
Model Checking Practicals:

Assignment 1 - Warmup v1.1

March 20, 2023

1 Assignment Summary

The goal of the first exercise in the model checking practicals is to get familiar
with the SMT solver Z3 and hardware circuits in Verilog. In this exercise, you
will check properties of simple C programs, either finding and fixing bugs or
proving they are correct, write small state machines in Verilog, and apply a
half-automated BMC algorithm to a hardware implementation.

You should have already received GIT repositories in which you will imple-
ment all of the exercises. Submissions are done directly in the repository, by
creating and pushing tags. The preliminary submission deadline is Sunday 9th
of April end-of-day. We provide question hours every Thursday from 18:00
to 19:00 during the practicals timeslot. You can also ask questions using at
any time on Discord. We will try to provide feedback on the assignment until
Thursday 20th of April. The rest of the document provides more details.

2 Setup

You should have received an email that grants you access to a GIT repository
intended for the model checking exercises with some group number XX. The
repository we provide you with is empty. Therefore, as a first step, you have
to declare our template repository as your upstream, and pull the framework
we provide from there. Any improvements or fixes will be published in that
repository and we will notify you as soon as possible.

First, we suggest that you set up an SSH key to make everything easier.
GitLab provides a good tutorial. First, clone your repository from our GIT
server, declare the upstream remote and pull the framework. For group number
XX, you should do something like this:

URL1="https :// git.teaching.iaik.tugraz.at/mc23/mc23gXX"

URL2="https :// extgit.iaik.tugraz.at/scos/scos.teaching/mc/mc2023.

git"

git clone $URL1

cd mc23gXX

git remote add upstream $URL2

1

https://docs.gitlab.com/ee/ssh/#generate-an-ssh-key-pair

git pull upstream master

git push origin master

./ mk_submodules.sh

After implementing everything, you submit the solution by running:

git tag "warmup"

git push origin "warmup"

3 Template

After setting up the repository and pulling from the upstream and building the
submodules, you should have everything you need to implement the tasks. For
this assingment, you will primarily work in the warmup directory. Inside, there
is a CMakeLists.txt file which is used by CMake to generate the makefiles that
will build your implementations. You should create a build directory here and
configure it when you start working on the tasks.

mkdir build && cd build

cmake ..

Afterwards, you should be able to just call make inside the build directory to
compile your implementation. Most importantly, all the tasks in this assignment
have files and targets associated with them. Inside, there is usually a clearly
marked part of the implementation you are supposed to complete. You should
only edit those parts so as not to break unrelated parts of the code, or our
semi-automated testing.

Figure 1: Example Minesweeper game state

2

4 Task 1: Minesweeper [10 Points]

In the first task, your goal is to get acquainted with Z3 and using it to solve
a fun puzzle game. Minesweeper is a pre-installed game on many Windows
operating systems and Linux desktop environments. The game is set up on a
n× n grid, where initially all fields are hidden. After opening up a field, it can
either be a mine, a number, or empty. Opening a mine means that the game is
over and that the player lost. A filed with number m means that, out of the 8
neighboring fields there are m mines. If the player clears all non-mine fields, the
player wins the game and can enter their name on the scoreboard. An example
of a Minesweeper field is shown in Figure 1.

In this exercise, we will consider Minesweeper games that have already been
started. Using the current game state, your task is to determine all fields are safe
(guaranteed to not be a mine), as well as all fields that are deadly (guaranteed
to contain a mine) using Z3. At the end, your implementation is supposed to
output the state of the game, where all safe and deadly fields (which have not
already been uncovered) are marked appropriately. Implement the functionality
inside the file mines.cpp. Below, we discuss the details of the implementation,
which should serve as a guide on how to solve the task.

4.1 Input and Output

Your program will receive input in the format shown in Listing 1. Each character
represents a field in the Minesweeper game state. Numbers represent fields
that are either empty or contain a number indicating neighboring mines, the
character ? represents an unopened field. The output of your implementation
is going to label all safe unopened fields with S and all deadly fields with D,
keeping the same format otherwise.

00001?100

000011100

000000000

111001110

??1002?20

??3323?20

???????21

?????????

?????????

Listing 1: Example input corresponding to Figure 1

4.2 Modeling

In order to solve this problem with Z3, you will need to model the state of
the game. As a first step, before doing anything else, you have to create a
variable context and solver with z3::context and z3::solver. You can think

3

of a context as the variable storage, which tells the solver which variables exist,
their name and types. The solver itself only contains the constraints you provide.

Since the game state is organized as a two-dimensional array of fields, you will
need to do something similar in the modelling with Z3. Here, we suggest that you
create a two-dimensional array of Z3 variables (unknowns), each representing
whether the corresponding field is a mine or not.

This is the task of the context. Confusingly, Z3 variables of integer, Boolean
and bit vector types are created with the functions z3::context::int const,
z3::context::bool const, or z3::context::bv const. Real constants that
are fixed and not decided by the solver are defined with z3::context::int val,
z3::context::bool val, or z3::context::bv val. The context will return a
z3::expr expression representing your variable. In general, working with the
solver will involve creating and manipulating z3::expr objects.

In this task, it is easiest for you to use integer variables, whereas other tasks
and the upcoming assignments focus much more on Booleans and bit vectors.

4.3 Constraints

After creating all the variables needed to represent the state of the game, it is
necessary to constrain them to reasonable values. In this case, each field can
either contain a mine or not contain a mine. Therefore, constrain each variable
so it can only be set to the values 1 (mine) and 0 (no mine).

With the Z3 API for C++ it is extremely easy to formulate all kinds of
constraints. All C++ operators are overloaded in various ways to enable easier
manipulation of expressions stored in z3::expr objects. This includes arith-
metic operators like + and -, as well as logical operators like !, ==, || and &&.
However, you have to be careful about the typing, because the type system of
the expressions is dynamic, and you might get errors at runtime. For example
adding a variable created with z3::context::int const to another variable
created with z3::context::bv const would crash your program. Same goes
for addition of Boolean expressions, or negation of integer expressions.

In order to constrain your variables to be either 0 or 1, you should use
the equivalence operator == and logical or operator || to create corresponding
expressions. For already open fields, we know that they do not contain a mine,
so create expressions that force the variable to equal 0 instead. To actually tell
the solver that it needs to satisfy the constraints, you have to call the function
z3::solver::add with the Boolean expressions you just created.

Finally, the most complex rule in Minesweeper concerns open fields that
contain a number. The number in the field represents the number of surrounding
fields that contain mines. In order to encode this for the solver, create a sum
of all variables surrounding an opened number, and tell the solver that the sum
must equal the desired number of mines. After adding the expression into the
solver with z3::solver::add, you have finished encoding the rules of the game.

4

4.4 Iterative Solving

After creating the variables and constraints of the game, it is time to let Z3
solve the problem we are interested in. As stated previously, a field is safe if
it is guaranteed to not contain a mine. This means that there is no possible
assignment the solver could come up with, that places a 1 (mine) into the given
variable (field). That is, you have to create a constraint saying the variable is
equal to 1, and then check if the solver is able to satisfy all constraints. If it is
not, the field is safe. A similar argument can be made for fields that are deadly,
so guaranteed to be a mine.

Since there are many unopened fields we are interested in, we want to only
temporarily add such assumption constraints into the solver. The Z3 API en-
ables this with the functions z3::solver::push and z3::solver::pop. Calling
push, creates a new solving frame and any constraints you add into the solver
later, are only temporary. All constraints added after the last push are removed
when calling pop. Therefore, whenever you want to check an unopened field,
first do a push, add your constraints, let the solver check them, and then pop
them again.

Actually solving the formula that we added into the solver is done with
z3::solver::check. If the problem is satisfiable, the solver will return the
value z3::check result::sat and z3::check result::unsat otherwise.

4.5 Looking at Solutions

If you are interested in the solution Z3 came up with if the problem is satisfiable,
it provides a model assigning values to all variables. You can obtain the model
with z3::solver::get model and then evaluate variables or even expressions
with z3::model::eval. However, when evaluating an unbounded integer, or
any other Z3 type for that matter, the model will return an immutable value
of the appropriate Z3 type. In the case of integers, they can be converted back
into C++ integers with e.g., z3::expr::get numeral int64.

5 Task 2: Absolute [10 Points]

In this task, you will use the Z3 solver for something more useful than games.
More precisely, we want to actually verify that a function implemented in C is
correct for any input we give it. For this purpose, you have to manually edit
the code of the function so that the variables it uses are symbolic Z3 variables
which the solver can then pick and try to break the guarantees provided in the
program. That is, you must construct a problem for Z3 in such a way, that
when it has a solution, we know that the implementation in C has a bug, and
the solution is actually a counterexample. The greatest takeaway of this task
should be the concept of single static assignments and property checking. In
this task, you have to do the modelling once with Z3 integers and once with
Z3 bit vectors. Most of the implementation is common, whether the variables
are integers or bit vectors. The shared part of your implementation should be

5

implemented in absolute-shared.cpp, while the type specific parts are to be
implemented in absolute-bv.cpp and absolute-int.cpp. Your implementa-
tion should only print the verification result. If the program is correct, print
”correct”, otherwise print ”bug: arr = {numbers...}”. Your implementation will
be checked automatically and manually. Below, we have prepared a guide on
how to properly transform the C code and perform the verification. In any case,
we highly recommend that you use the provided SSA datastructure ssa info

and keep the bulk of your changes inside the absolute sum and test functions
in absolute-shared.cpp.

5.1 Target

The function we want to verify is implemented in C and computes the sum of
absolute values in an array.

int sum = 0;

for (int i = 0; i < ARRAY_LENGTH; ++i) {

if(arr[i] < 0){ sum -= arr[i]; }

else { sum += arr[i]; }

}

At the end of the execution, we expect the found elements to fulfill certain
properties. In the original C code, these were written using assertions.

for (int i = 0; i < ARRAY_LENGTH; ++i)

assert(sum >= arr[i]);

5.2 Single Static Assignment

First, we must determine which variables in the function have fixed values and
which ones can change in each execution of the function. When doing this, we
see that the variable int i does not depend on the symbolic input. In contrast,
the int sum depends on the inputs, which can change every time.

Single static assignment is a way of writing programs so that each variable
is only assigned one time and always to the same expression. This is something
we have to do in order to transform the program into a formula for Z3.

We do this as follows. Every time a new variable is created in C, we create
a new Z3 variable. Afterwards, every time the variable is assigned in C, we first
create a new temporary Z3 variable, and turn the assignment into an equality
that is given to Z3 as a constraint. This is illustrated in the following program
excerpt. You should do the same for this task.

int x = 0; // create var. x_0 , assert x_0 == 0

x += 3; // create var. x_1 , assert x_1 == x_0 + 3

x = x * x - 5; // create var. x_2 , assert x_2 == x_1 * x_1 - 5

When doing verification, we have to model the input array using Z3 symbolic
variables. For the modeling part of this task, you should use Z3 integers when

6

implementing the task in absolute-int.cpp and bit vectors when implementing
the task in absolute-bv.cpp.

Create a variable of appropriate type for all elements of arr, as well as sum.
Now, apply the single-static transformation, but only on the Z3 variables. Any
time a symbolic variable would be overwritten, create a new one and constrain it
appropriately with ==. One problem you will encounter are if statements that
take symbolic variables as input. Each time you encounter such a situation,
you have to translate both branches just like before. Then, for each variable
that is assigned in either branch, create copies that represent the value after
the if executes. At that point, the value of the variable will be either the final
value in the then branch or the final value in the else branch, depending on the
condition. You can encode this using z3::ite. Here is an example that should
make this clear.

// create var. x_0 and y_0

if (x < 7) // create var. cond , assert cond == x_0 < 7

{ y = x; } // create var. y_1 , assert y_1 == x_0

else

{ x = -5; } // create var. x_1 , assert x_1 == -5

// create var. x_2 and y_2

// assert x_2 == z3:: ite(cond , x_0 , x_1)

// assert y_2 == z3:: ite(cond , y_1 , y_0)

5.3 Guarantees

After transforming the implementation, you have to transform the guarantees
as well. In particular, every assert in the program describes the negation of
a bad property. That is, if all asserts succeed, and none of them crash the
program, everything is fine. On the contrary, if even one assert does not hold,
the program crashes, and we have found a bug. The same is true when verifying.
You essentially collect all of the negated assert statements, and then add their
logical disjunction into the solver. In Z3, you can negate expressions with the
! operator, and create disjunctions with z3::mk or. The argument to this
function is a z3::expr vector you have to prepare beforehand.

Finally, if you run your symbolic version of the algorithm and give it to the
solver for checking. If the formula you gave it is unsatisfiable, it means that
the solver was not able to find a violation of the assertions, no matter what the
inputs are. Therefore, print ”correct” to the output. Otherwise, if the solver
finds a solution, it has found a bug. In that case, get the satisfying model and
print the original contents of arr as described before.

6 Task 3: Hardware Modeling [10 Points]

The last task of this assignment concerns hardware, and in particular, modeling
of hardware with Z3. The goal of this task is to familiarize you with the hardware
execution model, the way we can symbolically represent hardware in order to

7

check if certain properties are fulfilled. Most importantly, however, you should
get a feeling for unrolling hardware over its transition function.

More concretely, in this task, you are given a hardware module, and you have
to model the functions of every single wire in the hardware module. Afterwards,
you should unroll the hardware and check whether it satisfies safety constraints
within the first five cycles. All of the work you do for this exercise will be
inside counter.cpp. Additionally, you have to submit counter-protocol.md

where you describe what you implemented, as well as the responses of Z3 when
checking the satisfiability of the generated formulas. In the following, we provide
a guide on how to tackle this exercise.

6.1 Hardware

The hardware we are looking at in this example is a simple counter module
implemented in counter.v. The counter has an internal 4-bit wide register cnt
which it uses as an accumulator. Furthermore, the module has a 4-bit input
add which represents by how much the counter is supposed to increase in each
clock cycle. Finally, the rst signal tells the module to clear the contents of
cnt instead of updating them. An excerpt of the corresponding Verilog code is
shown below.

initial cnt = 0;

always @(posedge clk) begin

cnt <= cnt + add;

if (rst) cnt <= 0;

end

For safety reasons, we want to make sure that cnt never reaches the value
8 at which point the system crashes. Similarly, we know that the input add is
always driven in a such a way that the upper 2 bits are always 0. This is written
in Verilog as:

assert property (cnt != 4’b1000);

assume property (add [3:2] == 2’b00);

The shown hardware implementation can be broken down into several pieces.
Every hardware implementation operates on some kind of state. For our pur-
poses, the state of a circuit is defined by its inputs and register values in any
given clock cycle. This is something we have to model symbolically. For this
purpose, we have provided you with the state store data structure, which the
name of a state component onto its symbolic value. In the implementation, you
will have to manipulate this data structure in various ways. In particular, you
will have to implement the function create state, which constructs the state
using std::map::emplace in a given clock cycle. The symbolic values of state
elements can similarly be retrieved with std::map::at.

Another piece of the implementation is the next-state function. That is,
the function which describes how states are updated whenever the clock has a
positive edge. In this example, this only concerns the cnt register. You have
to implement this functionality inside the given get trans function. Finally,

8

there are all the assumptions and assertions that must be modeled. You will
implement them as part of init state, get asserts and get assumes.

6.2 Unrolling

For the unrolling part of the implementation, you must create a new state,
constrain it with the transition function and the environmental assumptions.
Checking whether the assertion can be violated involves adding the negated
assertion into the solver and checking satisfiability. If Z3 says the problem is
satisfiable, it will provide a counterexample. Otherwise, assuming we unrolled
n times, we know that there cannot be a violation within the first n cycles.

However, after adding the negated assertion and getting an unsatisfiable
result, the solver is essentially poluted, and no matter what you do, it will always
return UNSAT. This issue can be mitigated by using incremental solving. In Z3,
anything added to the solver after calling a z3::solver::push will be reverted
when calling z3::solver::pop. You should use this to your advantage for the
unrolling portion of the task.

7 Errata

7.1 Version v1

Initial release of the assignment

7.2 Version v1.1

Formatting changes, added clarifications, fixed typos

� cleared up that deadline is on a Sunday

� added highlighting to bash, C and Verilog syntax

� added clarification about implementation of absolute

� changed typo in Task 3, from [2:1] to [3:2].

9

	Assignment Summary
	Setup
	Template
	Task 1: Minesweeper [10 Points]
	Input and Output
	Modeling
	Constraints
	Iterative Solving
	Looking at Solutions

	Task 2: Absolute [10 Points]
	Target
	Single Static Assignment
	Guarantees

	Task 3: Hardware Modeling [10 Points]
	Hardware
	Unrolling

	Errata
	Version v1
	Version v1.1

