
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2022/2023

Stefan Mangard, www.iaik.tugraz.at

Chapter 5: Pipelining

Notes on this Slide Set

• This part of the lecture is based on slides by Prof. Onur Mutlu (ETH
Zürich)

• The slides have been changed significantly in several aspects
• adaption to RISC-V
• Addition / deletion of slides and slide content
• Change of layout

• Original source:
https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=schedule

www.iaik.tugraz.at

2

https://creativecommons.org/licenses/by-nc-sa/4.0/

Performance

• The goal of processor design is maximize the executed number of
instructions per time

• This is determined by two factors
• The needed clock cycles per instruction (CPI)

• The clock frequency, which determines the number of cycles per second

• The execution time for a program with N instructions is N * CPI * (1/f)
• f is the clock frequency (1/f is the clock period)

• CPI is the average number of cycles per instruction

www.iaik.tugraz.at

3

High-Level Overview (Single Cycle Datapath)
www.iaik.tugraz.at

4

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Performance of the Single-Cycle Design

• Each instruction takes exactly one cycle to execute

• The maximum clock frequency is defined by the slowest instruction of
the design
• Remember: the critical path is the longest combinational path in the design.

• The critical path of the slowest instruction therefore defines the clock
frequency of our processor

www.iaik.tugraz.at

5

High-Level Overview (Single Cycle Datapath)
www.iaik.tugraz.at

6

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

How can we improve the
performance?

Note: making the building blocks (memories, logic gates, …) of the
processor faster will make us significantly faster → we need a differ

design approach

Basic Idea of Multicycle Architectures

• Cut the operations that are needed for one instruction into more fine-
granular operations

• Each instruction is a multicycle instruction and takes as many cycles
as needed to perform the actions defined by the instruction

→ Instructions lead to different numbers of operations (and therefore take
longer / shorter depending on their complexity)

www.iaik.tugraz.at

9

High-Level Overview (Single Cycle Datapath)
www.iaik.tugraz.at

10

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

www.iaik.tugraz.at

11

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

Fetch
(F)

Decode
(D)

Execute
(E)

Memory
(M)

Write
Back
(WB)

Can We Do Better?

• What limitations do you see with the multi-cycle design?

• Limited concurrency
• Some hardware resources are idle during different phases of instruction

processing cycle

• “Fetch” logic is idle when an instruction is being “decoded” or “executed”

• Most of the datapath is idle when a memory access is happening

Can We Use the Idle Hardware to Improve Concurrency?

• Goal: More concurrency → Higher instruction throughput (i.e., more
“work” completed in one cycle)

• Idea: When an instruction is using some resources in its processing phase,
process other instructions on idle resources not needed by that
instruction
• E.g., when an instruction is being decoded, fetch the next instruction

• E.g., when an instruction is being executed, decode another instruction

• E.g., when an instruction is accessing data memory (ld/st), execute the next
instruction

• E.g., when an instruction is writing its result into the register file, access data
memory for the next instruction

Pipelining

Pipelining

www.iaik.tugraz.at

15

Pipelining: Basic Idea
• More systematically:

• Pipeline the execution of multiple instructions

• Analogy: “Assembly line processing” of instructions

• Idea:
• Divide the instruction processing cycle into distinct “stages” of processing

• Ensure there are enough hardware resources to process one instruction in
each stage

• Process a different instruction in each stage
• Instructions consecutive in program order are processed in consecutive stages

• Benefit: Increases instruction processing throughput

• Downside: Start thinking about this…

Example: Execution of Four Independent ADDs (no memory needed)

• Multi-cycle: 4 cycles per instruction

• Pipelined: 4 cycles per 4 instructions (steady state)

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

Is life always this beautiful?

The Laundry Analogy

• “place one dirty load of clothes in the washer”

• “when the washer is finished, place the wet load in the dryer”

• “when the dryer is finished, take out the dry load and fold”

• “when folding is finished, ask your roommate (??) to put the clothes away”

- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry
Time

76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

- latency per load is the same

- throughput increased by 4

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

the slowest step decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

A

B

A

B

throughput restored (2 loads per hour) using 2 dryers

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

An Ideal Pipeline
• Goal: Increase throughput with little increase in cost

(hardware cost, in case of instruction processing)

• Repetition of identical operations
• The same operation is repeated on a large number of different

inputs (e.g., all laundry loads go through the same steps)

• Repetition of independent operations
• No dependencies between repeated operations

• Uniformly partitionable suboperations
• Processing can be evenly divided into uniform-latency

suboperations (that do not share resources)

• Fitting examples: automobile assembly line, doing laundry

Ideal Pipelining

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

More Realistic Pipeline: Throughput
• Nonpipelined version with delay T

BW = 1/(T+S) where S = register delay

• k-stage pipelined version
BWk-stage = 1 / (T/k +S)
BWmax = 1 / (1 gate delay + S)

T ps

T/k
ps

T/k
ps

Register delay reduces throughput

(switching overhead between stages)

More Realistic Pipeline: Cost
• Nonpipelined version with combinational cost G

Cost = G+L where L = register cost

• k-stage pipelined version

Costk-stage = G + Lk

G gates

G/k G/k

Registers increase hardware cost

Pipelining Instruction
Processing

www.iaik.tugraz.at

27

Register File
Data

Memory

Control

ALU

Sign ext. for
immediates

Address

Data

Data

Read Port A

Read Port B

Sign ext. for load
byte/halfword

Instruction
Memory

PC

+4

InstructionAddress

+

High-Level Datapath

www.iaik.tugraz.at

28

Register File
Data

Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Redrawn for more space

www.iaik.tugraz.at

29

Register File
Data

Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Redrawn for more space

T BW=~(1/T)

www.iaik.tugraz.at

30

Register File
Data

Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Register
File

Write

IF: Instruction Fetch ID: Instruction decode/
register file read

EX: Execute/
Address calculation

MEM: Memory
access

WB: Write Back

200ps 100ps 200ps 200ps 100ps

The Instruction Processing Cycle

1. Instruction fetch (IF)
2. Instruction decode and

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Instruction Pipeline Throughput

Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program

execution

order

(in instructions)

Instruction

fetch
Reg ALU

Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program

execution

order

(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

800ps

800ps

800ps

200ps200ps200ps200ps200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicted by the ideal model.
(We complete an instruction every 200ps instead of every 800ps)

LW x1, 100(x0)

LW x2, 200(x0)

LW x3, 100(x0)

LW x1, 100(x0)

LW x2, 200(x0)

LW x3, 100(x0)

www.iaik.tugraz.at

33

Register File
Data

Memory

Control

ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Register
File

Write

No resource is used
by more than 1 stage!

IR
D

P
C

F

P
C

D

P
C

E

n
P

C
M

A
E

B
E

Im
m

E

A
o

u
t M

B
M

M
D

R
W

A
o

u
t W

Enabling Pipelined Processing: Pipeline Registers

T/k
ps

T/k
ps

www.iaik.tugraz.at

34

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Operation

Control

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

35

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW
Instruction Fetch

Instruction
Memory

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

36

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW
Instruction Decode

Instruction
Memory Register File

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

37

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

LW
Execute

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

38

Register File
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

LW
Memory

Data
Memory

MEM/WBEX/MEMID/EXIF/ID

39

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

LW
Write Back

Register File

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

41

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW x1,100(x0)
Instruction Fetch

Instruction
Memory

Cycle 1

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

42

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

LW x1,100(x0)
Instruction Decode

Instruction
Memory Register File

ADD x2, x3, x4
Instruction Fetch

Instruction
Memory

Cycle 2

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

43

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory

Cycle 3

LW x1,100(x0)
Execute

ADD x2, x3, x4
Instruction Decode

Register File

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

44

Register File
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory Data

Memory

Cycle 4

LW x1,100(x0)
Memory

ADD x2, x3, x4
Instruction Execute

MEM/WBEX/MEMID/EXIF/ID

45

Register File
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory Register File

Cycle 5

LW x1,100(x0)
Write Back

ADD x2, x3, x4
Memory

MEM/WBEX/MEMID/EXIF/ID

Data
Memory

46

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

P
C

+4

InstructionAddress

+

Control

Instruction
Memory Register File

Cycle 6

ADD x2, x3, x4
Write Back

MEM/WBEX/MEMID/EXIF/ID

www.iaik.tugraz.at

47

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

IR
D

Pipelined Operation

Is life always this beautiful?

MEM/WBEX/MEMID/EXIF/ID

Illustrating Pipeline Operation: Operation View

MEM

EX

ID

IFInst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EXIF ID

IF ID

Inst0 ID

IFInst1

EX

ID

IFInst2

MEM

EX

ID

IFInst3

WB

WBMEM

EX

WB

steady state

(full pipeline)

Illustrating Pipeline Operation: Resource View

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

www.iaik.tugraz.at

50

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Note: There is the same number of control signals as in a single-cycle data path

Control

MEM/WBEX/MEMID/EXIF/ID

Timing is critical!

For each instruction the
control signals need to
be set correctly in each

pipeline stage

Control Signals in a Pipeline
• For a given instruction

• same control signals as single-cycle, but

• control signals required at different cycles, depending on stage

Option 1: decode once using the same logic as single-cycle and buffer
signals until consumed

Option 2: carry relevant “instruction word/field” down the pipeline and
decode locally within each or in a previous stage

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

52

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

53

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

54

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

55

Register File
Data

Memory
ALU

Sign ext.

Address

Data

Data

Read Port A

Read Port B

Instruction
Memory

P
C

+4

InstructionAddress

+

Pipelined Control Signals

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Control

MEM/WBEX/MEMID/EXIF/ID

E
X

M

W
B

M

W
B

W
B

Remember: An Ideal Pipeline
• Goal: Increase throughput with little increase in cost

(hardware cost, in case of instruction processing)

• Repetition of identical operations
• The same operation is repeated on a large number of different

inputs (e.g., all laundry loads go through the same steps)

• Repetition of independent operations
• No dependencies between repeated operations

• Uniformly partitionable suboperations
• Processing an be evenly divided into uniform-latency suboperations

(that do not share resources)

• Fitting examples: automobile assembly line, doing laundry

Instruction Pipeline: Not An Ideal Pipeline
◼Identical operations ... NOT!
 different instructions → not all need the same stages

Forcing different instructions to go through the same pipe stages
→ external fragmentation (some pipe stages idle for some instructions)

◼Independent operations ... NOT!
 instructions are not independent of each other

Need to detect and resolve inter-instruction dependencies to ensure the
pipeline provides correct results
→ pipeline stalls (pipeline is not always moving)

◼Uniform suboperations ... NOT!
 different pipeline stages → not the same latency

Need to force each stage to be controlled by the same clock
→ internal fragmentation (some pipe stages are too fast but all take the

same clock cycle time)

Issues in Pipeline Design
• Balancing work in pipeline stages

• How many stages and what is done in each stage

• Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow
• Handling dependences

• Data

• Control

• Handling resource contention

• Handling long-latency (multi-cycle) operations

• Handling exceptions, interrupts

Causes of Pipeline Stalls
• Stall: A condition when the pipeline stops moving

• We need to stall the pipeline if either a needed resource or
data value is not available

• Resource is not available
• Resource contention (e.g. caused by long-latency (multi-cycle)

operations)

• Data is not available
• Dependences between instructions (also called “dependency” or

“hazard”)
• Data
• Control

Data Dependence Handling

Read-After-Write Dependency

r3  r1 op r2 Read-after-Write
r5  r3 op r4 (RAW)

RAW Dependence Handling

• Which one of the following flow dependences lead to
conflicts in the 5-stage pipeline?

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi r1 r- -

addi r- r1 -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- r1 -

addi r- r1 -

addi r- r1 -

addi r- r1 -

?

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

WB

MEM

ALU

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF IDIF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

Pipeline Stall: Resolving Data Dependence

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx  _
bubble
bubble
j: _  rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall = make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages

Example of Dependence Detection

• Scoreboarding
• Each register in register file has a Valid bit associated

with it

• An instruction that is writing to the register resets the
Valid bit

• An instruction in Decode stage checks if all its source
registers are Valid
• Yes: No need to stall… No dependence

• No: Stall the instruction

Once You Detect the Dependence in Hardware

• What do you do?

• Option 1: Stall the dependent instruction right away

• Option 2: Stall the dependent instruction only when
necessary → data forwarding/bypassing

• Option 3: …

69

Data Forwarding/Bypassing

• Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

• Goal: We do not want to stall the pipeline unnecessarily

• Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

• Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

• Benefit: Consumer can move in the pipeline until the point
the value can be supplied → less stalling

RAW Data Dependence Example
One instruction writes a register (s8) and next

instructions read this register => read after write (RAW)
dependence.
• add writes into s8 in cycle 5

• sub requires to read s8 on cycle 3

• or requires to read s8 on cycle 4

• and requires to read s8 in cycle 5

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding
• Also called Data Bypassing

• Forward the result value to the dependent instruction
as soon as the value is available

• Basic Idea
• Data values are supplied to dependent instruction as soon as

it is available

• Instruction executes when all its operands are available

Data Forwarding

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.]

Stalling

• Forwarding is sufficient to resolve RAW data dependences

• but …There are cases when forwarding is not possible due to pipeline design
and instruction latencies

• The lw instruction does not finish reading data until the end of the Memory
stage,

• Therefore its result cannot be forwarded to the Execute stage of the next
instruction.

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.]

Stalling

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.]

Watch the Operations of the Hardware while
executing your code - QTRVSIM

Visit https://comparch.edu.cvut.cz/qtrvsim/app/ or use qtrvsim in your
virtual machine

in order to visualize how a sequence
of instructions becomes executed

www.iaik.tugraz.at

77

Note: This simulation
performs incorrect

computations in case
of hazards!!!

This simulation has a
hazard unit and

implements data
forwarding

https://comparch.edu.cvut.cz/qtrvsim/app/

Data Forwarding Paths in QTRVSIM

www.iaik.tugraz.at

78

