

Automata and LTL Model Checking

Bettina Könighofer

Model Checking SS23

May 25th 2023

given an LTL property φ and a Kripke structure M check whether $M \models \varphi$

- Construct $\neg \varphi$
- Construct a Büchi automaton $S_{\neg \omega}$
- Translate M to an automaton \mathcal{A} .
- 4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \omega})$
- If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies φ
- 6. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - a computation in M that does not satisfy φ

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata
- Translation of LTL to Büchi automata

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Automata on Infinite Words (Büchi)

$$\mathcal{B} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$$

• An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinite number of times.

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

IIAIK

Det. and Non-det. Büchi Automata

- Deterministic Büchi automata are strictly less expressive than nondeterministic ones.
 - Not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.
- Deterministic Büchi automata are not closed under complementation.
- Nondeterministic Büchi automata are closed under complementation.
 - The construction is very complicated. (Safra Construction)

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Model checking using automata

Intersection of Büchi Automata

- Given $\mathcal{B}_1 = (\Sigma, \mathbf{Q}_1, \Delta_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\Sigma, \mathbf{Q}_2, \Delta_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
 - $\mathbf{Q}^0 = \mathbf{Q}_1^0 \times \mathbf{Q}_2^0 \times \{\mathbf{0}\}$
 - $\mathbf{F} = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{2}\}$

$$((q_1,q_2,x), a, (q'_1,q'_2,x')) \in \Delta \Leftrightarrow$$

- (1) $(q_1,a,q_1') \in \Delta_1$ and $(q_2,a,q_2') \in \Delta_2$
- (2) If x=0 and $q'_1 \in F_1$ then x'=1If x=1 and $q'_2 \in F_2$ then x'=2If x=2 then x'=0Else, x'=x

Intersection of Büchi Automata

- Given $\mathcal{B}_1 = (\Sigma, \mathbf{Q}_1, \Delta_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\Sigma, \mathbf{Q}_2, \Delta_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $Q = Q_1 \times Q_2 \times \{0, 1\}$
 - $\mathbf{Q}^0 = \mathbf{Q}_1^0 \times \mathbf{Q}_2^0 \times \{\mathbf{0}\}$
 - For Δ
 - (2) If x=0 and $q_1 \in F_1$ then x'=1 If x=1 and $q_2 \in F_2$ then x'=1 Else, x'=1
 - For F
 - $\mathbf{F} = \mathbf{F}_1 \times \mathbf{Q}_2 \times \{0\}$

Intersection of Büchi Automata

Question

- How do we define the transition relation for B, if x is over {0,1} only?
- Answer
 - For Δ
 - (2) If x=0 and q₁∈ F₁ then x'=1
 If x=1 and q₂∈ F₂ then x'=0
 Else, x'=x
 - For F
 - $\mathbf{F} = \mathbf{F}_1 \times \mathbf{Q}_2 \times \{0\}$

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Checking for emptiness of $\mathcal{L}(\mathcal{B})$

- How to check for $L(A) = \emptyset$?
- Empty if there is no reachable accepting state on a cycle.

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Generalized Büchi automata

- Have several sets of accepting states
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ is a generalized Büchi automaton:
 - $\mathbf{F} = \{P_1, ..., P_k\}$, where for every $1 \le i \le k$, $P_i \subseteq Q$
- A run ρ of \mathcal{B} is accepting if for each $P_i \in \mathbf{F}$, $inf(\rho) \cap P_i \neq \emptyset$

Translation from Generalized Büchi to Büchi

• Given $\mathcal{B} = (\Sigma, \mathbf{Q}_1, \Delta_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ with $\mathbf{F} = \{P_1, ..., P_k\}$

How can we construct a Büchi automaton B' that accepts the same language?

Translation from Generalized Büchi to Büchi

- **B**= (**Σ**,**Q**₁,**Δ**₁,**Q**₁⁰,**F**₁) with**F** $= {$ **P**₁, ...,**P** $_k}$
- $\mathcal{B}' = (\Sigma, \mathbf{Q} \times \{0,1,...,k\}, \Delta', \mathbf{Q}^0 \times \mathbf{0}, \mathbf{Q} \times \mathbf{k})$ with:
- The transition relation Δ ': $((q,x),a,(q',y)) \in \Delta$ when $(q,a,q') \in \Delta$ and x and y are as follows:
 - If q' ∈ P_i and x=i, then y=i+1 for i<k</p>
 - If x=k, then y=0.
 - Otherwise, x = y.

Size of \mathcal{B} ' = (size of \mathcal{B}) × (k+1)

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Kripke Structure M to Büchi Automaton A_M

- Move labels to incoming transitions
 - Push labels backwards
- All states are accepting
- What about initial states?

Kripke Structure M to Büchi Automaton A_M

- Move labels to incoming transitions
- All states are accepting
- Introduce new initial state ι

Automata and Kripke Structures

 $\mathbf{M} = (\mathbf{S}, \, \mathbf{S}_0, \, \mathbf{R}, \, \mathsf{AP}, \, \mathbf{L}) \ \Rightarrow \ \boldsymbol{\mathcal{A}}_{\mathbf{M}} = (\boldsymbol{\Sigma}, \, \mathbf{S} \cup \{\boldsymbol{\iota}\}, \, \boldsymbol{\Delta}, \, \{\boldsymbol{\iota}\}, \, \mathbf{S} \cup \{\boldsymbol{\iota}\}) \,,$ where $\boldsymbol{\Sigma} = \mathsf{P}(\mathsf{AP})$.

- $(s,\alpha,s') \in \Delta$ for $s,s' \in S \Leftrightarrow (s,s') \in R$ and $\alpha = L(s')$
- $(\iota, \alpha, s) \in \Delta \Leftrightarrow s \in S_0$ and $\alpha = L(s)$

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Model Checking when System *A* and Spec *S* are given as Büchi automata

- \mathcal{A} satisfies \mathcal{S} if $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - Is any behavior of A allowed by S?

Sequences satisfying S

Computations of A

All possible sequences

Model Checking when System *A* and Spec *S* are given as Büchi automata

• \mathcal{A} does not satisfy \mathcal{S} if $\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S})$

Model Checking when System *A* and Spec *S* are given as Büchi automata

- Check whether $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
- Equivalent:

$$\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S}) \equiv \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}}) \neq \emptyset$$

Model Checking – suggested algorithm

when system \mathcal{A} and spec \mathcal{S} are given as Büchi automata

- 1. Complement S. The resulting Büchi automaton is \overline{S}
- 2. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 3. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies \mathcal{S}
- 4. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - lacktriangle a computation in $oldsymbol{\mathcal{A}}$ that does not satisfy $oldsymbol{\mathcal{S}}$

11**A1K** 27

Model Checking – suggested algorithm

when system \mathcal{A} and spec \mathcal{S} are given as Büchi automata

- 1. Complement *s*. The resulting Büchi automaton is *s*
- Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 3/ If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies S
- 4. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - a computation in ${\mathcal A}$ that does not satisfy ${\mathcal S}$

Model Checking – suggested algorithm

when system \mathcal{A} and spec \mathcal{S} are given as Büchi automata

- 1. Complement *s*. The resulting Büchi automaton is *s*
- Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 3/ If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies S
- 4. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - a computation in ${\mathcal A}$ that does not satisfy ${\mathcal S}$

How can we avoid building the **complement** of *S*?

given an LTL property φ and a Kripke structure M check whether $M \models \varphi$

given an LTL property φ and a Kripke structure M check whether $M \models \varphi$

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \varphi}$
- 3. Translate M to an automaton \mathcal{A} .
- **4.** Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies φ
- 6. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - lacktriangle a computation in M that does not satisfy $oldsymbol{arphi}$

given an LTL property φ and a Kripke structure M check whether $M \models \varphi$

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \omega}$
- 3. Translate M to an automaton \mathcal{A} .
- **4.** Construct the automaton **B** with $\mathcal{L}(B) = \mathcal{L}(A) \cap \mathcal{L}(S_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies φ
- 6. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample
 - lacktriangle a computation in M that does not satisfy ϕ

- Finite automata on finite words
- Automata on infinite words (Büchi automata)
- Deterministic vs non-deterministic Büchi automata
- Intersection of Büchi automata
- Checking emptiness of Büchi automata
- Generalized Büchi automata
- Automata and Kripke Structures
- Model checking using automata
- Translation of LTL to Büchi automata

Translation of LTL to Büchi automata

- 1. Translate φ into generalized Büchi Automaton
 - \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ
- 2. Translate generalized Büchi to Büchi automaton

Recall LTL Semantics

Rewriting

- Algorithm only handles
 - ¬,∧,∨,*X*,*U*
 - Use rewriting Rules
 - $\neg G\varphi = F \neg \varphi$
 - $F\varphi = true U\varphi$
 - $G\varphi = \neg F \neg \varphi$

From LTL formula φ to GBA \mathcal{A}_{φ}

• Step 1: Define the state space \mathcal{A}_{φ} based on φ

The set of all **good sets** of $\mathbf{cl}(\varphi)$ defines the state space of \mathcal{A}_{φ}

- $cl(\varphi)$ are subformulas of φ and their negation
- Formally:
 - $\varphi \in cl(\varphi)$.
 - If $\varphi_1 \in cl(\varphi)$, then $\neg \varphi_1 \in cl(\varphi)$.
 - If $\neg \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 \vee \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.
 - If $X \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 U \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.

• Step 1: Define the state space \mathcal{A}_{φ} based on φ

The set of all **good sets** of $\mathbf{cl}(\varphi)$ defines the state space of \mathcal{A}_{φ}

- $cl(\varphi)$ are subformulas of φ and their negation
- Example $cl(\varphi)$ for $\varphi := (\neg p U ((Xq) \lor r))$

$$Cl(\varphi) = \{\varphi, \neg \varphi, \neg p, p, q, \neg q, r, \neg r, (Xq), \neg (Xq), (Xq) \lor r), \neg (Xq) \lor r\}$$

• Step 1: Define the state space \mathcal{A}_{φ} based on φ

The set of all **good sets** of $\mathbf{cl}(\varphi)$ defines the state space of \mathcal{A}_{φ}

- $cl(\varphi)$ are subformulas of φ and their negation
- Good sets:
 - $S \subseteq cl(\varphi)$ is **good** in $cl(\varphi)$ if S is a maximal set of formulas in $cl(\varphi)$ that is **consistent**
 - For all $\varphi_1 \in cl(\varphi)$: $\varphi_1 \in S \Leftrightarrow \neg \varphi_1 \notin S$

Give the state space of \mathcal{A}_{φ} for the formula $\varphi = (\neg h \cup c)$

$$cl(\varphi) = \{ \neg h, h, \neg c, c, (\neg h \cup c), \neg (\neg h \cup c) \}$$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^{0}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi))$ is the set of all the good sets in $cl(\varphi)$.
- Next: △

Each state of \mathcal{A}_{φ} is labelled with a set of properties that should be satisfied on all paths starting at that state

$$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$$

- For q, q' \in Q and $\sigma \subseteq AP$, $(q,\sigma,q') \in \Delta$ if:
 - 1. $\sigma = q' \cap AP$ (push labels backwards)
 - 2. $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
 - 3. $\neg (\mathbf{X}\varphi_1) \in q \Leftrightarrow \neg \varphi_1 \in q'$
 - 4. $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$
 - 5. $\neg(\varphi_1 \cup \varphi_2) \in q \Leftrightarrow \text{ either } \neg \varphi_2 \in q \text{ and } \text{ either } \neg \varphi_1 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q'$

$$\varphi = X \neg b$$

1.
$$\sigma = q' \cap AP$$
 (push labels backwards)

2.
$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

3.
$$\neg (X\varphi_1) \in q \Leftrightarrow \neg \varphi_1 \in q'$$

$$cl(\varphi) = \{b, \neg b, X \neg b, \neg (X \neg b)\}\$$

$$\varphi = X \neg b$$

1.
$$\sigma = q' \cap AP$$
 (push labels backwards)

2.
$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

3.
$$\neg (X\varphi_1) \in q \Leftrightarrow \neg \varphi_1 \in q'$$

$$cl(\varphi) = \{b, \neg b, X \neg b, \neg (X \neg b)\}$$

$$b, X \neg b$$

$$\neg b$$

$$\neg b$$

$$\neg b$$

$$\neg b$$

$$\neg b$$

$$\neg b, \neg (X \neg b)$$

$$\varphi = X \neg b$$

1.
$$\sigma = q' \cap AP$$
 (push labels backwards)

2.
$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

3.
$$\neg (X\varphi_1) \in q \Leftrightarrow \neg \varphi_1 \in q'$$

$$cl(\varphi) = \{b, \neg b, X \neg b, \neg (X \neg b)\}$$

$$b$$

$$b$$

$$b$$

$$cl(\varphi) = \{b, \neg b, X \neg b\}$$

$$\neg b$$

$$\neg b$$

$$\neg b$$

$$\neg b$$

$$\neg b, \neg (X \neg b)$$

$$\varphi = X \neg b$$

1.
$$\sigma = q' \cap AP$$
 (push labels backwards)

2.
$$X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$$

3.
$$\neg (X\varphi_1) \in q \Leftrightarrow \neg \varphi_1 \in q'$$

$$cl(\varphi) = \{b, \neg b, X \neg b, \neg (X \neg b)\}$$

$$b$$

$$b$$

$$b$$

$$b$$

$$cl(\varphi) = \{b, \neg b, X \neg b\}$$

$$cl(\varphi) = \{b, \neg b, \neg a, x \neg b\}$$

$$\varphi = (\neg h \cup c)$$

1.
$$\sigma = q' \cap AP$$

- 3. $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$
- 4. $\neg(\varphi_1 \cup \varphi_2) \in q \Leftrightarrow \text{ either } \neg \varphi_2 \in q \text{ and } \text{ either } \neg \varphi_1 \in q \text{ or } \neg(\varphi_1 \cup \varphi_2) \in q'$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(AP), \mathbf{Q}, \Delta, \{\iota\}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup \{\iota\}$ is the set of all the good sets in $cl(\varphi) \cup \{\iota\}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow$ $\varphi \in \mathbf{q} \text{ and}$ $\sigma = q \cap AP$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(AP), \mathbf{Q}, \Delta, \{\iota\}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup \{\mathbf{l}\}$ is the set of all the good sets in $cl(\varphi)$ $\cup \{\mathbf{l}\}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1 \cup \varphi_2} = \{ q \in \mathbf{Q} \mid \varphi_2 \in q \text{ or } \neg (\varphi_1 \cup \varphi_2) \in q \}.$

$$\varphi = (\neg h \cup c)$$

 $F = \{\{1, 2, 5, 6, 7, 8\}\}\$

$$\mathcal{A}_{\varphi} = (\mathcal{P}(\mathsf{AP}), \mathbf{Q}, \Delta, \{\iota\}, \mathbf{F})$$

- $\mathbf{Q} \subseteq \mathcal{P}(cl(\varphi)) \cup \{\mathbf{l}\}$ is the set of all the good sets in $cl(\varphi)$ $\cup \{\mathbf{l}\}$.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1 \cup \varphi_2} = \{ q \in \mathbf{Q} \mid \varphi_2 \in q \text{ or } \neg (\varphi_1 \cup \varphi_2) \in q \}.$

What is the complexity?

- Q ⊆ P (cl(φ)) ∪ {ι} is the set of all the good sets in cl(φ)
 ∪ {ι}.
 - $(\iota, \alpha, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- For every $\varphi_1 \cup \varphi_2 \in cl(\varphi)$, **F** includes the set
 - $F_{\varphi_1 \cup \varphi_2} = \{ q \in \mathbf{Q} \mid \varphi_2 \in q \text{ or } \neg (\varphi_1 \cup \varphi_2) \in q \}.$
- What is the complexity?
 - \mathcal{A}_{φ} is always exponential in the size of φ .

