
Cryptography on Hardware Platforms
Ahmet Can Mert

ahmet.mert@iaik.tugraz.at

Advanced Encryption Standard
and its Implementation Aspects

mailto:Ahmet.mert@iaik.tugraz.at

Taxonomy of Cryptographic Algorithms

Cryptography

Asymmetric
Ciphers

Cryptographic
Protocols

Symmetric
Ciphers

Stream
Ciphers

Block
Ciphers

Block Ciphers

Block Cipher
In Out

K

n n

• A family of cryptographic functions that map an n-bit plaintext block into n-bit

ciphertext block.
• It is parameterized by its key bit length, K.

Advanced Encryption Standard (AES)

• AES selection is initiated in 1997 by NIST.

• Goal: Finding a successor to Data Encryption Standard (DES).
• Insecure against brute-force attacks.

• Fixes lead to inefficient implementations (e.g. Triple DES).

• New ways of assessing cipher strength.

• An open process

• Requirements:

• Block size: 128-bit.
• Key sizes: 128/192/256-bit.

• Efficient hardware and software implementations.

Advanced Encryption Standard (AES)

AESIn Out

K

128 128

128/192/256

Key Length (K) Nr

128 10

192 12

256 14

• Rijndael is selected as AES in 2000.

• 128-bit symmetric block cipher.
• Proposed by Joan Daemen and Vincent Rijmen.

AES Overview

• 128-bit (16 bytes) input is arranged into a 4x4 matrix in column-major order.
• Each matrix entry is an element of GF(28) with x8+x4+x3+x+1.

𝑎0,0, 𝑎1,0, 𝑎2,0, 𝑎3,0, 𝑎0,1, 𝑎1,1, 𝑎2,1, 𝑎3,1, 𝑎0,2, 𝑎1,2, 𝑎2,2, 𝑎3,2, 𝑎0,3, 𝑎1,3, 𝑎2,3, 𝑎3,3

Column#1 Column#2 Column#3 Column#4

AES Overview

• 128-bit (16 bytes) input is arranged into a 4x4 matrix in column-major order.
• Each matrix entry is an element of GF(28) with x8+x4+x3+x+1.

𝑎0,0, 𝑎1,0, 𝑎2,0, 𝑎3,0, 𝑎0,1, 𝑎1,1, 𝑎2,1, 𝑎3,1, 𝑎0,2, 𝑎1,2, 𝑎2,2, 𝑎3,2, 𝑎0,3, 𝑎1,3, 𝑎2,3, 𝑎3,3

Column#1 Column#2 Column#3 Column#4

AES Overview

• Rijndael has four main operations:

• AddRoundKey: XORing the block with the round key.
• SubBytes: Substitute a byte with another byte.

• ShiftRows: Each row of the block is rotated.

• MixColumns: Each column of the block is multiplied with a polynomial.

• Rijndael has a key scheduling mechanism.

• Rijndael has three steps:

• Initialization/Initial transformation.
• Cipher round.
• Final round/Final transformation.

AES Encryption

Round operations

In

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

AddRoundKey

Out

Cipher Rounds
(1 … Nr -1)

Final Round
(Nr)

AddRoundKey

State

State

Initialization

Key
Scheduling

Master Key

AES Decryption

Round operations

AddRoundKey
Inv MixColumns

Inv ShiftRows
Inv SubBytes

State

State

Key Addition Layer

AddRoundKey
Inv ShiftRows
Inv SubBytes

In

Out

Cipher Rounds
(1 … Nr -1)

Arithmetic in GF(28)

• GF(2k) is a Galois field of 2k elements.
• Also called binary fields.

• GF(2k) elements in polynomial basis
• x is the root of k-degree irreducible polynomial over GF(2)
• Then, every element can be represented as a linear sum of powers of x.

E = (Ek-1Ek-2 … E1E0) = Ek-1xk-1 + Ek-2xk-2 + … + E1x + E0

Ei: {0, 1}

• AES is using GF(28) with irreducible polynomial x8 + x4 + x3 + x + 1.

Arithmetic in GF(28): Addition

• Addition in GF(28) with irreducible polynomial x8 + x4 + x3 + x + 1.
• GF(2) addition of the individual bits.
• GF(2) addition corresponds to the XOR operation in Boolean logic.

• A, B, C in GF(28):

Ci = Ai + Bi (mod 2), for i = 0, …, k-1

• Subtraction is the same as addition

A0 B0

C0

Ak-1Bk-1

Ck-1

...

Arithmetic in GF(28): Multiplication

• Multiplication in GF(28) with irreducible polynomial x8 + x4 + x3 + x + 1.
• Polynomial multiplication (each coefficient is in GF(2)).
• Reduction with irreducible polynomial.

• Example:

201 . 2 = (11001001)2 . (00000010)2

= (x7 + x6 + x3 + 1) . (x)
= x8 + x7 + x4 + x (mod x8 + x4 + x3 + x + 1)
= x7 + x4 + x – x4 – x3 – x – 1
= x7 + x3 + 1
= (10001001)2 = 129

AES Key Schedule

• AES takes a single key and generates round keys with the input key and its key
scheduling (expansion) algorithm.

• RotWord: Cyclic left shift

• SubWord: AES S-box for each byte

• Rcon: Add with [rci 00 00 00]
• rci = xi-1 is round constant

(can be stored as a table)

RK[i] = [w4i+0 w4i+1 w4i+2 w4i+3]

RK[i+1] = [w4i+4 w4i+5 w4i+6 w4i+7]

RotWord

SubWord

Rcon

AddRoundKey

• Round Key Addition.
• Addition of the current state with the round key in GF(28).
• Simple bit-wise addition (XOR) of state bytes with round key bytes.

SubBytes

• Byte Substitution (Forward S-box).
• First, GF(28) multiplicative inverse of each byte in round state is computed.

Then, an affine transformation is applied to each byte.

𝑎 𝑏′𝑏
GF(28)
inverse

Affine
transformation

Inv SubBytes

• Inverse Byte Substitution (Inverse S-box).
• An inverse affine transform is followed by multiplicative inverse operation in

GF(28) for each state byte.

GF(28)
inverse

Inverse affine
transformation

𝑏′ 𝑎𝑏

SubBytes and Inv SubBytes

• You can use a table (S-box) to combine affine transformation and GF(28) inverse.

Forward S-Box Inverse S-Box

ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of

• 0

ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of

• 0, 1

ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of

• 0, 1, 2

ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of

• 0, 1, 2, 3

ShiftRows

• Shift Row Layer
• Four rows of the state matrix are shifted cyclically to the left by offsets of

• 0, 1, 2, 3

• Inv ShiftRows performs right circular shift.

MixColumns

• Mix Column Layer
• Each column of the state (4-bytes) is considered as a degree-3 polynomial in

GF(28)[𝑥]/𝑥4+1
• Then, each polynomial is multiplied with a constant polynomial in the same

ring
• 03. 𝑥3 + 01. 𝑥2 + 01. 𝑥 + 02
• This multiplication can be written as a matrix-vector multiplication

• Inverse Mix Column layer uses the inverse of 03. 𝑥3 + 01.𝑥2 + 01.𝑥 + 02
• 0𝐵. 𝑥3 + 0𝐷. 𝑥2 + 09. 𝑥 + 0𝐸

AES Round Overview

• AES Round.

* Image source: https://tratliff.webspace.wheatoncollege.edu/2022_Fall/math202/index.html

Block Cipher/AES Modes

• In order to efficiently and securely use a block cipher, one must use the cipher in
an appropriate mode of operation [H2020].
• Electronic CodeBook Mode (ECB)
• Cipher Block Chaining Mode (CBC)
• Counter Mode (CTR)

(ECB) (CBC) (CTR)

[H2020] H. M. Heys, A Tutorial on the Implementation of Block Ciphers: Software and Hardware Applications, 2020, IACR ePrint 2020/1545.

Block Cipher/AES Modes

* Image source: https://medium.com/@TalBeerySec/zooming-on-zoom-5-encryption-cc7e9b710b9f

AES Implementations

• What are dimensions for implementation?
• Platform

• Software
• Hardware (FPGA, ASIC)
• Microcontrollers

• Performance/Area requirements
• High performance
• Low Area (Compact)

• I/O
• Selecting proper strategy for given I/O bandwidth.

AES Implementations

• Parallelism dimensions [AGS2014]

[AGS2014] A. Aysu et al., SIMON Says, Break the Area Records for Symmetric Key Block Ciphers on FPGAs, ESL, 2014.

AES Implementations

• Efficiency parameters:
Latency Throughput

AES
Enc/Dec

Time to
encrypt/decrypt
a single plaintext.

Pi

Ci

Number of plaintext
encrypted/decrypted

in a unit of time.

AES
Enc/Dec

Pi+1

Pi

Ci

Ci+1

Block Cipher Implementations: Iterative Approach

• Implement the combinational logic required for one round (supplemented with
register and multiplexers). Then, use it repeatedly.
• Only one block of data is encrypted at a time.
• The number of clock cycles necessary to encrypt a single block of data is

equal to the number of cipher rounds.

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Clock period (tclk) = t

Latency ≈ t . (# of rounds)

Throughput ≈ 1 / (t . (# of rounds))

AES Implementations: Iterative Approach

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[i]
i=1,…,Nr-1

RK[Nr]

Final
Round

Nr-1
Rounds

• Initialization

• Round (repeated Nr-1 times):
• SubBytes
• ShiftRows
• MixColumns
• AddRoundKey

• Final Round
• SubBytes
• ShiftRows
• Add Round Key

AES Implementations: Iterative Approach

Output

Multiplexer

SubBytes
ShiftRows

MixColumns
AddRoundKey

Round
Key

Input

Initialization

SubBytes
ShiftRows

AddRoundKey

Register

Control

m_sel

O_valid

AES Implementations: Iterative Approach

• SubBytes and AddRoundKey are instantiated twice.
• Can we do better?

AES Implementations: Iterative Approach

• SubBytes and AddRoundKey are instantiated twice.
• Can we do better?

• See the order for a toy example: Nr = 3

AddRoundKey with ARK[0]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[1]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[2]
SubBytes
ShiftRows
AddRoundKey with ARK[3]

AES Implementations: Iterative Approach

• SubBytes and AddRoundKey are instantiated twice.
• Can we do better?

• See the order for a toy example: Nr = 3

AddRoundKey with ARK[0]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[1]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[2]
SubBytes
ShiftRows
AddRoundKey with ARK[3]

AES Implementations: Iterative Approach

• SubBytes and AddRoundKey are instantiated twice.
• Can we do better?

• See the order for a toy example: Nr = 3

AddRoundKey with ARK[0]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[1]
SubBytes
ShiftRows
MixColumns
AddRoundKey with ARK[2]
SubBytes
ShiftRows
AddRoundKey with ARK[3]

AES Implementations: Iterative Approach

SubBytes

ShiftRows

MixColumns

Add Round KeyRK[i]
i=0,…,Nr-1

Nr
Rounds

• Round (repeated Nr times):
• AddRoundKey
• SubBytes
• ShiftRows
• MixColumns

or
AddRoundKey

i==Nr-1

Add Round Key

01

RK[Nr]

AES Implementations: Iterative Approach

• High-level diagram of the architecture

Multiplexer

Register

AddRoundKey
Round

Key

Input

Output

SubBytes

ShiftRows

MixColumns

Control

m_sel

O_valid

AES Implementations: Iterative Approach

Multiplexer

Register

AddRoundKey
Round

Key

Input

Output

SubBytes

ShiftRows

MixColumns

Control

m_sel

O_valid

• High-level diagram of the architecture
• What happens if we divide a round into multiple stages?

AES Implementations: Hardware

• What about decryption?

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[i]
i=1,…,Nr-1

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

InvShiftRows

InvSubBytes

Add Round Key

InvShiftRows

InvSubBytes

RK[i]
i=1,…,Nr-1

Nr-1
Rounds

RK[Nr]

RK[0]

AES Implementations: Hardware

• Can we make Enc. and Dec. look similar?

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[i]
i=1,…,Nr-1

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

InvShiftRows

InvSubBytes

Add Round Key

InvShiftRows

InvSubBytes

RK[i]
i=1,…,Nr-1

Nr-1
Rounds

RK[Nr]

RK[0]

AES Implementations: Hardware

• Swap InvShiftRows and InvSubBytes

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

InvShiftRows

InvSubBytes

Add Round Key

InvShiftRows

InvSubBytes

Nr-1
Rounds

RK[Nr]

RK[0]

RK[i]
i=1,…,Nr-1

RK[i]
i=1,…,Nr-1

AES Implementations: Hardware

• Push InvShiftRows and InvSubBytes down

Add Round Key

SubBytes

ShiftRows

MixColumns

Add Round Key

SubBytes

ShiftRows

Add Round Key

RK[0]

RK[Nr]

Nr-1
Rounds

Add Round Key

Add Round Key

InvMixColumns

Add Round Key

InvShiftRows

InvSubBytes

Nr-1
Rounds

RK[Nr]

RK[0]

InvShiftRows

InvSubBytes

RK[i]
i=1,…,Nr-1

RK[i]
i=1,…,Nr-1

Block Cipher Implementations: Partial Loop Unrolling

• K round out of Nr round functions are implemented in combinational part.
• Partial loop unrolling.

Multiplexer

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #K

…

Round
Key#K

Block Cipher Implementations: Partial Loop Unrolling

• K round out of Nr round functions are implemented in combinational part.
• Partial loop unrolling

Multiplexer

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #K

…

Round
Key#K

Clock period (tclk) ≈ K . t

Latency ≈ t . (# of rounds)

Throughput ≈ 1 / (t . (# of rounds))

Block Cipher Implementations: Loop Unrolling

• All round functions are implemented in combinational part.
• Full loop unrolling

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #Nr

…

Round
Key#Nr

Block Cipher Implementations: Loop Unrolling

• All round functions are implemented in combinational part
• Full loop unrolling

• Without pipelining, unrolling offers no throughput improvement.

Register

Round
Function #1

Round
Key#1

Input

Output

Round
Function #Nr

…

Round
Key#Nr

Clock period (tclk) ≈ (# of rounds) . t

Latency ≈ t . (# of rounds)

Throughput ≈ 1 / (t . (# of rounds))

Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining (i.e., K=2 with Nr=4 rounds)

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Round
Function

Round
Key

Register

I1(R1)

-

Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining (i.e., K=2 with Nr=4 rounds)

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Round
Function

Round
Key

Register

I1(R1)

- I1(R2)

I2(R1)

Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining (i.e., K=2 with Nr=4 rounds)

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Round
Function

Round
Key

Register

I1(R1)

- I1(R2)

I2(R1)

I2(R2)

I1(R3)

Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining (i.e., K=2 with Nr=4 rounds)

Multiplexer

Register

Round
Function

Round
Key

Input

Output

Round
Function

Round
Key

Register

I1(R1)

- I1(R2)

I2(R1)

I2(R2)

I1(R3)

I1(R4)
(out)

I2(R3)

I2(R4)
(out)

I3(R1)

I3(R2)

…

Block Cipher Implementations: Pipelining

• A traditional methodology for design of high-performance implementations.
• Partial or full outer-loop pipelining.
• Inner-loop pipelining.
• Partial or full outer-loop pipelining with inner loop pipelining.

Iterative Fully unrollPartial unroll
Iterative with
inner pipeline

Partial unroll with
inner-outer pipeline

Fully unroll with
inner-outer pipeline

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.

Block Cipher Implementations: Summary

• Summary of implementation methods
• Iterative
• Partial unroll
• Fully unroll

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.

Block Cipher Implementations: Summary

• Summary of implementation methods
• Iterative
• Partial unroll
• Fully unroll
• Pipelining

• Inner
• Outer

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.

AES Implementations: I/O

• Assume that the input data rate is 100 Mb/sec (1Mb = 1,000,000 bits), the input
and output buffers can store 128-bits each.
• What would be your design strategy?

AES Implementations: SubBytes/S-box Implementation

• It takes one byte as input and produces one byte output. It has two components:
• Multiplicative inverse in GF(28)

• Complex operation
• Affine transformation

• Three different approaches for implementation:
• Look-up table
• Look-up table and logic
• Logic-only

AES Implementations: SubBytes/S-box Implementation

• Look-up table:
• Pre-compute and store SubBytes results for all possible inputs (0 to 255).
• Each round state has 16 bytes, so 16 256x8 bits (2 Kbits) table is required.

• For a merged enc/dec design, table size is doubled.
• i.e., use most significant bit of table address to distinguish forward and

inverse conversions.

AES Implementations: SubBytes/S-box Implementation

• Look-up table and logic:
• InvSubBytes and SubBytes operations can share the same table.

• Then, affine and inverse affine transformation operations can be
implemented using XOR gates.

Multiplicative
Inverse

Affine
Transformation

SubBytes

Inverse Affine
Transformation

InvSubBytes
Multiplicative

Inverse

AES Implementations: SubBytes/S-box Implementation

• Logic:
• Table-based implementations can be costly for ASIC.
• It also can limit maximum clock frequency in deeply-pipelined architectures.

• What are our options?
• Construct truth-table and derive Boolean expression.

• Very inefficient even with Boolean minimization techniques.

AES Implementations: SubBytes/S-box Implementation

• Logic:
• Table-based implementations can be costly for ASIC.
• It also can limit maximum clock frequency in deeply-pipelined architectures.

• What are our options?
• Construct truth-table and derive Boolean expression.

• Very inefficient even with Boolean minimization techniques.
• Implement multiplicative inverse operation for Rijndael’s finite field.

• Brute-force search
• Extended Euclidean Algorithm
• Generator based log/antilog tables
• Map operations to GF(24)

AES Implementations: SubBytes/S-box Implementation

• Generator based log/antilog tables
• We want to compute 𝑎−1 such that 𝑎 ⨂𝑎−1 = 1 in GF(28)
• Select a generator 𝑔 in this field

• 𝑔𝑖 for 0 ≤ 𝑖 < 255 generates all non-zero elements in the field
• For Rijndael’s field, 𝑔 is 3.

• When 𝑎 = 𝑔𝑥 and 𝑏 = 𝑔𝑦, then 𝑎 ⨂ 𝑏 = 𝑔(𝑥+𝑦)

• Note that 𝑔255 = 1

• For a given a, if you calculate x, then you can compute its inverse as 𝑎(255−𝑥)

• A log table which outputs 𝑥 for given 𝑎 OR on-the-fly calculation
• An antilog table which outputs 𝑔𝑦 for given 𝑦 OR on-the-fly calculation

AES Implementations: SubBytes/S-box Implementation

• Map operations to GF(24). [WOL2002]

[WOL2002] J. Wolkerstorfer et al., An ASIC Implementation of AES SBoxes, CT-RSA, 2002.

AES Implementations: S-box Implementation

• We can further map operations in GF(24) to GF(2). [C2005]

[C2005] D. Canright, A Very Compact S-Box for AES, CHES, 2005.

AES Implementations: MixColumn

• The MixColumn Layer
• It can be expressed as matrix multiplication
• Each element of the matrix is a byte

• Each polynomial coefficient will be multiplied with a matrix element. Then, the
resulting four bytes will be added (XORed)
• 2 layers of XOR gates: 3-input XOR gates + 4-input XOR gates
• i.e., 𝑏0 = 2⨂𝑎0⊕3⨂𝑎1⊕1⨂𝑎2⊕1⨂𝑎3

• Each coefficient multiplication can also be implemented using look-up tables

AES Implementations: MixColumn

• The Inverse MixColumn Layer
• It can be expressed as matrix multiplication
• Each element of the matrix is a byte

• Inverse MixColumn has larger coefficients.
• 2 layers of XOR gates: up to 6-input XOR gates + 4-input XOR gates

• Inverse MixColumn implementation will have larger area and longer critical path.

AES Implementations: MixColumn

• Since the hardware implementing inverse MixColumn layer is always larger,
there are works targeting resource sharing between MixColumn and inverse
MixColumn for reducing hardware cost. [W2001]

• Inverse matrix can be expressed as: [GC2009]

[W2001] J. Wolkerstorfer. An ASIC implementation of the AES MixColumn operation. In Proc. Austrochip 2001
[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.

+

AES Implementations: MixColumn

• Since the hardware implementing inverse MixColumn layer is always larger,
there are works targeting resource sharing between MixColumn and inverse
MixColumn for reducing hardware cost. [W2001]

• Inverse matrix/polynomial d(x) can be expressed as c(x)3 where c(x) is forward
matrix/polynomial:

d(x) = c(x) . c(x)2

• c(x)2:

* Image resource: [GC2009]

AES Implementations: T-box based Implementation

• SubBytes and MixColumn layers can be merged with a single table-based
implementation

• Entire round of AES can be implemented using only look-up tables and XOR
operations.

• Recall:
• SubBytes: For byte 𝑎𝑖, read output from table 𝑆[𝑎𝑖]
• MixColumn:

AES Implementations: T-box based Implementation

• While S-box has 256x8 size, T-boxes have 256x32 size.
• 32-bit of an AES round can be computed as:

* Image source: [GC2009]

AES Implementations: T-box based Implementation

• Visualization of one AES round with T-box based method:

* Image source: [GC2009]

References

[H2020] H. M. Heys, A Tutorial on the Implementation of Block Ciphers: Software and Hardware
Applications, 2020, IACR ePrint 2020/1545.

[AGS2014] A. Aysu et al., SIMON Says, Break the Area Records for Symmetric Key Block Ciphers on
FPGAs, ESL, 2014.

[WOL2002] J. Wolkerstorfer et al., An ASIC Implementation of AES SBoxes, CT-RSA, 2002.

[C2005] D. Canright, A Very Compact S-Box for AES, CHES, 2005.

[W2001] J. Wolkerstorfer. An ASIC implementation of the AES MixColumn operation. In Proc.
Austrochip 2001

[GC2009] K. Gaj, FPGA and ASIC Implementations of AES, Cryptographic Engineering, 2009.

