TU

Grazm

Probabilistic Model Checking

Stefan Pranger

15. 06. 2023

TU

Grazm

Communication Protocol with Faults

TU

Grazm
e The three may shoot as long as nodute shootout
. . . cowboy: [1..3] init 1;
anyone else is still alive. Due t0 good: boot init true;
. . . bad: bool ini g
differences in (re)loading ooly: bool init rues
times, we assume they shoot in [cowbov=t & good & bad & ugly == 172 {oowboy =20 & - boy'=3) +
. 1/4 :(ugly'=false) & (cowboy'=2);
turns. That is, The Good Sh0OtS | |10 1 & cood & bad & 1ugly > 173 L (eomboy cay 4 o O
1 | 1/2 :(bad'=false) & (cowboy'=1);
first, then The Bad and finally o et O el) Oy e o PR Sl) B e
The Ugly 1/2 :(ugly'=false) & (cowboy'=1);

[] cowboy=2 & good & bad & ugly -> 0.1 :(cowboy'=3) +

:(ugly'=false) & (cowboy'=1);
e The Good has a chance of a half [1 cowboy=2 & good & bad & !ugly ->
of hitting anyone. If he hits, he 1 cowboy=2 & 1good & bad & ugly ->

0.9
0.1 :(cowboy'=1) +
0.9 :(good'=false) & (cowboy'=2);
0.1 :(cowboy'=3) +
0.9 :(ugly'=false) & (cowboy'=2);

does so uniform].y over the [] cowboy=3 & good & bad & ugly -> 1/3 : (cowboy '=1) +
o e g d'=fal boy'=
living contestants. 1 o ey (oot

[] cowboy=3 & good & !bad & ugly -> 1/2 :(cowboy'=1) +
« The Bad has a chance of 0.9 0f [] couboy=3 & tgo0d & bad & ugly > 175 (cosboyre) 4 - (M=)
hitting anyone. If The Ugly is T el 2] 2 ey e ey RIS Gy =
alive, then he aims for him. If [{904 & bad & tualy - true;

The Ugly already died, then he endnodute
aims at The Good.

e The Ugly hits either no one or
one of the living contestants
and he does so with a uniform
probability over these events.

TU

Grazm

Recap: Constrained Reachability

e Computing Pr(M, sy = C U B)

« We have used a linear equation solver to compute the probability of satisfying
the constrained reachability problem.

TU

Grazm

Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

« Boolean state representation.

« V and J are replaced by Pr;(¢), where J C [0,1]
o The interpretation for each state s € S: Pr(M,s = ¢) € J

TU

Grazm

PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

® ::= true @ = Xo
a | &, U @,
q)l/\(I)2 ‘(I)lUSn(I)Q
—P
P
1()

wherea € AP and J C [0,1].

TU

Grazm

PCTL - Satisfaction Relation

For a given state s € S

sEa iff a € L(s),

s = " iff s # o,

SEpAY iff s = ¢ and s = ¥,
s = Pr(yp) iff Pr(s =) € J

For paths m € M:
T = X iff w[l] =

Uy iff 35> 0. (nlj] A (V0 < k < 4. k] = @)
7 o U = iff 30<j<n. (x[f] EYAN<E<] 7k E o)

TU

Grazm

Model ChecRing a PCTL Formula

e Checking the propositional part of PCTL is easy

« How to compute Pr(M,sy = C U B) ?
o We solve a linear equation system. v

« How to compute Pr(M, sy = Xa) ?

TU

Grazm

H Model ChecRing a PCTL Formula

e Checking the propositional part of PCTL is easy

« How to compute Pr(M,sy = C U B) ?
o We solve a linear equation system. v

« How to compute Pr(M, sy = Xa) ?
o Also easy: Simple Matrix-Vector-Multiplication! v

TU

Grazm

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy

How to compute Pr(M, sy = C U B) ?
o We solve a linear equation system. v

How to compute Pr(M, sy, = Xa) ?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachabililty: Pr(M, sy = F~=*q) ?

TU

Grazm

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy

How to compute Pr(M, sy = C U B) ?
o We solve a linear equation system. v

How to compute Pr(M, sy = Xa) ?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachabililty: Pr(M, sy = F~=*q) ?
o Again: Simple Matrix-Vector-Multiplication(s)! v

TU

Grazm

Communication Protocol

delivered

« A message is eventually delivered or lost and our abstraction does not allow faulty
values:

"P>=1.0 [F (delivered=1 | lost=1)] & P>=1.0 [G try<2]"

TU

Grazm

Communication Protocol

delivered

« A message is eventually delivered or lost and our abstraction does not allow faulty
values:

"P>=1.0 [F (delivered=1 | lost=1)] & P>=1.0 [G try<2]"

o A message will almost surely be delivered eventually and trying to send a message

implies that with a probability greater or equal 0.99 the message will be sent within
three time steps.

"P>=1.0 [F (delivered=1)] & P>=1.0 [G('try=1| P>=0.99 [(F<=3 delivered=1)])] "

Probabilistic Model Zoo

ttttttttttttt
POPTA

e
AN

CTMC Kripke S DTMC

1/

P

TU

Grazm

Probabilistic Model Zoo

POSG

/

Stochastic games
POPTA

AN

CTMDP IMC MDP/PA \
" .
Hidden
AN Markov
Models

LTS
cTmMC Kripke Structure oTMG

Markov Automaton

Timed automata (TA)

TU

Grazm

Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

S aset of states and initial state sg,
e Act a set of actions,

e« P: S x Act x § — [0,1],s.t.

Zs,esp(S,a,S,) =1V(s,a) € S x Act

2AP

o AP setof atomic statesand L : S — a labelling function.

TU

Grazm

Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

S aset of states and initial state sg,
e Act a set of actions,

e« P: S x Act x § — [0,1],s.t.

Zs,esp(S,a,S,) =1V(s,a) € S x Act

o AP set of atomic states and L : § — 247 alabelling function.

The decision g defines the distribution over the next state.

TU

Grazm

Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

TU

Grazm

Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

o Guards do not need to be mutually exclusive anymore!

TU

Grazm

Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<width -> 0.9: (y'=y-1) + 0.1: true;

o Guards do not need to be mutually exclusive anymore!

«,0.9

o o |Bel~ o
gl gl= 8- lo o

EHU1ESPO ol =

TU

Grazm

Paths in an MDP

« We extend our definition of a path for an MDP M as such:

e T = 800pS1a18209 ... € (S X Act)“’,s.t. P(Si,ai,8i+1) > O,V’L >0

TU

Grazm

Paths in an MDP

« We extend our definition of a path for an MDP M as such:
e T = 8500pS1a18209 ... € (S X ACt)w, S.t. P(Si,ai,8i+1) > O,VZ >0

« Reasoning about events in an MDP resorts to the resolution of any non-
determinism
o This is done by the use of schedulers (also called
strategies/policies/adversaries).

TU

Grazm

Schedulers

e A scheduler is a function that given the history of the current path returns a
distribution over actions to be taken:

o:8" x S8 — Distr(Act)

« For simple properties such as reachability so called memoryless deterministic
scheduler suffice:

o:8S — Act

o This means that the scheduler o fixes an actions for each state.

o We can then define the probability of prop under sched
Pr°(M,s = FB)

TU

Grazm

Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S5 — Act

TU

Grazm

Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act
SO H /8 a,0.9 _ _
S1 — «
S1 — «

o o |8el= o
Sl gl=lgl=le o

Sl gle|l oo =

TU

Grazm

Coding Example

« We introduce velocity and let the car decide whether to
o switch lanes,

o accelerate or

o decelerate.

TU

Grazm

Reachability in MDPs

 We have introduced nondeterminism into probabilistic models

e Schedulers might maximize oder minimize the probability to satisfy a given
property

TU

Grazm

Reachability in MDPs

 We have introduced nondeterminism into probabilistic models

e Schedulers might maximize oder minimize the probability to satisfy a given
property

» We describe this with
o Pr(M,s = FB) = sup,Pr°(M,s = FB)

o Prm"(M,s = FB) = inf,Pr°(M,s = FB)

TU

Grazm

Computing Maximum Reachability Probabilities
in MDPs

We want to compute (z5) = Pr™** (M, s = FB) using the following equation
system:

e Ifsec Bix, =1
o If s dFB:x, =0

« Ifs ¢ Bands = JFB
o £y = max{) . P(s,a,5) zs]a € Act(s)}

e Suchthat) ¢, is minimal.

TU

Grazm

Value Iteration - Method |

« Approximative method:
o Compute the probability to reach B after n steps

o Start with n = 0 and stop after some termination criterion is met

TU

Grazm

Value Iteration - Method |

« Approximative method:
o Compute the probability to reach B after n steps

o Start with n = 0 and stop after some termination criterion is met

More specifically:

:cgo) = 1,Vse B
wg”) = 0,Vs € 5_
20 = 0, Vs e S\ S

o) = max{Y _ P(s,a,8) - ayla € Act(s)}, Vs € S\ S

TU

Grazm

Linear Program - Method Il

We can also express the problem as a linear program:

e Minimize Zm .5 Ts, such that:

o 0<x, <1,
o xs =1,ifs € B,
o xs = 0,if s ¥ JF B,

o s > Y. . sP(s,a,8") - xy,forallactionsa € Act(s),if s ¢ B and
s = JFB

TU

Grazm

Linear Program - Method |

We can also express the problem as a linear program:

e Minimize Zm .5 Ts, such that:

o 0<x, <1,
o xs =1,ifs € B,
o xs = 0,if s ¥ JF B,

o s > Y. . sP(s,a,8") - xy,forallactionsa € Act(s),if s ¢ B and
s = JFB

Linear Program - Example

» Minimize) | g Ts, such that:

o 0 <z, <1,
o xs = 1,ifs € B,
o xs = 0,if s ¥ JF B,

o £y > > .sP(s,a,8") zy, for
all actions a € Act(s),ifs ¢ B
and s = JFB

TU

Grazm

TU

Grazm

var x0
var xl1
var x2
var x3

minimiz
subject
subject
subject
subject
subject

subject
subject
subject
subject

end;

>=
>=
>=
>=

[oNoNoNO)
we Ve woe

e

e zZ:

to
to
to
to
to

to
to
to
to

cO:
cl:
c2:
c3:
c4:

c20:
c21:
c22:
c23:

X0
x0
x0
X2
X3
x1

X0
x1
X2
x3

+X1+X2+X3;

>= 3/4*x2 + 1/4*x3;
>= 1/2*x1 + 1/2*x2;
:1;

:0;

>= 1/2*x0 + 1/2*x3;

=
<=
<=
<=

e e we

[ENIENIENIN
-

e

TU

Grazm

PCTL Model Cheching for MDPs

e Syntax for PCTL does not need to be changed

« The satisfaction relation for the probabilistic operator needs to be adapted:

TU

Grazm

PCTL Model Cheching for MDPs

e Syntax for PCTL does not need to be changed

« The satisfaction relation for the probabilistic operator needs to be adapted:
o We need to consider all schedulers:

o M,s |= Proy(p) iff Prmos(M,s =) < p
o M,s |= Proy () iff Prin(M, s b= @) > p

TU

Grazm

Rewards in PRISM

We have already seen rewards in PRISM:

e Rewards:

rewards

x>0 & x<10 : 2*Xx;
x=10 : 100;

[a] true : x;

[b] true : 2*x;
endrewards

TU

Grazm

Rewards in PRISM

We have already seen rewards in PRISM:

e Rewards:

rewards

x>0 & x<10 : 2*Xx;
x=10 : 100;

[a] true : x;

[b] true : 2*x;
endrewards

e PCTL can be extended to PRCTL:
o R=? [LRA], What is the long-run average reward?

o R=? [F "elected"], What is the accumulated reward until the leader has
been elected?

o Rmax=? [C<=k], What is the maximum reward that can be achieved within k
steps?

