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Notes on this Slide Set

• This part of the lecture is based on slides by Prof. Onur Mutlu (ETH 
Zürich)

• The slides have been changed significantly in several aspects
• adaption to RISC-V
• Addition / deletion of slides and slide content 
• Change of layout

• Original source: 
https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=schedule
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Performance

• The goal of processor design is maximize the executed number of 
instructions per time

• This is determined by two factors
• The needed clock cycles per instruction (CPI) 

• The clock frequency, which determines the number of cycles per second

• The execution time for a program with N instructions is N * CPI * (1/f)
• f is the clock frequency (1/f is the clock period)

• CPI is the average number of cycles per instruction
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High-Level Overview (Single Cycle Datapath)
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Performance of the Single-Cycle Design

• Each instruction takes exactly one cycle to execute

• The maximum clock frequency is defined by the slowest instruction of 
the design 
• Remember: the critical path is the longest combinational path in the design. 

• The critical path of the slowest instruction therefore defines the clock 
frequency of our processor
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High-Level Overview (Single Cycle Datapath)
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How can we improve the 
performance?

Note: making the building blocks (memories, logic gates, …) of the 
processor faster will make us significantly faster → we need a differ 

design approach



Basic Idea of Multicycle Architectures

• Cut the operations that are needed for one instruction into more fine-
granular operations

• Each instruction is a multicycle instruction and takes as many cycles 
as needed to perform the actions defined by the instruction

→ Instructions lead to different numbers of operations (and therefore take 
longer / shorter depending on their complexity)
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High-Level Overview (Single Cycle Datapath)
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Can We Do Better?

• What limitations do you see with the multi-cycle design?

• Limited concurrency
• Some hardware resources are idle during different phases of instruction 

processing cycle

• “Fetch” logic is idle when an instruction is being “decoded” or “executed”

• Most of the datapath is idle when a memory access is happening



Can We Use the Idle Hardware to Improve Concurrency?

• Goal: More concurrency → Higher instruction throughput (i.e., more 
“work” completed in one cycle)

• Idea: When an instruction is using some resources in its processing phase, 
process other instructions on idle resources not needed by that 
instruction
• E.g., when an instruction is being decoded, fetch the next instruction

• E.g., when an instruction is being executed, decode another instruction

• E.g., when an instruction is accessing data memory (ld/st), execute the next 
instruction

• E.g., when an instruction is writing its result into the register file, access data 
memory for the next instruction



Pipelining



Pipelining 
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Pipelining: Basic Idea
• More systematically:

• Pipeline the execution of multiple instructions

• Analogy: “Assembly line processing” of instructions

• Idea:
• Divide the instruction processing cycle into distinct “stages” of processing

• Ensure there are enough hardware resources to process one instruction in 
each stage

• Process a different instruction in each stage
• Instructions consecutive in program order are processed in consecutive stages

• Benefit: Increases instruction processing throughput 

• Downside: Start thinking about this…



Example: Execution of Four Independent ADDs (no memory needed)

• Multi-cycle: 4 cycles per instruction

• Pipelined: 4 cycles per 4 instructions (steady state)

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

Is life always this beautiful?



The Laundry Analogy 

• “place one dirty load of clothes in the washer”

• “when the washer is finished, place the wet load in the dryer”

• “when the dryer is finished, take out the dry load and fold”

• “when folding is finished, ask your roommate (??) to put the clothes away”

- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

Time
76 PM 8 9 10 11 12 1 2 AM
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Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task 

order

Task 
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry
Time
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- latency per load is the same

- throughput increased by 4

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Pipelining Multiple Loads of Laundry: In Practice
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the slowest step decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Pipelining Multiple Loads of Laundry: In Practice



An Ideal Pipeline
• Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

• Repetition of identical operations
• The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)

• Repetition of independent operations
• No dependencies between repeated operations

• Uniformly partitionable suboperations
• Processing can be evenly divided into uniform-latency 

suboperations (that do not share resources)

• Fitting examples: automobile assembly line, doing laundry



Ideal Pipelining

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)



More Realistic Pipeline: Throughput
• Nonpipelined version with delay T 

BW = 1/(T+S) where S = register delay

• k-stage pipelined version
BWk-stage = 1 / (T/k +S )
BWmax = 1 / (1 gate delay + S )

T ps

T/k
ps

T/k
ps

Register delay reduces throughput

(switching overhead between stages)



More Realistic Pipeline: Cost
• Nonpipelined version with combinational cost G 

Cost = G+L where L = register cost

• k-stage pipelined version

Costk-stage = G + Lk 

G gates

G/k G/k

Registers increase hardware cost



Pipelining Instruction 
Processing
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The Instruction Processing Cycle

1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Instruction Pipeline Throughput
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Program 

execution 
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5-stage speedup is 4, not 5 as predicted by the ideal model. 
(We complete an instruction every 200ps instead of every 800ps)
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Illustrating Pipeline Operation: Operation View
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Illustrating Pipeline Operation: Resource View
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Control Signals in a Pipeline
• For a given instruction

• same control signals as single-cycle, but

• control signals required at different cycles, depending on stage

Option 1: decode once using the same logic as single-cycle and buffer 
signals until consumed

Option 2: carry relevant “instruction word/field” down the pipeline and 
decode locally within each or in a previous stage
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Remember: An Ideal Pipeline
• Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

• Repetition of identical operations
• The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)

• Repetition of independent operations
• No dependencies between repeated operations

• Uniformly partitionable suboperations
• Processing an be evenly divided into uniform-latency suboperations

(that do not share resources)

• Fitting examples: automobile assembly line, doing laundry



Instruction Pipeline: Not An Ideal Pipeline
◼Identical operations ... NOT! 
 different instructions → not all need the same stages

Forcing different instructions to go through the same pipe stages
→ external fragmentation (some pipe stages idle for some instructions)

◼Independent operations ... NOT!
 instructions are not independent of each other

Need to detect and resolve inter-instruction dependencies to ensure the 
pipeline provides correct results
→ pipeline stalls (pipeline is not always moving)

◼Uniform suboperations ...  NOT! 
 different pipeline stages → not the same latency

Need to force each stage to be controlled by the same clock
→ internal fragmentation (some pipe stages are too fast but all take the 

same clock cycle time)



Issues in Pipeline Design
• Balancing work in pipeline stages

• How many stages and what is done in each stage

• Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow
• Handling dependences 

• Data

• Control

• Handling resource contention

• Handling long-latency (multi-cycle) operations

• Handling exceptions, interrupts



Causes of Pipeline Stalls
• Stall: A condition when the pipeline stops moving

• We need to stall the pipeline if either a needed resource or 
data value is not available

• Resource is not available 
• Resource contention (e.g. caused by long-latency (multi-cycle) 

operations)

• Data is not available 
• Dependences between instructions (also called “dependency” or 

“hazard”)
• Data
• Control



Data Dependence Handling



Read-After-Write Dependency

r3  r1 op  r2 Read-after-Write
r5  r3 op  r4 (RAW)



RAW Dependence Handling

• Which one of the following flow dependences lead to 
conflicts in the 5-stage pipeline?
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Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence
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Pipeline Stall: Resolving Data Dependence
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Stall = make the dependent instruction 
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages



Example of Dependence Detection

• Scoreboarding
• Each register in register file has a Valid bit associated 

with it

• An instruction that is writing to the register resets the 
Valid bit

• An instruction in Decode stage checks if all its source 
registers are Valid
• Yes: No need to stall… No dependence

• No: Stall the instruction



Once You Detect the Dependence in Hardware

• What do you do?

• Option 1: Stall the dependent instruction right away

• Option 2: Stall the dependent instruction only when 
necessary → data forwarding/bypassing

• Option 3: …
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Data Forwarding/Bypassing

• Problem: A consumer (dependent) instruction has to wait in 
decode stage until the producer instruction writes its value 
in the register file

• Goal: We do not want to stall the pipeline unnecessarily

• Observation: The data value needed by the consumer 
instruction can be supplied directly from a later stage in the 
pipeline (instead of only from the register file)

• Idea: Add additional dependence check logic and data 
forwarding paths (buses) to supply the producer’s value to 
the consumer right after the value is available

• Benefit: Consumer can move in the pipeline until the point 
the value can be supplied → less stalling



RAW Data Dependence Example
One instruction writes a register (s8) and next 

instructions read this register => read after write (RAW) 
dependence. 
• add writes into s8 in cycle 5

• sub requires to read s8 on cycle 3

• or requires to read s8 on cycle 4

• and requires to read s8 in cycle 5

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.] 



Data Forwarding
• Also called Data Bypassing

• Forward the result value to the dependent instruction                 
as soon as the value is available

• Basic Idea
• Data values are supplied to dependent instruction as soon as 

it is available

• Instruction executes when all its operands are available



Data Forwarding

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.] 



Data Forwarding

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.] 



Stalling

• Forwarding is sufficient to resolve RAW data dependences

• but …There are cases when forwarding is not possible due to pipeline design 
and instruction latencies

• The lw instruction does not finish reading data until the end of the Memory 
stage, 

• Therefore its result cannot be forwarded to the Execute stage of the next 
instruction. 

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.] 



Stalling

Figure from [Digital Design and Computer Architecture, Harris&Harris, COPYRIGHT 2022 Elsevier. ALL RIGHTS RESERVED.] 



Watch the Operations of the Hardware while 
executing your code - QTRVSIM

Visit https://comparch.edu.cvut.cz/qtrvsim/app/ or use qtrvsim in your 
virtual machine

in order to visualize how a sequence 
of instructions becomes executed

www.iaik.tugraz.at
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Note: This simulation 
performs incorrect 

computations in case 
of hazards!!!  

This simulation has a 
hazard unit and 

implements data 
forwarding

https://comparch.edu.cvut.cz/qtrvsim/app/


Data Forwarding Paths in QTRVSIM 

www.iaik.tugraz.at
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