPGA is crucial

� Vulnerabilities in the encryption cannot be patched via update

� FPGA are used for a long time (e.g. legacy systems)

� Successful attacks have been shown in the recent years [1]
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Breaking the confidentiality

� Debugging and readout of the decrypted bitstream is prohibited

� Goal is to redirect the decrypted bitstream to a register

� Use a different bitstream to read the value from the register
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Breaking the confidentiality

� A register can hold a word of 32 bits

� Bitstream needs to be read word by word (takes some time)

� It is possible to temporarily manipulate the bitstream
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The WBStar register

� In our case the WBSTAR register is useful

� WBSTAR is a register of MultiBoot

� It is used to boot from a different memory address during updating or recovery

� It will not be cleared upon reset

� Register can still be read after tempering detection
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Manipulate the bitstream

� Xilinx uses AES-CBC

� Due to the XOR of CBC arbitrary bits

can be flipped

� Vivado bitstream generation is

deterministic

� Header commands are the same

� Plaintext can be assumed

� HMAC is only checked after the

interpretation

Figure 5: Malleability of CBC decryption
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Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Breaking the authenticity

� Previous attack provides the FPGA as decrypt oracle which can be use to encrypt

data [7]

� The CBC function: Pi = decKAES(Ci )⊕ Ci−1

� We can manipulate the chiptertext and want a desired P ′
i

� We need to set: C ′
i−1 = Pi ⊕ Ci−1 ⊕ P ′

i

� So we have P ′
i = decKAES(Ci )⊕ Ci−1 ⊕ Pi ⊕ P ′

i = Pi ⊕ Pi ⊕ P ′
i

� We can repeat this until P ′
1 and then set IV to C0 in the unencrypted header

� HMAC and key for verification is located in the bitstream

� Attacker can manipulate the HMAC this way

19



Issues of the implementation



Issues of the implementation

1. Interpreting the data before HMAC validation

2. Storing the HMAC key in the bitstream itself
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Conclusion



Conclusion

1. Bitstream encryption is important for authenticity and confidentiality

2. It prevents adversaries from reverse engineering

3. It prevents adversaries from manipulating

4. Current implementation has flaws and can be attacked without sophisticated tools
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