
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2022/2023

Stefan Mangard, www.iaik.tugraz.at

Chapter 3 – State Machines

Important Note:

Different lecture
time next week!

25.10.2022
18:00 – 20:15

i13

Sequential Circuits

(How to store data)

www.iaik.tugraz.at

2

From Combinational Circuits to Sequential
Circuits

• The circuits that we have discussed so far did not contain storage

• A change of an input has directly led to a change at the output

• We now build storage elements from logic gates
• The basic idea to achieve storage is to create a feedback loop

www.iaik.tugraz.at

3

A Simple Set-Reset Latch (NOR Version)

www.iaik.tugraz.at

4

Set

Enable

Reset

We set the “set” input

www.iaik.tugraz.at

5

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

We release the “set” input

www.iaik.tugraz.at

6

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

The feedback loop
is in a stable state;
The output value is
kept – even if the
“set” input is set to
0

We set the “reset” input

www.iaik.tugraz.at

7

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

We release the “reset” input

www.iaik.tugraz.at

8

Set

Enable

Reset

Again, the output
value is kept

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

Illegal Action: We set “Set” and “Reset”

www.iaik.tugraz.at

9

Set

Enable

Reset

Truth Table of NOR
a b q
0 0 1
0 1 0
1 0 0
1 1 0

Invalid output state

Combining Computation and Storage

• There are many ways to combine gates for computation and for storage

→ It has turned out that only few scale to large circuit designs

• Nearly all digital circuits are built as synchronous circuits with a global clock
signal

→ These circuits don’t use latches as storage, but Flip-Flops that are
connected to a clock signal

→ This course focuses on synchronous circuits only

• There is also a design methodology for asynchronous circuits (self-timed
circuits), but they are a nice topic

10

Flip-Flop based on CMOS Gates

11
Note: A flip-flop simply consists of two latches

Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Flip-Flop

Clock

output

data input

12

Storage

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Flip-Flop

Clock

output

data input

• The flip-flop sets output = input when the
clock switches from low to high;

• In all other cases, the input is ignored; the
last “sampled” value is kept at the output

Clock

13

Create a Flip-Flop in
DIGITAL and play
with the inputs in
order to learn the

behavior

Naming Conventions

• Flip-Flop: A 1-bit storage sampling data on the rising clock edge

• Register: An n-bit storage sampling data on the rising clock edge

14

Combining

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers
Combinational

Circuit

Data Input

Data Output

15

Example Counter

(“Vdd”, “high”, “1”)

(“GND”, “low”, “0”)

Registers +1

Data Output

16

Data Input

Example Counter

Registers +1

Data Output

Register 0 1 2 3 4 5 6 7 …..

Clock

17

Let’s Build This in SystemVerilog

• See example con03.01_addsub

https://extgit.iaik.tugraz.at/con/examples-2022.git

18

https://extgit.iaik.tugraz.at/con/examples-2021.git

The Clock Frequency

• Can we increase the clock frequency arbitrarily?

• The clock frequency is limited by the time the combinational
circuit needs to compute its outputs.

• The critical path is the path with the longest propagation delay in
the combinational circuit. It defines the maximum clock rate

20

Registers
Combinational

Circuit

Data Input Data Output

Temperature, Power Consumption

• The higher the temperature, the slower the transistors
become and the lower becomes the maximum clock rate

→ The lower the temperature,
the higher clock rates are possible

• Why does a CPU produce heat?

• Every time a logic gate switches, NMOS and PMOS transistors are
open at the same time → there is a short current.

• Upon a switch, there is also current flowing to charge and discharge
parasitics

→ The more transistors are switching, the more heat is produced

21

Clock Frequency Too High

What happens, if the clock frequency is too high?

• The circuit stores an intermediate state of the combinational
circuit in the registers.

• The intermediate state depends on the physical layout, the
temperature, fabrication details, … → hard to predict;
overclocking a processor too much typically leads to a crash

22

Observations

• What we have discussed the basics of combinational and
sequential circuits

• In order to build large systems composed of registers and
combinational logic, we need a structured approach and more
tools and theory to describe our systems

23

Registers
Combinational

Circuit

Data Input

Data Output

State Machines

www.iaik.tugraz.at

24

Finite State Machines (FSMs)

• FSMs are the “work horse” in digital systems.

• We look at “synchronous” FSMs only:
• The “clock signal” controls the action over time

• FSMs can be described with three main “views”:
• The functional view with the “state diagram”

• The timing view with the “timing diagram”

• The structural view with the “logic circuit diagram”

25

www.iaik.tugraz.at

Time is Split in Discrete Slices for FSMs

i i+1 i+2i—1 i—2

0

1

clock
period

time

• Time is divided in discrete time slices – called clock cycles

• We call this time between two rising clock edges also “clock period”.

26

www.iaik.tugraz.at

Finite state machine (= automaton)

• A synchronous FSM is clocked by a clock signal (“clk”)

• In each clock period, the machine is in a defined (current) state.

• With each rising edge of the clock signal, the machine advances to a defined next state.

27

www.iaik.tugraz.at

FSM

clk

in out

The sequence of
states can be
defined in a
state diagram.

28

www.iaik.tugraz.at

State diagram:

We denote the
states with circles
and give them
symbolic names,
e.g. A, B, and C.

A

B

C

29

www.iaik.tugraz.at

State diagram:

We define one of
the states as the
initial state.

A

B

C

30

www.iaik.tugraz.at

In the beginning…

0

1

time

Initially, i.e. shortly after switching on the FSM and before the
first rising edge of clock, there is the initial period. In this period,
the FSM is in the “initial state”.

initial period

A

31

www.iaik.tugraz.at

State diagram:

With arrows we
define the sequence
of states.

A

B

C

32

www.iaik.tugraz.at

The sequence of
states can also
be defined in a
state transition
table.

A

B

C

present
state

A
B
C

next
state

B
C
A

33

www.iaik.tugraz.at

FSMs typically also have inputs influencing
the transition to the next state

A

B

Cin == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

34

www.iaik.tugraz.at

FSMs typically also have inputs influencing
the transition to the next state

A

B
C

in == 0

in == 1

next state = f(state, input)

In this example we see
that the one-bit input “in”
influences the choice of
the state after B.

The following state can also
be the same as the current state.

in == 0

in == 1

35

www.iaik.tugraz.at

The State Transition Table

A

B
C

in == 0

in == 1

in == 0

in == 1

present in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

36

www.iaik.tugraz.at

Timing Diagram – Example 1

0

1

B

clk

B CA CAstate

time

in
0

1

37

www.iaik.tugraz.at

A

B
C

in == 0

in == 1

in == 0

in == 1

Timing Diagram – Example 2

0

1

B

clk

A AC BAstate

time

in
0

1

38

www.iaik.tugraz.at

A

B
C

in == 0

in == 1

in == 0

in == 1

FSMs typically also have outputs

4

3
2

A

B C

in == 0

in == 1
output = f(state)

In this example the outputs are a function
of the state. We write the output
values into the circles.

We call such machines also
“Moore machines”:

in == 0

in == 1

39

www.iaik.tugraz.at

We define the outputs with the “output
function”

4

3
2

A

B

in == 0

in == 1

Moore machines:

output = f(state)

state output
A 4
B 3
C 2

C

in == 0

in == 1

40

www.iaik.tugraz.at

Timing Diagram – Example 3

0

1

B

clk

AC BAstate

time

in
0

1

out 4 3 2 4 3

41

www.iaik.tugraz.at

4

3
2

A

B

in == 0

in == 1
C

in == 0

in == 1

Mapping a State Diagram to Hardware

www.iaik.tugraz.at

42

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1 FSM

clk

in out

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

43

www.iaik.tugraz.at

Sequential Logic

(Storing the
current state
with a given

state encoding)

Combinational Logic

(mapping the
current state to next
state according the

state transition
table)

Sequential Logic

(Mapping the
current state to

the output
according the

output function)

State Encoding

www.iaik.tugraz.at

44

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1
state

A
B
C

encoding

00
01
10

We use binary enconding→ we
need two bits to encode the
three states A, B, C

State Transition Table

www.iaik.tugraz.at

45

present in next
state state

A 0 B
A 1 B
B 0 A
B 1 C
C 0 A
C 1 C

in == 1

4

3
2

A

B C

in == 0

in == 0

in == 1

“11” does not exist: We use “Don’t Care” as
the following state

46

present in next
s1 s0 s1 s0

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 x x
1 1 1 x x

www.iaik.tugraz.at

in == 1

4

3
2

A (00)

B (01) C (10)

in == 0

in == 0

in == 1

next s0 = ((~s1) & (~s0) & (~in)) | ((~s1) & (~s0) & in)

next s1 = ((~s1) & s0 & in) | (s1 & (~s0) & in)

Output Function

s1 s0 o2 o1 o0
0 0 1 0 0
0 1 0 1 1
1 0 0 1 0

47

www.iaik.tugraz.at

in == 1

4
(100)

3
(011) 2

(010)

B (01) C (10)

in == 0

in == 0

in == 1

A (00)

o2 = ~s1 & ~s0

o1 = (~s1 & s0) | (s1 & ~s0)

o0 = ~s1 & s0

Structural diagram of the FSM

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
|(s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

48

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

49

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

50

www.iaik.tugraz.at

Essence of Moore Machines

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

the state is
stored
in a register

a state transition is
caused by the
clock signal.

With “areset” we can
initialize the ASM
(“initial state”).

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

51

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the next-state function f
we compute the next state:
next state = f(state, input)

52

www.iaik.tugraz.at

Essence of Moore Machines

next s0 = (~s1 & ~s0 & ~in)
| (~s1

& ~s0 & in)

next s1 = (~s1 & s0 & in)
| (s1 & ~s0 & in)

clk

D1 Q1

Q0D0

areset

s0

s1

in

o2 = ~s1 & ~s0

o1 = (~s1 & s0)
| (s1 & ~s0)

o0 = ~s1 & s0

o2

o1

o0

With the output function we compute the
output values:

output = g(state)

53

www.iaik.tugraz.at

Implementation with Digital

54

www.iaik.tugraz.at

Coding Guidelines in SystemVerilog - Moore
Machines

next-
state
logic

state

clk

QD

areset

state_p

input

out-
put

logic

outputstate_n

55

www.iaik.tugraz.at

always_comb

Use Blocking Assignments
a = b;

always_ff @(posedge clk_i or posedge reset_i)

Use Non-Blocking Assignments
state_p <= state_n;

_o

_i

Always_comb

Use Blocking Assignments
a = b;

Modeling with SystemVerilog

www.iaik.tugraz.at

56

See example con03.03_moore_fsm

4

3
2

A

B C

in == 0

in == 1

in == 0

in == 1

There exist 2 types of machines - check out the
LITTLE but IMPORTANT difference

• Moore Machines
• next state = function of present state and input

• output = function of present state

• Mealy Machines
• next state = function of present state and input

• output = function of present state and input

57

www.iaik.tugraz.at

Essence of Moore Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

58

www.iaik.tugraz.at

Essence of Mealy Machines

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

output = g(state, input)

59

www.iaik.tugraz.at

An example for a Mealy Machine

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2

We write the output values
next to the transition arrows,
since the output depends not
only on the state, but can also
depend on the input.

C

in == 0

in == 1
out = 0

60

www.iaik.tugraz.at

The output function

A

B

in == 0
out = 3

in == 1
out = 1

out = 4

The output function can be derived from the state diagram.
output = g(state, input)

state in output
A 0 4
A 1 4
B 0 3
B 1 1
C 0 2
C 1 0

out = 2
in == 0

in == 1

out = 0
C

61

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A AC BAstate

time

in

Note how the value of “in” immediately influences the value of “out”.

0

1

out 4 3 2 4 3 41 3 1 0

62

www.iaik.tugraz.at

Modeling with SystemVerilog

www.iaik.tugraz.at

63

A

B

in == 0
out = 3

in == 1
out = 1

out = 4 out = 2
in == 0

in == 1
out = 0

C

See example con03.04_mealy_fsm

We can combine machines

• Combining Moore Machines causes no problem. We get another
Moore Machine.

• Combining a Moore Machine with a Mealy Machine causes also no
problem. We get a Moore Machine or a Mealy Machine.

• Combining two Mealy Machines can cause troubles: One needs to
avoid combinational loops!

64

www.iaik.tugraz.at

The combination of two Moore Machines creates
again a (more complex) Moore Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

65

www.iaik.tugraz.at

We can even connect More Machines in
a loop-like fashion

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

66

www.iaik.tugraz.at

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

67

www.iaik.tugraz.at

The combination of a Moore Machine with a Mealy Machine
creates a Moore Machine or a Mealy Machine

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

68

www.iaik.tugraz.at

The combination of two Mealy Machines is “dangerous”:
You need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

69

www.iaik.tugraz.at

The combination of two Mealy Machines is “dangerous”: You
need to avoid “combinational loops”

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

next-
state
logic

state

clk

QD

areset

state

input

out-
put

logic

outputnext
state

70

www.iaik.tugraz.at

Summary

• All digital logic can in principle be built with Moore Machines and
Mealy Machines.

• You always start by defining the function with a state diagram.

• If you choose values for the input signal(s), then you can derive the
timing diagram by using the state diagram.

• From a state diagram, you can always derive a circuit diagram.

71

www.iaik.tugraz.at

Algorithmic State Machines

72

www.iaik.tugraz.at

Algorithmic State Machines (ASMs)

• ASMs are a useful extension to finite state machines

• ASMs allow to specify a system consisting of a data path together
with its control logic

• All FSM state diagrams have an equivalent ASM diagram

73

www.iaik.tugraz.at

FSM state diagram → ASM diagrams

4

3
2

B

Cin == 0

in == 1

out = 4A

out = 3

out = 2

in

1

A

B

C

0

74

www.iaik.tugraz.at

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

75

www.iaik.tugraz.at

Mealy Machines

A

B

C
in == 0
out = 3

in == 1
out = 1

out = 4
out = 2

out = 4

out = 2

in
1

A

B

C

0

out = 1 out = 3

76

www.iaik.tugraz.at

ASM diagram with two register-transfer
statements

out = 4
X 0

out = 3

out = 2
X X + 1

in

1

A

B

C

0

The value stored in register X gets 0
at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B.

77

www.iaik.tugraz.at

Register-Transfer Statements

• Register-transfer statements define the change of a value stored in a
register.

• Values in registers can only change at the active (= rising) edge of clock.

• We denote “register-transfer statements” with a “left arrow” (“”)

• Example: “a x” means that the value in the register “a” gets the value
of “x” at the “next” active (= rising) edge of clock.

• We can specify register-transfer statement in an ASM diagram.

78

www.iaik.tugraz.at

“=“ versus “”

• With the equal sign (“=“) we denote that the output of the FSM has a
certain value during a particular state.

• With the left-arrow (“”) we denote a register-transfer statement:
The register value left of the arrow changes to whatever is defined
right of the arrow upon the next active (= rising) edge of clock.

79

www.iaik.tugraz.at

Timing diagram

0

1

B

clk

A BC BAstate

in
0

1

out 4 3 2 4 3 3

X ? 0 0 1 0 0

80

www.iaik.tugraz.at

out = 4
X 0

out = 3

out = 2
X X + 1

in

1

A

B

C

0

Several register-transfer statements can
be specified within one state

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

81

www.iaik.tugraz.at

Several register-transfer statements can
be specified within one state

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

The values stored in register X and
register Y become 0 at the state transition
from state A to state B.

The value in register X gets incremented
at the state transition following state C.
Register Y gets the “old” value from X; i.e
the value before X gets incremented.

The value in register X does not change
upon leaving state B. The value stored in
register Y gets the value of register X upon
leaving state B.

82

www.iaik.tugraz.at

Separating Control and Data Path

83

www.iaik.tugraz.at

Control Unit

• State machine generating
control signals for the data
path

www.iaik.tugraz.at

84

Data Path
• Contains all functional units and

registers related to data processing

• Receives control signals to perform
operations on the data.

• Provides status signals to the control-
related data to the control unit

“Piano Player” “Piano”

www.iaik.tugraz.at

85

Music

Data Path

implementing
the actions on

X, Y

Control

defines when
what action
should be
performed

Control Signals

provided by
data path to

perform actions
on X and Y

Register-Transfer Statements Define the Data Path

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

X 0
X X
X X+ 1

Y 0
Y X

Operations for register X:

Operations for register Y:

86

www.iaik.tugraz.at

These are the actions that our system is able to perform on
The data registers X and Y

Register-Transfer Statements Define the Data Path

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

X 0
X X
X X+ 1

Y 0
Y X

Operations for register X:

Operations for register Y:

87

www.iaik.tugraz.at

These are the operations that our data path implements

Operations for register X

Case 0: X X
Case 1: X X+ 1
Case 2: X 0

We need to distinguish
between 3 cases.

88

www.iaik.tugraz.at

→ A one bit control signal is not enough. We need two control signals.

Control Signals and Datapath for the Actions
on Register X

clrx incx action
0 0 X X
0 1 X X+ 1
1 0 X 0

89

www.iaik.tugraz.at

Control Signals and Datapath for the Actions
on Register Y

clry ldy action
0 0 Y Y
0 1 Y X
1 0 Y 0

90

www.iaik.tugraz.at

The Datapath

91

www.iaik.tugraz.at

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

Register-transfer statements become assignment of
control signals in the controller

out = 4
X 0
Y 0

out = 3
Y X

out = 2
X X + 1

Y X

in

1

A

B

C

0

92

www.iaik.tugraz.at

out = 4
clrx = 1
clry = 1

out = 3
ldy = 1

out = 2
incx = 1
ldy = 1

in

1

A

B

C

0

The Control Logic in SystemVerilog

93

www.iaik.tugraz.at

See example con03.05_asm_example_with_separate_datapath

Appendix - SystemVerilog Coding Style

• Suffix _o for module outputs, _i for module inputs

• Register variables with suffix _p for previous and _n for next value

• Array range with [MSB:LSB], like e.g. [31:0]

• Clocked processes use non-blocking (<=) others use blocking assignments (=)

• Clocked processes only update registers,
everything else has to be done in combinational blocks

• Filename corresponds to module name: module MyDesign in file mydesign.sv

• Module instantiation always with named assignments (.A(C))

• With significant implications beyond style:
• Always use default assignments (e.g. state_n = state_p)
• Always use default branches (default:) in case statements
→ If you do not assign the output of a combinational block for all input conditions, latches are created for data
storage!

