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• A family of cryptographic functions that map an n-bit plaintext block into n-bit 

ciphertext block.
• It is parameterized by its key bit length, K.



Advanced Encryption Standard (AES)

• AES selection is initiated in 1997 by NIST.

• Goal: Finding a successor to Data Encryption Standard (DES).
• Insecure against brute-force attacks.

• Fixes lead to inefficient implementations (e.g. Triple DES).

• New ways of assessing cipher strength.

• An open process

• Requirements:

• Block size: 128-bit.
• Key sizes: 128/192/256-bit.

• Efficient hardware and software implementations.



Advanced Encryption Standard (AES)

AESIn Out

K

128 128

128/192/256

Key Length (K) Nr

128 10

192 12

256 14

• Rijndael is selected as AES in 2000.

• 128-bit symmetric block cipher.
• Proposed by Joan Daemen and Vincent Rijmen.



AES Overview

• 128-bit (16 bytes) input is arranged into a 4x4 matrix in column-major order.
• Each matrix entry is an element of GF(28) with x8+x4+x3+x+1.

𝑎0,0, 𝑎1,0, 𝑎2,0, 𝑎3,0, 𝑎0,1, 𝑎1,1, 𝑎2,1, 𝑎3,1, 𝑎0,2, 𝑎1,2, 𝑎2,2, 𝑎3,2, 𝑎0,3, 𝑎1,3, 𝑎2,3, 𝑎3,3

Column#1 Column#2 Column#3 Column#4



AES Overview

• 128-bit (16 bytes) input is arranged into a 4x4 matrix in column-major order.
• Each matrix entry is an element of GF(28) with x8+x4+x3+x+1.

𝑎0,0, 𝑎1,0, 𝑎2,0, 𝑎3,0, 𝑎0,1, 𝑎1,1, 𝑎2,1, 𝑎3,1, 𝑎0,2, 𝑎1,2, 𝑎2,2, 𝑎3,2, 𝑎0,3, 𝑎1,3, 𝑎2,3, 𝑎3,3

Column#1 Column#2 Column#3 Column#4



AES Overview

• Rijndael has four main operations:

• AddRoundKey: XORing the block with the round key.
• SubBytes: Substitute a byte with another byte.

• ShiftRows: Each row of the block is rotated.

• MixColumns: Each column of the block is multiplied with a polynomial.

• Rijndael has a key scheduling mechanism.

• Rijndael has three steps:

• Initialization/Initial transformation.
• Cipher round.
• Final round/Final transformation.



AES Encryption
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AES Decryption

Round operations

AddRoundKey
Inv MixColumns

Inv ShiftRows
Inv SubBytes

State
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Key Addition Layer

AddRoundKey
Inv ShiftRows
Inv SubBytes

In

Out

Cipher Rounds 
(1 … Nr -1)



Arithmetic in GF(28)

• GF(2k) is a Galois field of 2k elements.
• Also called binary fields.

• GF(2k) elements in polynomial basis
• x is the root of k-degree irreducible polynomial over GF(2)
• Then, every element can be represented as a linear sum of powers of x.

E = (Ek-1Ek-2 … E1E0) = Ek-1xk-1 + Ek-2xk-2 + … + E1x + E0

Ei: {0, 1}

• AES is using GF(28) with irreducible polynomial x8 + x4 + x3 + x + 1.



Arithmetic in GF(28): Addition

• Addition in GF(28) with irreducible polynomial x8 + x4 + x3 + x + 1.
• GF(2) addition of the individual bits.
• GF(2) addition corresponds to the XOR operation in Boolean logic.

• A, B, C in GF(28):

Ci = Ai + Bi (mod 2), for i = 0, …, k-1

• Subtraction is the same as addition

A0 B0

C0

Ak-1Bk-1

Ck-1

...



Arithmetic in GF(28): Multiplication

• Multiplication in GF(28) with irreducible polynomial x8 + x4 + x3 + x + 1.
• Polynomial multiplication (each coefficient is in GF(2)).
• Reduction with irreducible polynomial.

• Example:

201 . 2 = (11001001)2 . (00000010)2

= (x7 + x6 + x3 + 1) . (x)
= x8 + x7 + x4 + x (mod x8 + x4 + x3 + x + 1)
= x7 + x4 + x – x4 – x3 – x – 1
= x7 + x3 + 1
= (10001001)2 = 129



AES Key Schedule

• AES takes a single key and generates round keys with the input key and its key 
scheduling (expansion) algorithm.

• RotWord: Cyclic left shift

• SubWord: AES S-box for each byte

• Rcon: Add with [rci 00 00 00]
• rci = xi-1 is round constant

(can be stored as a table)

RK[i] = [ w4i+0 w4i+1 w4i+2 w4i+3 ]

RK[i+1] = [ w4i+4 w4i+5 w4i+6 w4i+7 ]

RotWord

SubWord

Rcon



AddRoundKey

• Round Key Addition.
• Addition of the current state with the round key in GF(28).
• Simple bit-wise addition (XOR) of state bytes with round key bytes.



SubBytes

• Byte Substitution (Forward S-box).
• First, GF(28) multiplicative inverse of each byte in round state is computed. 

Then, an affine transformation is applied to each byte.

𝑎 𝑏′𝑏
GF(28)
inverse

Affine
transformation



Inv SubBytes

• Inverse Byte Substitution (Inverse S-box).
• An inverse affine transform is followed by multiplicative inverse operation in 

GF(28) for each state byte.

GF(28)
inverse

Inverse affine
transformation

𝑏′ 𝑎𝑏



SubBytes and Inv SubBytes

• You can use a table (S-box) to combine affine transformation and GF(28) inverse.

Forward S-Box Inverse S-Box



ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of 

• 0
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• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of 

• 0, 1



ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of 

• 0, 1, 2



ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of 

• 0, 1, 2, 3



ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of 

• 0, 1, 2, 3

• Inv ShiftRows performs right circular shift.



MixColumns

• Mix Column Layer
• Each column of the state (4-bytes) is considered as a degree-3 polynomial in 

GF(28)[𝑥]/𝑥4+1
• Then, each polynomial is multiplied with a constant polynomial in the same 

ring
• 03. 𝑥3 + 01. 𝑥2 + 01. 𝑥 + 02
• This multiplication can be written as a matrix-vector multiplication

• Inverse Mix Column layer uses the inverse of 03. 𝑥3 + 01.𝑥2 + 01.𝑥 + 02
• 0𝐵. 𝑥3 + 0𝐷. 𝑥2 + 09. 𝑥 + 0𝐸



AES Round Overview

• AES Round.

* Image source: https://tratliff.webspace.wheatoncollege.edu/2022_Fall/math202/index.html



Block Cipher/AES Modes

• In order to efficiently and securely use a block cipher, one must use the cipher in 
an appropriate mode of operation [H2020].
• Electronic CodeBook Mode (ECB)
• Cipher Block Chaining Mode (CBC)
• Counter Mode (CTR)

(ECB) (CBC) (CTR)

[H2020] H. M. Heys, A Tutorial on the Implementation of Block Ciphers: Software and Hardware Applications, 2020, IACR ePrint 2020/1545.



Block Cipher/AES Modes

* Image source: https://medium.com/@TalBeerySec/zooming-on-zoom-5-encryption-cc7e9b710b9f



AES Implementations

• What are dimensions for implementation?
• Platform

• Software
• Hardware (FPGA, ASIC)
• Microcontrollers

• Performance/Area requirements
• High performance
• Low Area (Compact)

• I/O
• Selecting proper strategy for given I/O bandwidth.



AES Implementations

• Parallelism dimensions [AGS2014]

[AGS2014] A. Aysu et al., SIMON Says, Break the Area Records for Symmetric Key Block Ciphers on FPGAs, ESL, 2014.



AES Implementations

• Efficiency parameters:
Latency Throughput

AES
Enc/Dec

Time to
encrypt/decrypt
a single plaintext.

Pi

Ci

Number of plaintext
encrypted/decrypted

in a unit of time.

AES
Enc/Dec

Pi+1

Pi

Ci

Ci+1



Block Cipher Implementations: Iterative Approach

• Implement the combinational logic required for one round (supplemented with 
register and multiplexers). Then, use it repeatedly.
• Only one block of data is encrypted at a time.
• The number of clock cycles necessary to encrypt a single block of data is 

equal to the number of cipher rounds.

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Clock period (tclk) = t

Latency ≈ t . (# of rounds)

Throughput ≈ 1 / (t . (# of rounds))



AES Implementations: Iterative Approach

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[i]
i=1,…,Nr-1

RK[Nr]

Final
Round

Nr-1
Rounds

• Initialization

• Round (repeated Nr-1 times):
• SubBytes
• ShiftRows
• MixColumns
• AddRoundKey

• Final Round
• SubBytes
• ShiftRows
• Add Round Key



AES Implementations: Iterative Approach

Output

Multiplexer

SubBytes
ShiftRows

MixColumns
AddRoundKey

Round
Key

Input

Initialization

SubBytes
ShiftRows

AddRoundKey

Register

Control

m_sel

O_valid



AES Implementations: Iterative Approach

• SubBytes and AddRoundKey are instantiated twice.
• Can we do better?
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• SubBytes and AddRoundKey are instantiated twice.
• Can we do better?

• See the order for a toy example: Nr = 3

AddRoundKey with ARK[0]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[1]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[2]
SubBytes
ShiftRows
AddRoundKey with ARK[3]
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AES Implementations: Iterative Approach

SubBytes

ShiftRows

MixColumns

Add Round KeyRK[i]
i=0,…,Nr-1

Nr
Rounds

• Round (repeated Nr times):
• AddRoundKey
• SubBytes
• ShiftRows
• MixColumns

or
AddRoundKey

i==Nr-1

Add Round Key

01

RK[Nr]



AES Implementations: Iterative Approach

• High-level diagram of the architecture

Multiplexer

Register

AddRoundKey
Round

Key

Input

Output

SubBytes

ShiftRows

MixColumns

Control
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O_valid



AES Implementations: Iterative Approach

Multiplexer
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AddRoundKey
Round

Key

Input

Output

SubBytes

ShiftRows

MixColumns

Control

m_sel

O_valid

• High-level diagram of the architecture
• What happens if we divide a round into multiple stages? 



AES Implementations: Hardware

• What about decryption?

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[i]
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RK[Nr]
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Add Round Key

InvShiftRows
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RK[0]



AES Implementations: Hardware

• Can we make Enc. and Dec. look similar?

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[i]
i=1,…,Nr-1

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

InvShiftRows

InvSubBytes

Add Round Key

InvShiftRows

InvSubBytes

RK[i]
i=1,…,Nr-1

Nr-1
Rounds

RK[Nr]

RK[0]



AES Implementations: Hardware

• Swap InvShiftRows and InvSubBytes

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

InvShiftRows

InvSubBytes

Add Round Key

InvShiftRows

InvSubBytes

Nr-1
Rounds

RK[Nr]

RK[0]

RK[i]
i=1,…,Nr-1

RK[i]
i=1,…,Nr-1



AES Implementations: Hardware

• Push InvShiftRows and InvSubBytes down

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

Add Round Key

InvShiftRows

InvSubBytes

Nr-1
Rounds

RK[Nr]

RK[0]

InvShiftRows

InvSubBytes

RK[i]
i=1,…,Nr-1

RK[i]
i=1,…,Nr-1



Block Cipher Implementations: Partial Loop Unrolling

• K round out of Nr round functions are implemented in combinational part.
• Partial loop unrolling.

Multiplexer

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #K

…

Round
Key#K
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• K round out of Nr round functions are implemented in combinational part.
• Partial loop unrolling
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Clock period (tclk) ≈ K . t

Latency ≈ t . (# of rounds)
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Block Cipher Implementations: Loop Unrolling

• All round functions are implemented in combinational part.
• Full loop unrolling

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #Nr

…

Round
Key#Nr



Block Cipher Implementations: Loop Unrolling

• All round functions are implemented in combinational part
• Full loop unrolling

• Without pipelining, unrolling offers no throughput improvement.

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #Nr

…

Round
Key#Nr

Clock period (tclk) ≈ (# of rounds) . t

Latency ≈ t . (# of rounds)

Throughput ≈ 1 / (t . (# of rounds))



Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining (i.e., K=2 with Nr=4 rounds)

Multiplexer
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Round
Function

Round
Key
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Output
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Function
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Register

I1(R1)

-
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Block Cipher Implementations: Pipelining
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Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining (i.e., K=2 with Nr=4 rounds)

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Round
Function

Round
Key

Register

I1(R1)

- I1(R2)

I2(R1)

I2(R2)

I1(R3)

I1(R4)
(out)

I2(R3)

I2(R4)
(out)

I3(R1)

I3(R2)

…



Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining.
• Inner-loop pipelining.
• Partial or full outer-loop pipelining with inner loop pipelining.

Iterative Fully unrollPartial unroll
Iterative with 
inner pipeline

Partial unroll with 
inner-outer pipeline

Fully unroll with 
inner-outer pipeline

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.



Block Cipher Implementations: Summary

• Summary of implementation methods
• Iterative
• Partial unroll
• Fully unroll

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.



Block Cipher Implementations: Summary

• Summary of implementation methods
• Iterative
• Partial unroll
• Fully unroll
• Pipelining

• Inner 
• Outer

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.



AES Implementations: I/O

• Assume that the input data rate is 100 Mb/sec (1Mb = 1,000,000 bits), the input 
and output buffers can store 128-bits each.
• What would be your design strategy?



AES Implementations: SubBytes/S-box Implementation

• It takes one byte as input and produces one byte output. It has two components:
• Multiplicative inverse in GF(28)

• Complex operation
• Affine transformation

• Three different approaches for implementation:
• Look-up table 
• Look-up table and logic
• Logic-only



AES Implementations: SubBytes/S-box Implementation

• Look-up table:
• Pre-compute and store SubBytes results for all possible inputs (0 to 255).
• Each round state has 16 bytes, so 16 256x8 bits (2 Kbits) table is required.

• For a merged enc/dec design, table size is doubled.
• i.e., use most significant bit of table address to distinguish forward and 

inverse conversions.



AES Implementations: SubBytes/S-box Implementation

• Look-up table and logic:
• InvSubBytes and SubBytes operations can share the same table.

• Then, affine and inverse affine transformation operations can be 
implemented using XOR gates.

Multiplicative
Inverse 

Affine 
Transformation

SubBytes

Inverse Affine
Transformation 

InvSubBytes
Multiplicative

Inverse 



AES Implementations: SubBytes/S-box Implementation

• Logic:
• Table-based implementations can be costly for ASIC.
• It also can limit maximum clock frequency in deeply-pipelined architectures.

• What are our options?
• Construct truth-table and derive Boolean expression.

• Very inefficient even with Boolean minimization techniques.



AES Implementations: SubBytes/S-box Implementation

• Logic:
• Table-based implementations can be costly for ASIC.
• It also can limit maximum clock frequency in deeply-pipelined architectures.

• What are our options?
• Construct truth-table and derive Boolean expression.

• Very inefficient even with Boolean minimization techniques.
• Implement multiplicative inverse operation for Rijndael’s finite field.

• Brute-force search
• Extended Euclidean Algorithm
• Generator based log/antilog tables
• Map operations to GF(24)



AES Implementations: SubBytes/S-box Implementation

• Generator based log/antilog tables
• We want to compute 𝑎−1 such that 𝑎 ⨂𝑎−1 = 1 in GF(28) 
• Select a generator 𝑔 in this field

• 𝑔𝑖 for 0 ≤ 𝑖 < 255 generates all non-zero elements in the field
• For Rijndael’s field, 𝑔 is 3.

• When 𝑎 = 𝑔𝑥 and 𝑏 = 𝑔𝑦, then 𝑎 ⨂ 𝑏 = 𝑔(𝑥+𝑦)

• Note that 𝑔255 = 1

• For a given a, if you calculate x, then you can compute its inverse as 𝑎(255−𝑥)

• A log table which outputs 𝑥 for given 𝑎 OR on-the-fly calculation
• An antilog table which outputs 𝑔𝑦 for given 𝑦 OR on-the-fly calculation



AES Implementations: SubBytes/S-box Implementation

• Map operations to GF(24). [WOL2002]

[WOL2002] J. Wolkerstorfer et al., An ASIC Implementation of AES SBoxes, CT-RSA, 2002.



AES Implementations: S-box Implementation

• We can further map operations in GF(24) to GF(2). [C2005]

[C2005] D. Canright, A Very Compact S-Box for AES, CHES, 2005.



AES Implementations: MixColumn

• The MixColumn Layer
• It can be expressed as matrix multiplication
• Each element of the matrix is a byte

• Each polynomial coefficient will be multiplied with a matrix element. Then, the 
resulting four bytes will be added (XORed)
• 2 layers of XOR gates: 3-input XOR gates + 4-input XOR gates
• i.e., 𝑏0 = 2⨂𝑎0⊕3⨂𝑎1⊕1⨂𝑎2⊕1⨂𝑎3

• Each coefficient multiplication can also be implemented using look-up tables



AES Implementations: MixColumn

• The Inverse MixColumn Layer
• It can be expressed as matrix multiplication
• Each element of the matrix is a byte

• Inverse MixColumn has larger coefficients.
• 2 layers of XOR gates: up to 6-input XOR gates + 4-input XOR gates

• Inverse MixColumn implementation will have larger area and longer critical path.



AES Implementations: MixColumn

• Since the hardware implementing inverse MixColumn layer is always larger, 
there are works targeting resource sharing between MixColumn and inverse 
MixColumn for reducing hardware cost. [W2001]

• Inverse matrix can be expressed as: [GC2009]

[W2001] J. Wolkerstorfer. An ASIC implementation of the AES MixColumn operation. In Proc. Austrochip 2001
[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009. 

+



AES Implementations: MixColumn

• Since the hardware implementing inverse MixColumn layer is always larger, 
there are works targeting resource sharing between MixColumn and inverse 
MixColumn for reducing hardware cost. [W2001]

• Inverse matrix/polynomial d(x) can be expressed as c(x)3 where c(x) is forward 
matrix/polynomial:

d(x) = c(x) . c(x)2

• c(x)2:

* Image resource: [GC2009]



AES Implementations: T-box based Implementation

• SubBytes and MixColumn layers can be merged with a single table-based 
implementation

• Entire round of AES can be implemented using only look-up tables and XOR 
operations.

• Recall:
• SubBytes: For byte 𝑎𝑖, read output from table 𝑆[𝑎𝑖]
• MixColumn:



AES Implementations: T-box based Implementation

• While S-box has 256x8 size, T-boxes have 256x32 size.
• 32-bit of an AES round can be computed as:

* Image source: [GC2009]



AES Implementations: T-box based Implementation

• Visualization of one AES round with T-box based method:

* Image source: [GC2009]
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