.w.
—:-.°.o - - = o -
. - e e
r 0_- £ ‘-0
- : ‘.’
- - ..

R)
T2 e L
s ‘ . 22

Hardware Challenges in Homomorphic
Encryption

Sujoy Sinha Roy

sujoy.sinharoy@iaik.tugraz.at TU
Grazm

mailto:sujoy.sinharoy@iaik.tugraz.at

Privacy-Preserving Outsourcing of Computation
data

—

Diabetic Retinopathy [Chao et al., 2019]

User wants to compute foo(data) in the cloud without loosing privacy.

Definition: Homomorphic Encryption Scheme

An encryption scheme ENc(-, :) is homomorphic for an operation

Enc(m,

on the message space iff

m,, k) =Enc(m,, k) o Enc(m, , k;)

with 0 operation on the ciphertext.

e |f LI=+then ENnc(:,) is additively homomorphic.

* |If L1=xthen Enc(:, -) is multiplicatively homomorphic.

Example: Textbook RSA is multiplicatively homomorphic
* You have encryption of two messages m, and m, where

c;=m;*mod N

— e
c, =m,*mod N

* By multiplying c, and c, you get

C3=C;*C,=(m;-m,)*modN

* Hence, c; is encryption of m; - m,

Fully Homomorphic Encryption (FHE)

An encryption scheme ENc(-, :) is homomorphic for an operation

on the message space iff

Enc(m, L4 m,, k;)=Enc(m,, k;) o Enc(m,, k.)

An encryption scheme is called Fully Homomorphic Encryption (FHE)
when it supports both + and x on ciphertexts.

e |f LI=+then Enc(:, :) is additively homomorphic.

* |If L1=xthen Enc(:, -) is multiplicatively homomorphic.
N ——————————

Recap -- Ring LWE Public-Key Encryption (PKE)

(1 Key Generation:
1 Output: public key (pk), secret key (sk)

e [o)

s |e
e 2.0) .b=as+e (RNBLWE
] 4 L 4 sample)

Arithmetic operations are performed in a polynomial ring R,

Public Key (pk): (a,b)
Secret Key (sk): (s)

V. Lyubashevsky, C. Peikert, and O. Regev. "On Ideal Lattices and Learning with Errors Over Rings". IACR ePrint 2012/230.

Recap -- Ring LWE Public-Key Encryption (PKE)

 Encryption:
M Input: pk = (a,b), message m
M Output: ct = (u,v)

l (Ring-LWE sample 1)
a , ;G » u=as +e

Multiplication by q/2

$ Enc(m) (a/2, 0, q/2, 0) (Ring-LWE sample 2)
* v=h.s’ + e” + Enc(m)

Recap -- Ring LWE Public-Key Encryption (PKE)
 Decryption:

/4
Qinput: ct=(u, v),sk=s 1 i 0
 Output: m after decoding a/2 0
S \'J
l l (Erroneous Message Poly) 3&/4
m’ =Enc(m) + ey

v—u.s=m’=Enc(m) + (e.s’ + "’ + e’.s)

=Enc(m) + e,

Select most significant bit of each coefficient as the message bits

Ring-LWE PKE — Written with different symbols

Secret key: polynomial s
Public-key: polynomials (p,, p,)
Plaintext modulus: 2
Ciphertext modulus: g

Scale factor: A = q/2

Encryption Decryption
ey, €4, U € error();
Cty=py-u+e; +4-m > ct, + ct.-s
ct,=p,-u+e, |- OA 12| modt

Polynomials are in blue
Scalars are in red

Ring-LWE PKE shows Homomorphism

Encryption Decryption

,e., u <€ error();
* |- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€00 €y Uy € error(); €50, €51, Ug € error();
Ctag=Pg-Uptep +A-my Ctgg = Pg - Ug + €5, + A - My
Clyy = Py~ Uy + €y Clg; =Py - Ug + €5,

Ring-LWE PKE: Additive Homomorphism

Encryption
,e., u <€ error();

+

Decryption

20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

A

€0r Eap, Uy € error(); /\
CtAo Po-Upt €y +A-m, :2/:
Cly; =Py Uyt €y

y

€50, €51, Ug € error();
Ctgg = Pg - Ug + €51 + A - My
Clg; =Py - Ug + €p,

Cteg = Pg - (Uptug) + (€5 €57) + A - (My+ M)
Ctey = Py - (Uptug) + (e, + €54)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption
, e, u< error();

+ 20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€x0r €a1s Up < error(); €gor €g1s Up < error();
ctAO Po° uA+eA1+A m Ctgp =Po - UB+931+A mg
=Py Up T €y Clg; =Py - Ug t €p,

Polynomial multiplication
Ctyg * Ctyy = (noisy crap) + A% - (m, x my)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption

,e., u <€ error();
* |- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€a0r €p1, Uy € error(); €50, €51, Ug € error();
CtAO Po-Uptep+th-my Ctgg =P - Ugt+ € +A-mg
=P1-Upyt€p Clg; =Py " Ug t+€p,

Polynomial multiplication
Ctyg * Ctyy =2 (nOisy crap) + A2 - (m, x my)

After dividing the expression by A we get:
(noisy crap)/A + A - (m, x my)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption Decryption

,e., u <€ error();
* |- J mod

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€50, €51, Ug € error();
Po-Ugteg +A-mg
Ug + €5,

€a0r €p1, Uy € error();
ctAO Po° uA+eA1+A m Ctyp =
=Py Up T €y Clg, =Py -

This looks I.Ike Polynomial multiplication
an encryption of | ¢t *ct, > (noisy crap) + A% - (m, x my)

(mA X mB) After dividing the expression by A we get:
(noisy crap)/A + A - (myx mp)

Ring-LWE PKE: Multiplicative Homomorphism

Encryption
,e., u <€ error();

+

Decryption

20 o

Now consider two ciphertexts Ct, = {ct,,,ct,,} and Ct; = {cty,,cty,}

€a0r €p1, Uy € error();
ctAO Po° uA+eA1+A my

=Pqp-UpT€Ex

€50, €51, Ug € error();
Clgg = Pg - Ug + €5, + A - Mg
Clg; =Py - Ug + €p,

Polynomial multiplication

(noisy crap)/A + A - (m,x mg)

That is the basic idea

Ctyg * Ctyy =2 (nOisy crap) + A2 - (m, x my) only.

After dividing the expression by A we get: Actual Mult is a lot

more complex!

The Biggest Problem in FHE

Enc(data)

Enc(foo(data))

Dec() gives foo(data) Cloud homomorphically
evaluates foo()

foo(data) —_ > foo(Enc(data))

Takes 1s Takes 10*to 10° s

Parameters for PQC and FHE

Size of coefficient

Increases with
complexity of
application.

500

450
400
350
300
250
0 T ke
150
100

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of coefficients in polynomial

PQC

Like Public-key encryption,
FHE does lots of polynomial arithmetic.

How to design a hardware accelerator for FHE?

What makes implementation of FHE very challenging?

e Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic
— Long integer arithmetic

* Big operands
— Ciphertexts could be several MBs

* Memory management in HW accelerators
— On-Chip memory is limited
— Off-Chip data transfer is very slow

What makes implementation of FHE very challenging?

e Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic
— Long integer arithmetic ~ This problem is solved using CRT

* Big operands
— Ciphertexts could be several MBs

* Memory management in HW accelerators
— On-Chip memory is limited
— Off-Chip data transfer is very slow

Dealing with long-int coefficients using RNS

L
We can take a modulus g = TTg; where g, are coprime.
0

Then we can work with Residue Number System (RNS).

Arithmetic mod q, Chinese

Arithmetic mod q, | Remainder

Arithmetic mod g ‘# Theorem 1
Arithmetic mod g, (CRT)

RNS arithmetic Result mod g

* Small coefficients
e Parallel computation

What makes implementation of FHE very challenging?

e Lots of polynomial arithmetic operations
— Large degree polynomial arithmetic

How to multiply two very large polynomials?

* Schoolbook multiplication: O(n?)
« Karatsuba multiplication: O(n'%>)
 Toom-Cook (generalization of Karatsuba)

e Fast Fourier Transform (FFT) multiplication: O(n log n)

Which one is the best choice?

23

How to multiply two very large polynomials?

* Schoolbook multiplication: O(n?)
« Karatsuba multiplication: O(n'%>)
 Toom-Cook (generalization of Karatsuba)

* Fast Fourier Transform (FFT) multiplication: O(n log n)

Which one is the best choice?
Asymptotic complexity plays its role.

24

NTT-based Polynomial Multiplication

A(x)

Dyadic
multiplication
O(n)

O(nlogn) [RE

B(x) A(x)*B(x)

NTT or Number Theoretic Transform

Let’s consider an application example.

Polynomial size n = 21>
Log(q) = 60

NTT and of a polynomial A[] .
Simplified NTT loops

A[n-1] for(m=",; m<=n; m=’m) {
A[n-2] for (J=0; J<=m/2-1; Jj++){
for (k=0; jJ<n; k=k+m) {
index = f(m, 7j, k);
Butterfly (A[index],A[index+m/”]) ;
}

}

}

>|>|> >
SlRr|IN|Y

NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, 7j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

NTT starts with m=2
Butterfly(A[O], A[1])

>|>|>|>
Slr|IN|Y

NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, 7j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

... with m=2
Butterfly(A[2], A[3])

>|>|>|>
SRr|IN|Y

NTT and Memory access o
Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, 7j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

... with m=2, finally
Butterfly(A[n-2], A[n-1])

>|>|> >
SlRr|IN|Y

NTT and Memory access
Y Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, 7j, k);

}
}

}

Butterfly (A[index],A[index+m/”]) ;

Next, m increments to m=4.

>|>|>|>
Slr|IN|w

Butterfly(A[O], A[2]), Butterfly(A[4], A[6]) ...

NTT and Memory access
Y Simplified NTT loops

A[n-1] for (m=2; m<=n; m=2m) {

A[n-2] for (3=0; j<=m/2-1; J++) {

for (k=0; jJ<n; k=k+m) {
index = f(m, 7j, k);

}
}

Butterfly (A[index],A[index+m/”]) ;

)
|

| Next, m increments to m=4.

>|>|>|>
Slr|N|w

Butterfly(A[1], A[3]), Butterfly(A[5], A[7]) ...

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Can we speedup polynomial multiplication using several
NTT cores in parallel?

Answer: Yes

Is parallel NTT easy to implement?

Answer: Complexity of implementation increases with number of cores

Parallel NTT
Challenge: Port limitation in BRAM or SRAM

BRAM
— Or |
SRAM
Problem:
| l * One BRAM has only two ports.

 Each NTT core needs two ports

Parallel NTT
Challenge: Port limitation in BRAM or SRAM

BRAM
——L| Or
SRAM
Problem:
| l * One BRAM has only two ports.

 Each NTT core needs two ports

v v

To get parallel NTT, designers instantiate parallel BRAMs in parallel.

Parallel NTT

Memory access conflict
e Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

Two cores are trying to access
" the same BRAM.

BRAM Q_
Rt
. -
BRAM III\
S
Vl [l |

s

Parallel NTT

Memory access conflict
e Two or more cores try to read/write the same BRAM element.
But BRAM has a limited number of ports to satisfy one core.

| i l '
 BRAM -
| I 1 |
Solution: Cores generate BRAM | ! |
addresses such that they | ®_® Two cores are trying to access
are mutually exclusive. T- the same BRAM
BRAM g .

Parallel NTT

Long data routing
* Core requires data from distant BRAM memory
- Long routing of data wires = slow clock frequency

Core is reading data
from far memory.

| BRAM | |

|BRAM |-

et

Parallel NTT

Long data routing
* Core requires data from distant BRAM memory
- Long routing of data wires = slow clock frequency

Core is reading data
from far memory.

| BRAM | |

Solution: There is no easy solution BRAM
to this problem. | '
Research papers propose localizing
read or write (not both)

et

3

_____ i
I ‘ *
|

. . Compute

* * Core-C
I[« *
L * *

£ ' Wires to write coefficients
= .
. . S | mmme=— to BRAMs. They are
This paper localizes - o I~ ’ * L1 ielined usi yI :
. £ . . ipelined using layers of reg.
the read operation. 5 b . Compute PP & 1y &
‘;’ . . Core-1 |
(] Il = *
BRAM is exclusively || S =
| _ |
read by only one — B Pipeline
register
core. Compute [x] Cc:?efﬁcientofa polynomial
Core-0 |
— NTT
Cores

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Next, FHE accelerator

}

Crypto
(FHE)

/DOIynomial arithmetic\
/ Coefficient arithmetic \

42

High level computation flow

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

... L parallel threads

mod q, mod q, mod g, 4

Each thread perform arithmetic in residue polynomial ring R ;

High level computation flow

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

J NTTs, INTTs,

... L parallel threads Coeff-wise add,
) sub, mult, etc.

mod q, mod q, mod g, 4

High level computation flow

Ciphertexts are polynomials in Ry = Z,/<X" + 1>
E.g., log(Q) =500, n=2%

Let Q = TTq; where g, are NTT primes.
Apply Residue Number System (RNS)

... L parallel threads

mod q, mod q, mod g, 4

|

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)

High level accelerator architecture

... L parallel threads

mod g, mod q, mod q, ,

module module L parallel modules module
RPAU,() RPAU,() P RPAU,,()

*RPAU stands for Residue Polynomial Arithmetic Unit

Data flow
diagram

Arch. block
diagram

RPAU ()

Each RPAU() module must support arithmetic modulo q_i

module * NTT

RPAU () * [NTT
* Modular reduction by q_i

* Coefficient-wise modular addition
e Coefficient-wise modular multiplication

RPAU ()

Memory
Access
Controller

Unified Butterfly
) and Dyadic Core-15

Y

Dyadic
Core-3

< —" Eﬂd'zc Unified Butterfly
ore- “—1 and Dyadic Core-2

Dyadic Unified Butterfl
S— Y
Core-1 ~—1 and Dyadic Core-1

Dyadic Unified Butterfly
Core-0 1 and Dyadic Core-0

Memory for Residue Polynomial 6 f—2 -y

Memory for Residue Polynomial 0 f—

Memory for KeySwitching-Key-1
Memory for KeySwitching-Key-0

Example RPAU. It uses 16 NTT butterfly cores and 4 coefficient-wise (dyadic) arithmetic cores.
Polynomials are stored in ‘Memory’ made of BRAMs.

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Instruction Parallelism in RPAU ()
Parallel execution of instructions

do; + &g * &,
J g C05 . HE. Mult RPAU.A11 RPAU.Dyadic

:d10<—c01*c11+c“*cod

:dzd <—c|J*c,J SN = = < e e e iR - iaasaasassasasaoassasasoy
" ooon d INTT(d» - d01+—coJ*coJ

{560 0 HE. Relin 24 ¢ INTT{day)

: d2vj : 2 Im(d 2.j) templ < EO,j *(-3'1 :

. J
‘fori =0toL — 1do o SRR _ x x x x x x x xx x X x % %X XX EX
| Obtain dy ; from RPAU; ra0 ¢ Coeff . Reduce(dsy,q;) feripn = iy E;J

r2; < Coeff. Reduce(ds;,q;))
t’(— NTT(r2 i) to ¢ NTT(rz0) Ju « temp, + temps
Coi & cOl + KSKo; * t SyNC.- - qeenssnannsensnesnesansans- LREEEEENESEEREESRERERESERA

ra1 ¢ Coeff.Reduce(ds1,q;) 2

n -~
"
o0 < €00 + KSKg o * tg

! (:1'4——0l +KSKy; »t
: end for ty +NTI(ra;) €10 + € o +KSKio * 0

: (dog,dyj) I.C ‘P J o T B e sy g e T e e tha |
Homomorphic multiplication & S+ oy R kR
key-switching.

(The most expensive operation)

" " -
€, < ¢, +KSKyg *t

This reduces 40% cycle count

Placement of RPAUs

CRT requires combining the residues.
- Therefore, RPAUs need to communicate with each other

How to interconnect the RPAUs in large 3D FPGAs?

... L parallel threads

mod g, mod g, mod g,

|

Chinese Remainder Theorem (CRT) to obtain R,
(Used during modulus switching steps)

Large SLR FPGA

Large FPGAs are multi-die
» The FPGA is split into four SLRs.
» Connected by a limited number of wires.

High-Bandwidth,
Low-Latency Connections

Microbumps

Through Silicon Vias (TSV)

C4 Bumps

Slice 4 4 28 nm FPGA Die Slices

[E——xi=14 [E——7q{34 Silicon Interposer
) O & & o4 ¢ & 6 o 6 06 6 6 &

Package Substrate

BGA Solder Balls

Large SLR FPGA - top view

Dynamic
Region
SLR3 Slice 3 There are a limited number
of interconnects.
Dynamic
Region L .
: Large design cannot be spread
. Slice 2 @ € CESIE P
@ arbitrarily across SLRs.
I
, Bas
Togon S
SI | 1 DDR[1]
SLR1 Ige \r_ ;
oynamic Xilinx Alveo U250 FPGA. This FPGA is 1000x
Region larger than the FPGA used in this course.

SLRO Slice O

Placement-friendly interconnection of RPAUs

* FPGA Constraints

» The FPGA is split into four SLRs. ‘!
» Connected by a limited number of wires. . \

* Some operations require exchanging the residue D
polynomials between RPAUs -

* Naive solution: A ”star-like” network

Region

SLR1

Dynamic
Region

SLRO

B one RPAU

Placement-friendly interconnection of RPAUs

* FPGA Constraints -
» The FPGA is split into four SLRs. = e]
» Connected by a limited number of wires. o

* Some operations require exchanging the residue] | D;e’mc L]

polynomials between RPAUs

* Naive solution: A ”star-like” network

‘ I))'namic ‘ Shell
Region Region

SLRT

Base
Reqion

"~ DDRI1]
- >

Dynamic

SLRO

Region .

B one RPAU

Placement-friendly interconnection of RPAUs

* FPGA Constraints
» The FPGA is split into four SLRs. ‘Q
» Connected by a limited number of wires. s \
* Some operations require exchanging the residue o
polynomials between RPAUs e

Naive solution: A ”star-like” network | oo

SLR1

.A l
Region
Complicates the routing

SLRO

Large number of nets crossing the SLRs
Reduces the clock frequency to around 50 MHz or less

Placement-friendly interconnection of RPAUs

FPGA Constraints
» The FPGA is split into four SLRs. gt
» Connected by a limited number of wires. .

* Some operations require exchanging the residue
polynomials between RPAUs

SLR2

T(0)

o\

Solution: A “ring” interconnection of RPAUs namic Shell

Region Region Region

"~ DDRI1]
SLR1 — >

Dynamic \
Region
Only two neighbour RPAUs are connected. L ’

SLRO
Data sent to an RPAU through a chain of RPAUs.
No additional computation overhead

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Placement-friendly interconnection of RPAUs

* FPGA Constraints
» The FPGA is split into four SLRs.
» Connected by a limited number of wires.

* Some operations require exchanging the residue
polynomials between RPAUs

* Placement of 10 RPAUs using “ring” interconnect

SLRO SLR1 SLR2 SLR3
. I o ! :' ------- \'I

| RPAUHT-[-RPAU#6{ RRAU#LRPAU#S !

N i i
:::::::::‘ ':::::‘.f::—-_-:__:q;y::::::‘. Riﬁi‘n‘;"cﬁzsu
| RPAU#8-T-RPAUAG || RPAUHS || RPAU#D !
h:::::::--::::::-‘ :_—_-_—'--_—'.."::::Z:::‘ <:>

:) . 1‘ 1 : External
:Communlcatlon : ' RPAU#0 :!: RPAU#1 ![communication

Platform

..............................

Region
5LR3

DOR[1] >

C
ion
SLR2 S
&
o
namic Shell B
Region Region Region
SLR1 =
Dynamic
Region
SLRO

Floorplan of the design

B RrRPAUO
(1] RPAU1
RPAU2
B RPAU3
0 rRPAU4
] RPAUS
[l RPAUG
1] RPAU7
[I] RPAUS

B RrRPAUP
B platform_i

Full system overview

Host CPU

Software Stack Xilinx Alveo U250 FPGA Board

Application
Microblaze

HE Library
(SEAL)

XDMA BRAM/URAM

Figure 8: CPU-FPGA interface and software stack

FPGA is used as an accelerator card of a server. HW/SW codesign is

used to run applications.
Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

FPGA Acceleration results

foo(data)) foo(Enc(data))

Takes 1s Takes 10*to 10° s

Overhead
down to

10%2to 103 s

Mert et al. “Medha: Microcoded Hardware Accelerator for computing on Encrypted Data”. TCHES 2023

Our Group’s research: Open Problems in FHE
1. How to make hardware accelerators for larger parameter sets?

2. How to support different parameters?
3. How to support different FHE schemes?
4. How to implement FHE Bootstrapping?
5. From FPGA to ASIC accelerators

- More parallel processing

- Custom memory
- Higher clock frequency and lower power consumption

