

1 1

Fault Attacks on FPGAs

Digital System Integration and Programming Lukas Furtner 14.12.2022

Agenda

11AIK 2

Agenda

- Fault Attacks in General
- Fault Attacks on FPGAs
- Conclusion/Comparison
- References

Fault Attacks in General

Fault Attacks

- Physical attack
 - Attack on hardware's properties [1]
 - Attack model: the attacker has access to the device
- Intentionally change device's operating condition
 - Various attack vectors (power, temperature ...)
- Unintended behavior of the system can happen
 - Bit flips
 - Different timing behavior of hardware

Fault Attacks

- Invasive method
 - Property of destruction
 - Chip modification
 - Chip suffers damage
- Non-invasive method
 - Do not damage the system
 - Not traceable

Fault Attacks

IIAIK

6

- Main attack vectors [1]
 - Voltage spikes
 - CMOS propagation delay is voltage dependent
 - Lower voltage, higher switching time
 - Temperature
 - Higher temperature
 - Lower impedance for CMOS-channels
 - Higher impedance for transmission lines

IIAIK

Fault Attacks

- Main attack vectors [1]
 - Electromagnetic injection
 - Principle of induction
 - Flipping transistors
 - Laser injection
 - Ionization, Heating through Laser [2]
 - Clock glitching
 - Only with external clock sources
 - Create state transition when calculation is not finished

Fault Attacks

- Effects of successful fault attack [1]
 - System changes behavior
 - Reveals sensitive data
 - Faulty computations
 - Broken systems
 - Wrong AI
 - Key recovery
 - System crashes

Fig. 4: PC on fire [3]

- Fault Attacks on FPGAs
- FPGA's also use CMOS technology
- Similar attack vectors
- Most attractive attack
 - Voltage-Drop based faults
 - Ring oscillators
- Other existing attacks based on
 - Thermal laser stimulation
 - Seebeck voltage on Drain of MOSFET
 - Clock glitch attack

Fig. 5: Fault attack on chip [4]

Performed Fault Attacks on FPGAs

Two different performed attacks:

- First one based on voltage spike
- Second one based on Thermal Laser Stimulation

Remote and Stealthy Fault Attack on Virtualized FPGA

13

Key Informations

- Voltage based attack
- Executed on multi tenant FPGA
- FPGA-AES attacked
 - Key recovery attack
- Introduced timing faults
 - Between AES rounds
- DFA (Differential Fault Analysis used for key recovery)

- Threat Model [5]
- Multi tenant FPGA
 - Attacker and victim on same board
- Logical isolation between
- Shared power supply

IIAIK Attack

15

- Attacker FPGA stream consists of many ring oscillators [5]
- Turn them on at the same time
 - Ring oscillators need a lot of power to be driven
 - If enough ring oscillators
 - Voltage dip on power rail
- Usually 30-50% of the FPGA needed for big enough voltage dip

Attack

- Voltage dip leads to higher transmission [5]
 - AES combinatoric logic does not finish
 - Next state transition introduces faulty state
 - State propagated through scheme
 - Different outputs for correct and faulty value
 - DFA possible

Fig. 7: AES fault propagation [5]

$$T_d \propto \frac{1}{V}$$

17

How well does it work

- Very successful attack
- On different FPGAs [6]

 Benchmark IPs also very good for voltage dip attack [6]

candidate numbers of 5000 keys [6]

- Countermeasures
 - Hard to implement [6]
 - Search bitstream for ring oscillators
 - Attack also possible with multiple AES/Benchmark IP-cores
 - Better:

18

- Search for power intense parts [6]
 - Use separate power rails for them
 - Multi tenant system needs to support that

Key Extraction Using Thermal Laser Stimulation

IIAIK

20

Key Informations

- Laser Injection based attack
- Executed on physical accessible FPGA
- FPGA-battery-backed SRAM attacked (BBRAM)
 - AES key of bitstream stored in there
 - Used for decrypting bitstream from non-volatile memory during startup
- Introduced thermal heating on BBRAM-MOSFETs drain
 - Generates voltage (seebeck-voltage)
 - Can be measured on supply line

21

- Threat Model [2]
 - Physical access to the FPGA
 - Attacker owns an FPGA of the same type
 - Attacker can have but does not need access to the floorplan of the chip

LIAIK Attack

22

- Laser beam used to heat drain of MOSFET [7]
 - Temperature gradient
 - Two different metals
 - Diffusion of carriers
 - Seebeck voltage

Fig. 10: Introducing Seebeck voltage with Laser [7]

- IIAIK What can be done with that
 - SRAM cells

23

- Heating MOSFET drain [7]
 - Opposite MOSFET opens a bit (still very high ohmic)
 - Current change on power rail [nA]
 - Only applies for closed connection
 - Active MOSFETs н.
- Differentiate between 0 and 1 bit

11AIK 24

- FPGAs use BBRAM
 - Battery-Backed-SRAM
 - SRAM format can be attacked [8]
 - Battery backed

Fig. 7: TLS 2D-Map [8]

- Low noice better detection of small currents
- 2D-Map of laser stimulation created [8]
- Reference with 0 bits
- Create difference

Fig. 12: Difference of TLS 2D-Map [8]

11A | K 25

- Extendable for Whole Key
 - Apply threshold for black and white parts [8]
 - Cells with black and white
 - Indicate difference to 0 bit
 - Contain a 1

Fig. 13: Whole Key Recovery [8]

11A1K 26

Countermeasures

- Noice based countermeasure [8]
 - More measurements reduce SNR
- Light sensors useless
 - To long wavelength
- Temperature sensor would work
 - Battery driven, because attack performed during shut down
- Bit obfuscation by hardware [8]
 - Works, but duplication of circuit still possible
 - Could be revealed at a later point

Fig 14: Noice based countermeasure circuit [8]

Conclusion/Comparison

IIAIK

Comparison of Attacks

First attack

- Attack vector
 - Voltage dips
- Attack on
 - FPGA calculation
- Remote attack
- Relatively easy

Second attack

- Attack vector
 - Thermal Laser Stimulation
- Attack on
 - BBRAM
- Access to device needed
- Expensive equipment

References

References and Image Sources

- [1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall and C. Whelan, "The Sorcerer's Apprentice Guide to Fault Attacks," in Proceedings of the IEEE, vol. 94, no. 2, pp. 370-382, Feb. 2006, doi: 10.1109/JPROC.2005.862424.
- [2] F Beaudoin, R Desplats, P Perdu, and D Lewis. Implementing thermal laser stimulation in a failure analysis laboratory. In International Symposium for Testing and Failure Analysis, pages 151–160. ASM International, 2001.
- [3] unknown. (2022). https://upload.wikimedia.org/wikipedia/en/f/f2/Computer_on_fire.svg
- [4] Tajik, Shahin & Ganji, Fatemeh. (2020). Artificial Neural Networks and Fault Injection Attacks.

References

References and Image Sources

- [5] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, "FPGAhammer: remote voltage fault attacks on shared FPGAs, suitable for DFA on AES," IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), vol. 2018, no. 3, 2018.
- [6] J. Krautter, D. R. E. Gnad and M. B. Tahoori, "Remote and Stealthy Fault Attacks on Virtualized FPGAs," 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021, pp. 1632-1637, doi: 10.23919/DATE51398.2021.9474140.
- [7] Christian Boit, Clemens Helfmeier, Dmitry Nedospasov, and Alexander Fox. Ultra high precision circuit diagnosis through seebeck generation and charge monitoring. In *Physical and Failure Analysis of Integrated Circuits (IPFA), 2013 20th IEEE International Symposium on the*, pages 17–21. IEEE, 2013.
- [8] Lohrke, H., Tajik, S., Krachenfels, T., Boit, C., & Seifert, J.-P. (2018). Key Extraction Using Thermal Laser Stimulation: A Case Study on Xilinx Ultrascale FPGAs. *IACR Transactions on Cryptographic Hardware and Embedded Systems*, 2018(3), 573–595. https://doi.org/10.13154/tches.v2018.i3.573-595

Digital System Integration and Programming Lukas Furtner 14.12.2022

