
Probabilistic Model Checking
Stefan Pranger

15. 06. 2023

1

Communication Protocol with Faults

⋅ x = () → x = ()
⎡

⎣

⎢⎢

1

0

0

−1

1

− 1
2

0

− 1
10

1

⎤

⎦

⎥⎥

0
9
10

0

18
19

18
19

9
19

2

Cowboy Shootout
The three may shoot as long as
anyone else is still alive. Due to
differences in (re)loading
times, we assume they shoot in
turns. That is, The Good shoots
first, then The Bad and finally
The Ugly.

The Good has a chance of a half
of hitting anyone. If he hits, he
does so uniformly over the
living contestants.

The Bad has a chance of 0.9 of
hitting anyone. If The Ugly is
alive, then he aims for him. If
The Ugly already died, then he
aims at The Good.

The Ugly hits either no one or
one of the living contestants
and he does so with a uniform
probability over these events.

module shootout
 cowboy: [1..3] init 1;
 good: bool init true;
 bad: bool init true;
 ugly: bool init true;
 [] cowboy=1 & good & bad & ugly -> 1/2 :(cowboy'=2) +
 1/4 :(bad'=false) & (cowboy'=3) +
 1/4 :(ugly'=false) & (cowboy'=2);
 [] cowboy=1 & good & bad & !ugly -> 1/2 :(cowboy'=2) +
 1/2 :(bad'=false) & (cowboy'=1);
 [] cowboy=1 & good & !bad & ugly -> 1/2 :(cowboy'=3) +
 1/2 :(ugly'=false) & (cowboy'=1);
 [] cowboy=2 & good & bad & ugly -> 0.1 :(cowboy'=3) +
 0.9 :(ugly'=false) & (cowboy'=1);
 [] cowboy=2 & good & bad & !ugly -> 0.1 :(cowboy'=1) +
 0.9 :(good'=false) & (cowboy'=2);
 [] cowboy=2 & !good & bad & ugly -> 0.1 :(cowboy'=3) +
 0.9 :(ugly'=false) & (cowboy'=2);
 [] cowboy=3 & good & bad & ugly -> 1/3 :(cowboy'=1) +
 1/3 :(good'=false) & (cowboy'=2) +
 1/3 :(bad'=false) & (cowboy'=1);
 [] cowboy=3 & good & !bad & ugly -> 1/2 :(cowboy'=1) +
 1/2 :(good'=false) & (cowboy'=3);
 [] cowboy=3 & !good & bad & ugly -> 1/2 :(cowboy'=2) +
 1/2 :(bad'=false) & (cowboy'=3);
 [] good & !bad & !ugly -> true;
 [] !good & bad & !ugly -> true;
 [] !good & !bad & ugly -> true;
endmodule

3

Recap: Constrained Reachability
Computing

We have used a linear equation solver to compute the probability of satisfying
the constrained reachability problem.

Pr(M, ⊨ C U B)s0

4

Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where
The interpretation for each state :

∀ and ∃ (φ)PrJ J ⊆ [0,1]
s ∈ S Pr(M,s ⊨ φ) ∈ J

5

PCTL - Syntax
Subdivision into state ()- and path-formulae ():

where and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

 XΦ

 U Φ1 Φ2

 U Φ1 ≤n Φ2

a ∈ AP J ⊆ [0,1]

6

PCTL - Satisfaction Relation
For a given state

For paths :

s ∈ S

s ⊨ a

s ⊨ ¬φ

s ⊨ φ ∧ ψ

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ φ,

iff s ⊨ φ and s ⊨ ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈ M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

7

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

8

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

9

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachabililty: ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ a)s0 F
<=k

10

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachabililty: ?
Again: Simple Matrix-Vector-Multiplication(s)! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ a)s0 F
<=k

11

Communication Protocol

A message is eventually delivered or lost and our abstraction does not allow faulty
values:
"P>=1.0 [F (delivered=1 | lost=1)] & P>=1.0 [G try<2]"

12

Communication Protocol

A message is eventually delivered or lost and our abstraction does not allow faulty
values:
"P>=1.0 [F (delivered=1 | lost=1)] & P>=1.0 [G try<2]"

A message will almost surely be delivered eventually and trying to send a message
implies that with a probability greater or equal 0.99 the message will be sent within
three time steps.
"P>=1.0 [F (delivered=1)] & P>=1.0 [G(!try=1| P>=0.99 [(F<=3 delivered=1)])] "

13

Probabilistic Model Zoo14

Probabilistic Model Zoo15

Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and a labelling function.

Markov Decision Process M = (S,Act,P, ,AP ,L)s0

S s0

Act

P : S × Act × S → [0,1]

P(s,a,) = 1 ∀(s,a) ∈ S × Act∑
∈Ss′

s′

AP L : S → 2AP

16

Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and a labelling function.

The decision defines the distribution over the next state.

Markov Decision Process M = (S,Act,P, ,AP ,L)s0

S s0

Act

P : S × Act × S → [0,1]

P(s,a,) = 1 ∀(s,a) ∈ S × Act∑
∈Ss′

s′

AP L : S → 2AP

a

17

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

18

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

19

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

⎡

⎣

⎢⎢
⎢
⎢⎢
⎢
⎢
⎢

1

0

0

9
10

5
10

0

1
9
10

0

0

0

0
1
10

1
10

5
10

⎤

⎦

⎥⎥
⎥
⎥⎥
⎥
⎥
⎥

20

Paths in an MDP
We extend our definition of a path for an MDP as such:

, s.t.

M

π = … ∈ (S × Acts0a0s1a1s2a2)ω
P(, ,) > 0,∀i ≥ 0si ai si+1

21

Paths in an MDP
We extend our definition of a path for an MDP as such:

, s.t.

Reasoning about events in an MDP resorts to the resolution of any non-
determinism

This is done by the use of schedulers (also called
strategies/policies/adversaries).

M

π = … ∈ (S × Acts0a0s1a1s2a2)ω
P(, ,) > 0,∀i ≥ 0si ai si+1

22

Schedulers
A scheduler is a function that given the history of the current path returns a
distribution over actions to be taken:

For simple properties such as reachability so called memoryless deterministic
scheduler suffice:

This means that the scheduler fixes an actions for each state.

We can then define the probability of prop under sched

σ : × S → Distr(Act)S∗

σ : S → Act

σ

P (M,s ⊨ FB)rσ

23

Induced Markov Chain
Consider an MDP and a memoryless deterministic scheduler:M

σ : S → Act

24

Induced Markov Chain
Consider an MDP and a memoryless deterministic scheduler:M

σ : S → Act

s0

s1

s1

↦ β

↦ α

↦ α

⎡

⎣

⎢
⎢⎢
⎢⎢⎢
⎢
⎢

1

0

0

9
10

5
10

0

1
9
10

0

0

0

0
1
10

1
10

5
10

⎤

⎦

⎥
⎥⎥
⎥⎥⎥
⎥
⎥

25

Coding Example26

Coding Example

We introduce velocity and let the car decide whether to
switch lanes,

accelerate or

decelerate.

27

Reachability in MDPs
We have introduced nondeterminism into probabilistic models

Schedulers might maximize oder minimize the probability to satisfy a given
property

28

Reachability in MDPs
We have introduced nondeterminism into probabilistic models

Schedulers might maximize oder minimize the probability to satisfy a given
property

We describe this with
P (M,s ⊨ FB) = su P (M,s ⊨ FB)rmax pσ rσ

P (M,s ⊨ FB) = in P (M,s ⊨ FB)rmin fσ rσ

29

Computing Maximum Reachability Probabilities
in MDPs
We want to compute using the following equation
system:

If :

If :

If and

Such that is minimal.

() = P (M,s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB
= max{ P(s,a,) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

∑x∈S xs

30

Value Iteration - Method I
Approximative method:

Compute the probability to reach after steps

Start with and stop after some termination criterion is met

B n

n = 0

31

Value Iteration - Method I
Approximative method:

Compute the probability to reach after steps

Start with and stop after some termination criterion is met

More specifically:

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1,∀s ∈ B

= 0,∀s ∈ S=0

= 0,

= max{ P(s,a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s′ xs′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

32

Linear Program - Method II
We can also express the problem as a linear program:

Minimize , such that:
,

, if ,

, if ,

, for all actions , if and

∑x∈S xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s,a,) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B

s ⊨ ∃FB

33

Linear Program - Method II
We can also express the problem as a linear program:

Minimize , such that:
,

, if ,

, if ,

, for all actions , if and

∑x∈S xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s,a,) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B

s ⊨ ∃FB

34

Linear Program - Example
Minimize , such that:

,

, if ,

, if ,

, for
all actions , if
and

∑x∈S xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s,a,) ⋅xs ∑ ∈Ss′ s′ xs′

a ∈ Act(s) s ∉ B
s ⊨ ∃FB

35

Linear Program - Example
var x0 >= 0;
var x1 >= 0;
var x2 >= 0;
var x3 >= 0;

minimize z: x0+x1+x2+x3;
subject to c0: x0 >= 3/4*x2 + 1/4*x3;
subject to c1: x0 >= 1/2*x1 + 1/2*x2;
subject to c2: x2 = 1;
subject to c3: x3 = 0;
subject to c4: x1 >= 1/2*x0 + 1/2*x3;

subject to c20: x0 <= 1;
subject to c21: x1 <= 1;
subject to c22: x2 <= 1;
subject to c23: x3 <= 1;

end;

36

PCTL Model Checking for MDPs
Syntax for PCTL does not need to be changed

The satisfaction relation for the probabilistic operator needs to be adapted:

37

PCTL Model Checking for MDPs
Syntax for PCTL does not need to be changed

The satisfaction relation for the probabilistic operator needs to be adapted:
We need to consider all schedulers:

M,s ⊨ (φ) iff P (M,s ⊨ φ) ≤ pPr≤p rmax

M,s ⊨ (φ) iff P (M,s ⊨ φ) ≥ pPr≥p rmin

38

Rewards in PRISM
We have already seen rewards in PRISM:

Rewards:
rewards
x>0 & x<10 : 2*x;
x=10 : 100;
[a] true : x;
[b] true : 2*x;
endrewards

39

Rewards in PRISM
We have already seen rewards in PRISM:

Rewards:
rewards
x>0 & x<10 : 2*x;
x=10 : 100;
[a] true : x;
[b] true : 2*x;
endrewards

PCTL can be extended to PRCTL:
R=? [LRA], What is the long-run average reward?

R=? [F "elected"], What is the accumulated reward until the leader has
been elected?

Rmax=? [C<=k], What is the maximum reward that can be achieved within k
steps?

...

40

