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Fault Attacks

▪ Physical attack

▪ Attack on hardware’s properties [1]

▪ Attack model: the attacker has access to the device

▪ Intentionally change device’s operating condition

▪ Various attack vectors (power, temperature …)

▪ Unintended behavior of the system can happen

▪ Bit flips

▪ Different timing behavior of hardware
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Fig. 1: Abstract fault on Chip



Fault Attacks

▪ Invasive method

▪ Property of destruction

▪ Chip modification

▪ Chip suffers damage

▪ Non-invasive method

▪ Do not damage the system

▪ Not traceable
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Fault Attacks

▪ Main attack vectors [1]

▪ Voltage spikes

▪ CMOS propagation delay is voltage dependent

▪ Lower voltage, higher switching time 

▪ Temperature

▪ Higher temperature

▪ Lower impedance for CMOS-channels

▪ Higher impedance for transmission lines
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Fig. 2: Types of faults



Fault Attacks

▪ Main attack vectors [1]

▪ Electromagnetic injection

▪ Principle of induction

▪ Flipping transistors

▪ Laser injection

▪ Ionization, Heating through Laser [2]

▪ Clock glitching

▪ Only with external clock sources

▪ Create state transition when calculation is not finished
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Fig. 3: Types of faults



Fault Attacks

▪ Effects of successful fault attack [1]

▪ System changes behavior

▪ Reveals sensitive data

▪ Faulty computations

▪ Broken systems

▪ Wrong AI

▪ Key recovery

▪ System crashes
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Fig. 4: PC on fire [3]
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Fault Attacks on FPGAs

▪ FPGA’s also use CMOS technology

▪ Similar attack vectors

▪ Most attractive attack

▪ Voltage-Drop based faults

▪ Ring oscillators

▪ Other existing attacks based on

▪ Thermal laser stimulation

▪ Seebeck voltage on Drain of MOSFET

▪ Clock glitch attack
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Fig. 5: Fault attack on chip [4]



Performed Fault Attacks on FPGAs

Two different performed attacks:

▪ First one based on voltage spike

▪ Second one based on Thermal Laser Stimulation 
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Key Informations

▪ Voltage based attack

▪ Executed on multi tenant FPGA

▪ FPGA-AES attacked

▪ Key recovery attack

▪ Introduced timing faults 

▪ Between AES rounds

▪ DFA (Differential Fault Analysis used for key recovery)
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Threat Model [5]

▪ Multi tenant FPGA

▪ Attacker and victim on same board

▪ Logical isolation between

▪ Shared power supply
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Fig. 6: Threat model 1 [5]



Attack

▪ Attacker FPGA stream consists of many ring oscillators [5]

▪ Turn them on at the same time

▪ Ring oscillators need a lot of power to be driven

▪ If enough ring oscillators

▪ Voltage dip on power rail

▪ Usually 30-50% of the FPGA needed for big enough voltage dip
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Attack

▪ Voltage dip leads to higher transmission [5]

▪ AES combinatoric logic does not finish

▪ Next state transition introduces faulty state

▪ State propagated through scheme

▪ Different outputs for correct and faulty value

▪ DFA possible
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Fig. 7: AES fault propagation [5]



How well does it work

▪ Very successful attack

▪ On different FPGAs [6]

▪ Benchmark IPs also very good

for voltage dip attack [6]
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Fig. 8: Success rate of attack (remaining key 

candidate numbers of 5000 keys [6]



Countermeasures

▪ Hard to implement [6]

▪ Search bitstream for ring oscillators

▪ Attack also possible with multiple AES/Benchmark IP-cores

▪ Better:

▪ Search for power intense parts [6]

▪ Use separate power rails for them

▪ Multi tenant system needs to support that
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Key Informations

▪ Laser Injection based attack

▪ Executed on physical accessible FPGA

▪ FPGA-battery-backed SRAM attacked (BBRAM)

▪ AES key of bitstream stored in there

▪ Used for decrypting bitstream from non-volatile memory during startup

▪ Introduced thermal heating on BBRAM-MOSFETs drain

▪ Generates voltage (seebeck-voltage)

▪ Can be measured on supply line
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Threat Model [2]

▪ Physical access to the FPGA

▪ Attacker owns an FPGA of the same type

▪ Attacker can have but does not need access to the floorplan of the chip
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Fig. 9: Threat model 2 [2]



Attack

▪ Laser beam used to heat drain of MOSFET [7]

▪ Temperature gradient

▪ Two different metals

▪ Diffusion of carriers

▪ Seebeck voltage
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Fig. 10: Introducing Seebeck voltage with Laser [7]



What can be done with that

▪ SRAM cells

▪ Heating MOSFET drain [7]

▪ Opposite MOSFET opens a bit (still very high ohmic)

▪ Current change on power rail [nA]

▪ Only applies for closed connection

▪ Active MOSFETs

▪ Differentiate between 0 and 1 bit
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Fig. 11: SRAM bit recovery [7]



FPGAs use BBRAM

▪ Battery-Backed-SRAM

▪ SRAM format can be attacked [8]

▪ Battery backed

▪ Low noice - better detection of small currents

▪ 2D-Map of laser stimulation created [8]

▪ Reference with 0 bits

▪ Create difference
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Fig. 7: TLS 2D-Map [8]

Fig. 12: Difference of TLS 2D-Map [8]



Extendable for Whole Key

▪ Apply threshold for black and white parts [8]

▪ Cells with black and white

▪ Indicate difference to 0 bit

▪ Contain a 1
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Fig. 13: Whole Key Recovery [8]



Countermeasures

▪ Noice based countermeasure [8]

▪ More measurements reduce SNR

▪ Light sensors useless

▪ To long wavelength

▪ Temperature sensor would work

▪ Battery driven, because attack performed during shut down

▪ Bit obfuscation by hardware [8]

▪ Works, but duplication of circuit still possible

▪ Could be revealed at a later point
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Fig 14: Noice based countermeasure circuit [8]



Comparison of Attacks

First attack

▪ Attack vector

▪ Voltage dips

▪ Attack on

▪ FPGA calculation

▪ Remote attack

▪ Relatively easy
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Second attack

▪ Attack vector

▪ Thermal Laser Stimulation

▪ Attack on

▪ BBRAM

▪ Access to device needed

▪ Expensive equipment
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