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Diffie-Hellman Key Agreement
4

Public info: Prime p and base g

Secret a
x = ga mod p

Secret b

Computes ya mod p

y = gb mod p

Computes xb mod p
= gab mod p = gab mod p

Security is based on Discrete Log Problem (DLP)
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Discrete Logarithm Problem

x = ga mod p

Given x, g and p, compute the secret a such that

Latest record (Dec 2019) is 795-bit [BGGHTZ’19]
Using Intel Xeon Gold with 6130 CPUs.



Contemporary Cryptographic Primitives (examples)

Public-key Cryptography Symmetric-key Cryptography

• RSA 

• Elliptic Curve

• AES

• SHA-2 or SHA-3
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Death of public key cryptography???

7
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Based on mathematical problems that are presumed to be unsolvable by 
quantum computers.

Type Encryption/Key Exchange Signature

Lattice-based Kyber, Saber, NTRU, Frodo, NTRU-Prime Dilithium, Falcon

Code-based Classis McEliece, BIKE, HQC -NA-

Multivariate-based -NA- Rainbow, GeMMS

Hash-based -NA- XMSS, SPHINCS+

Isogeny-based SIKE CSI-FiSh

Post Quantum Public Key Cryptography



Lattice-based Cryptography – The LWE problem
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Given two linear equations with unknown x and y

3x + 4y = 26
2x + 3y = 19

Find x and y.

3   4
2   3

x
y

26
19

=.or
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Solving System of Linear Equations 

For an unknown vector s of size n

Gaussian elimination solves s when the number of equations m ≥ n

11



Solving System of Linear Equations after Error is added  

Learning With Errors (LWE) problem:
Given (A, b) → computationally infeasible to solve s

mod q

Public A Public bSecret s     Error e

12



Classical → Post-Quantum Diffie-Hellman key agreement
13

Public info: Prime p and base g

Secret a
x = ga mod p

Secret b

Computes ya mod p

y = gb mod p

Computes xb mod p
= gab mod p = gab mod p

Can we get a key agreement protocol based on the LWE problem?



LWE-based Diffie-Hellman Key-Exchange

Public uniformly random matrix A 

Noisy shared secret

Small secret vector [s] 
Small error vector [e]

Small secret vector [s’] 
Small error vector [e’]A sb = e+x

sv

T

= b’ x s’v’

T

= bx

As’b’

T

= e’

T

+x

T

Note: All operations are modulo q.



LWE-based Diffie-Hellman Key-Exchange (2)

What to do with the two ‘noisy’ integers?

sv

T

= b’ x s’v’

T

= bx



LWE-based Diffie-Hellman Key-Exchange (2)

What to do with the two ‘noisy’ integers?

v = Integer I

Noise E1

+

E1 and E2 are quite small noise elements. 

Most significant bit of v and v’ are equal with high probability → You get one key bit.

v’ = Integer I

Noise E2

+

This integer I is the same on both sides



Ring-LWE problem

in a polynomial ring Rq =ℤq[x]/<f(x)> where 
a(x) : uniformly random public polynomial
s(x) : small secret polynomial
e(x) : small error polynomial
b(x) : output polynomial,

a(x)*s(x) + e(x) = b(x) (mod q) (mod f(x) ) 

Given

Ring-LWE problem:
Given (a(x), b(x)) → computationally infeasible to solve s(x)
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Ring-LWE-based Diffie-Hellman Key-Exchange

Public polynomial a(x)

Small secret poly s(x)
Small error poly e(x)

Small secret poly s’(x)
Small error poly e’(x)

b(x) = a(x)∙s(x) + e(x)

b’(x) = a(x)∙s’(x) + e’(x)

v(x)=b’(x)∙s(x)
= a(x)∙s(x)∙s’(x) + e’(x)∙s(x)

v’(x)=b(x)∙s’(x)
= a(x)∙s(x)∙s’(x) + e(x)∙s’(x)

Decoding v(x) gives n bits. Decoding v’(x) gives n bits.



Ring-LWE (i.e., polynomials) is significantly more efficient than matrix LWE 

This course: Hardware implementation of Ring-LWE encryption

Assignment 1: We implement ring-LWE public-key encryption (PKE)



Ring LWE-based Public-Key Encryption (PKE)

x +Gen(a)

Gen(s) Gen(e)

a
s e

b = a.s + e

Public Key (pk): (a,b)
Secret Key (sk): (s)

❑Key Generation:
❑Output: public key (pk), secret key (sk)

(Ring LWE 
sample)

V. Lyubashevsky, C. Peikert, and O. Regev. "On Ideal Lattices and Learning with Errors Over Rings". IACR ePrint 2012/230.

Arithmetic operations are performed in a polynomial ring Rq



x +a

s’ e’

u = a.s’ + e’

x +b +

Enc(m)

v = b.s’ + e’’ + Enc(m)

(1, 0, 1, 0, . . .)

(q/2, 0, q/2, 0)

(Ring-LWE sample 1)

(Ring-LWE sample 2)

❑Encryption:
❑ Input: pk = (a,b), message m
❑Output: ct = (u,v)

m

Encodes’ e’’ Multiplication by q/2

Ring LWE-based Public-Key Encryption (PKE)



x -u

s v

m’ = Enc(m) + esmall
Decode

(Erroneous Message Poly)

m

❑Decryption:
❑ Input: ct = (u, v), sk = s
❑Output: m after decoding

0 

q/2

0 

1 

v – u.s = m’= Enc(m) + (e.s’ + e’’ + e’.s)
= Enc(m) + esmall

Ring LWE-based Public-Key Encryption (PKE)

Select most significant bit of each coefficient as the message bits



Error Sampler

Modular arithmetic: 
addition, subtraction, 

multiplication, inversion

Polynomial arithmetic

Encoder/
Decoder

Error 
Correction 

Code

Public-Key 
Encryption or KEM 

or Signature 

Symmetric 
primitives 

Implementation hierarchy of LWE-based public-key crypto. 23



Mathematical background on Polynomial Arithmetic



Polynomial addition modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

Two polynomials are added coefficient-wise modulo q. 

Example:

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
+



Polynomial addition modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

Two polynomials are added coefficient-wise modulo q. 

Example:

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)

c(x) = 1x3 + 6x2 + 0x + 1  (mod 7)

+



Polynomial multiplication modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

Usual way: Multiply each term in one polynomial by each term in the other 
polynomial and then sum them following the standard way. 



Polynomial multiplication modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

Usual way: Multiply each term in one polynomial by each term in the other 
polynomial and then sum them following the standard way. 

3x3 + 1x2 + 4x + 5



Polynomial multiplication modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

Usual way: Multiply each term in one polynomial by each term in the other 
polynomial and then sum them following the standard way. 

3x3 + 1x2 + 4x + 5
4x4 + 6x3 + 3x2 + 2x



Polynomial multiplication modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

Usual way: Multiply each term in one polynomial by each term in the other 
polynomial and then sum them following the standard way. 

3x3 + 1x2 + 4x + 5
4x4 + 6x3 + 3x2 + 2x

3x5 + 1x4 + 4x3 + 5x2



Polynomial multiplication modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

Usual way: Multiply each term in one polynomial by each term in the other 
polynomial and then sum them following the standard way. 

3x3 + 1x2 + 4x + 5
4x4 + 6x3 + 3x2 + 2x

3x5 + 1x4 + 4x3 + 5x2

1x5 + 5x5 + 6x4 + 4x3



Polynomial multiplication modulo q

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

Usual way: Multiply each term in one polynomial by each term in the other 
polynomial and then sum them following the standard way. 

3x3 + 1x2 + 4x + 5
4x4 + 6x3 + 3x2 + 2x

3x5 + 1x4 + 4x3 + 5x2

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

1x5 + 5x5 + 6x4 + 4x3

Coefficient-wise 
addition mod 7



Modular reduction of a polynomial by a polynomial

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

Let’s say,  we want to modulo reduce this polynomial

f(x) = x4 + 1  (mod 7).

by the following polynomial



Modular reduction of a polynomial by a polynomial

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

Let’s say,  we want to modulo reduce this polynomial

f(x) = x4 + 1  (mod 7).

by the following polynomial

Any term in c(x) with degree ≥ deg(f) will get reduced by f(x) using 
the congruence relation:

x4 = -1 (mod 7)



Modular reduction of a polynomial by a polynomial

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

Let’s say,  we want to modulo reduce this polynomial

f(x) = x4 + 1  (mod 7).

by the following polynomial

Any term in c(x) with degree ≥ deg(f) will get reduced by f(x) using 
the congruence relation:

x4 = -1 (mod 7)

Example:
4x4 = 4·(-1)     (mod 7)

= 3            (mod 7)



Modular reduction of a polynomial by a polynomial

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

Let’s say,  we want to modulo reduce this polynomial

f(x) = x4 + 1  (mod 7).

by the following polynomial

Any term in c(x) with degree ≥ deg(f) will get reduced by f(x) using 
the congruence relation:

x4 = -1 (mod 7)

Similarly, 1x5 = 6x (mod 7)
and          1x6 = 6x2 (mod 7)



Modular reduction of a polynomial by a polynomial

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

Let’s say,  we want to modulo reduce this polynomial

f(x) = x4 + 1  (mod 7).

by the following polynomial

6x2 + 6x + 3

After reduction by f(x)

Hence, c(x) mod f(x) = (6x2 + 6x + 3) + (3x3 + 2x2 + 6x + 5) 
=  3x3 + 1x2 + 5x + 1  (mod 7) (mod f)  



[Definition] Polynomial ring Rq =ℤq[x]/<f(x)>

• The polynomial ring has its irreducible polynomial f(x) of degree n.

→ Hence all ring-elements are polynomials of degree n-1.

• Closed under polynomial addition and multiplication. 
→For two polynomials a(x) and b(x) ∈ Rq

c(x) = a(x) + b(x) (mod q) (mod f) ∈ Rq

and 
c(x) = a(x) * b(x) (mod q) (mod f) ∈ Rq

• Identity element under the addition rule is the 0-polynomial.
• Identity element under the multiplication rule is the 1-polynomial
• Multiplicative inverse of a polynomial may not exist.



From now on we assume all multiplications are in Rq = ℤq[x]/<xn + 1>

→ This simplifies modular reduction by f(x) = xn + 1
→ and makes an implementation more efficient



Error Sampler

Modular arithmetic: 
addition, subtraction, 

multiplication, inversion

Polynomial arithmetic

Encoder/
Decoder

Error 
Correction 

Code

Public-Key 
Encryption or KEM 

or Signature 

Symmetric 
primitives 

Implementation hierarchy: Ring-LWE-based PKE 40



How to multiply two polynomials?

41

We can use the following algorithms and also combinations of them

• Schoolbook multiplication: O(n2)

• Karatsuba multiplication: O(n1.585)

• Fast Fourier Transform (FFT) multiplication: O(n log n)



Schoolbook method of polynomial multiplication

a(x) = 5x3 + 4x2 + 2x + 6  (mod 7)

b(x) = 3x3 + 2x2 + 5x + 2  (mod 7)
*

3x3 + 1x2 + 4x + 5
4x4 + 6x3 + 3x2 + 2x

3x5 + 1x4 + 4x3 + 5x2

c(x) = 1x6 + 1x5 + 4x4 + 3x3 + 2x2 + 6x + 5  (mod 7)

1x5 + 5x5 + 6x4 + 4x3

We learnt this method during algebra classes in school. 
+ Simple structure makes it easy to implement.
- Time complexity is O(n2), which is the worst of all three algorithms.



N = 2^8; /* Polynomial degree */
q = 7681; /* Coefficient modulus */
firr = Mod(1, q)*x^N + Mod(1, q); /* Irreducible polynomial modulus */

schoolbook(a, b) = {

/* Schoolbook polynomial multiplication c = a*b has two nested loops */
c = 0;

for(i=0, N-1,
for(j=0, N-1,

mval = polcoeff(b, j)*polcoeff(a,i) % q;
c = c + mval*x^(j+i)));

c = c%firr;

return (c);
}

GP/Pari code for Schoolbook polynomial multiplication (1)

https://pari.math.u-bordeaux.fr/gp.html

https://pari.math.u-bordeaux.fr/gp.html


test() = {
/* Formation of random polynomial a(x) with coefficients mod q */
a = 0;
for(i=0, N-1, a = a + random(q)*x^i);

/* Formation of random polynomial b(x) with coefficients mod q */
b = 0;
for(i=0, N-1, b = b + random(q)*x^i);

c= schoolbook(a, b);

/* Native polynomial multiplication d = a*b. */
d = a*b % firr;

print("c = ", c);
print("d = ", d);
print("c-d = ", c-d); /* If correct, then c-d will be 0. */

}

test();

GP/Pari code for Schoolbook polynomial multiplication (2)

https://pari.math.u-bordeaux.fr/gp.html

https://pari.math.u-bordeaux.fr/gp.html


Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree N = 256 and f(x) = x256 + 1 .

How will you implement the algo as an architecture in HW? 



Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree N = 256 and f(x) = x256 + 1 .

How will you implement the algo as an architecture in HW?
• What are the fundamental elementary operations?



Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree N = 256 and f(x) = x256 + 1 .

How will you implement the algo as an architecture in HW?
• What are the fundamental elementary operations?

• Draw an architecture for MAC

Multiply and Accumulate (MAC)



Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree N = 256 and f(x) = x256 + 1 .

+

acc[ j ]

b[j]   a[i]

MAC

Architecture of MAC unit 



Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree N = 256 and f(x) = x256 + 1 .

How to implement this step?



Architecture for Schoolbook polynomial multiplication

E.g., polynomial degree N = 256 and f(x) = x256 + 1 .

How to implement this step?

With mod f(x) = xn + 1, we have xn ≡ -1, hence multiplying

b(x) = bn-1xn-1 + … + b0     (mod f(x))   by x gives

x·b(x) = bn-2xn-1 + … + b0x - bn-1   (mod f(x)) →Rotation with sign change.



±

acc[ j ]

b[j]   a[i]

sign

MAC

a255 a254 a1 a0
. . .

b255 b254 b1 b0
. . .

Ring-buffer
registers

Rotate & 
sign 

change

acc255 acc254 acc1 acc0
. . .

Note: This is just an idea. This may not be
an optimized architecture!

Architecture for Schoolbook polynomial multiplication

Apply this MAC( ) one by one. 



Karatsuba method of polynomial multiplication

Andrey Kolmogorov
(1903-1987)

In 1960, during a seminar at Moscow State University,
Kolmogorov conjectured that multiplying two integers 
have O(n2) complexity.

Anatoly Karatsuba
(1937-2008)

Karatsuba, then a 23 years old student, attended the seminar 
and within a week came up with a divide-and-conquer method
for multiplying two integers with                complexity.

The method was published in the Proceedings of the USSR 
Academy of Sciences in 1962.



Karatsuba method of polynomial multiplication (1)

a(x) = ah (x) xn/2 + al (x) = ah x
n/2 + al

a(x) = an-1 xn-1 + … + an/2 xn/2 + an/2-1 xn/2-1 +… + a1x + a0

ah (x) al (x)

Hence, we can write:

Split each operand into two halve-size polynomials:



Karatsuba method of polynomial multiplication (2)

a(x) = ah x
n/2 + al

b(x) = bh xn/2 + bl

a(x) * b(x) = ahbh xn +  ( ahbl + albh ) xn/2 +  al bl

Naïve method: We can compute the result using the Schoolbook method  

It performs 4 multiplication and has a quadratic complexity.

After splitting we have:

Karatsuba showed how to compute this using 3 multiplications.



Karatsuba method of polynomial multiplication (3)

a(x) = ah x
n/2 + al

b(x) = bh xn/2 + bl

a(x) * b(x) = ahbh xn +  ( ahbl + albh ) xn/2 +  al bl

Karatsuba method:

It computes ( ahbl + albh ) term by performing only one multiplication as: 

After splitting we have:

(ahbl + albh ) = (ah + al)·(bh + bl) - ahbh - albl

`

These two produces are reused from the above.



Karatsuba method of polynomial multiplication (3)

a(x) = ah x
n/2 + al

b(x) = bh xn/2 + bl

a(x) * b(x) = ahbh xn +  ( ahbl + albh ) xn/2 +  al bl

Karatsuba method:

It computes ( ahbl + albh ) term by performing only one multiplication as: 

After splitting we have:

Hence, the three multiplications are:
ahbh , albl , and (ah + al)·(bh + bl).

(ahbl + albh ) = (ah + al)·(bh + bl) - ahbh - albl



Divide-and-Conquer approach: Karatsuba tree

. . . . . . . .

1 2 3

256

128

a(x)

1 2 3

256

b(x) . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . .. . . . .

64

• Recursively apply divide-and-conquer strategy
• When the polynomials are of sufficiently-small size, multiply them
• And return to the higher levels



Complexity of Karatsuba polynomial multiplication

Let, Tn be the time for multiplication two n-coefficient polynomials.

Tn = 3Tn/2

= 32 Tn/4

= 33 Tn/8

= . . . 
= 3         T1

log2n

Hence, the complexity = O(3         ) = O(n        ) ≈ O(n1.585)
log2n log23



The idea of FFT



y = a(x)

x
0 1 2 3 4 5 … n-1

a(x) = an-1 xn-1 + … + a1x + a0

Representation: Polynomial ↔ Point values

Given a polynomial a(x) we can easily compute its evaluations at n points 

Each point is an
evaluation of a(x)



y = a(x)

x
0 1 2 3 4 5 … n-1

a(x) = ?

Representation: Polynomial ↔ Point values

Given n distinct evaluation points y0, y1, …, yn-1 can we get a(x)?

Each point is an
evaluation of a(x)



What we have as y0, y1, …, yn-1 are:

y0 = a(0) = an-1 0n-1 + … + a20
2 + a10 + a0

y1 = a(1) = an-1 1n-1 + … + a21
2 + a11 + a0

yn-1 = a(n-1) = an-1 (n-1)n-1 + … + a2(n-1)2 + a1(n-1) + a0

. . . 



Polynomial → Point values

00 01 02 …   0n-1

10 11 12 …   1n-1

20 21 22 …   2n-1

…

(n-1)0 (n-1)n-1

a0

a1

a2

…

an-1

a(0)

a(1)

a(2)

…

a(n-1)

=

Points
Polynomial
coefficients

Given a polynomial, calculating the n distinct points is called ‘evaluation’.

This is forward Discrete Fourier Transform (DFT).



Point values → Polynomial

00 01 02 …   0n-1

10 11 12 …   1n-1

20 21 22 …   2n-1

…

(n-1)0 (n-1)n-1

a0

a1

a2

…

an-1

a(0)

a(1)

a(2)

…

a(n-1)

=

Points
Polynomial
coefficients

-1

Given n distinct points, calculating the polynomial is called ‘interpolation’.

This is Inverse Discrete Fourier Transform (IDFT).



Rules: Polynomial ↔ Point values

1. Interpolation will succeed in obtaining a(x) only if there are n 
n distinct evaluations y0, …, yn-1. 

2. You can choose any values for x as long as you get n distinct yi. 



Application of DFT in polynomial multiplication

a(x) = a0 + a1x + … + an-1x
n-1

b(x) = b0 + b1x + … + bn-1x
n-1

c(x) = a(x)*b(x) = c0 + c1x + … + cn-1x
n-1 + … + c2n-2x

2n-2

×

Polynomial c(x) has degree 2n-2. 
→ Therefore c(x) can be represented as 2n-1 discrete points. 



Application of DFT in polynomial multiplication

a(x) = a0 + a1x + … + an-1x
n-1

b(x) = b0 + b1x + … + bn-1x
n-1

c(x) = a(x)*b(x) = c0 + c1x + … + cn-1x
n-1 + … + c2n-2x

2n-2

We do 2n-1 evaluations.

×

c(0)      = a(0)      * b(0)

c(1)      = a(1)      * b(1)

…

c(2n-2) = a(2n-2) * b(2n-2)



Application of DFT in polynomial multiplication

a(x) = a0 + a1x + … + an-1x
n-1

b(x) = b0 + b1x + … + bn-1x
n-1

c(x) = a(x)*b(x) = c0 + c1x + … + cn-1x
n-1 + … + c2n-2x

2n-2

We do 2n-1 evaluations.

×

We use IDFT to
get polynomial 
c(x) from the 2n-1
points.

c(0)      = a(0)      * b(0)

c(1)      = a(1)      * b(1)

…

c(2n-2) = a(2n-2) * b(2n-2)

DFT(a) DFT(b)



Summary: DFT-base polynomial multiplication

2n-1 point 
DFT

a(x) = an-1 xn-1 + … + a0

2n-1 point 
DFT

b(x) = bn-1 xn-1 + … + b0

Point wise 
multiply

2n-1 point 
IDFT

c(
x)

=
 c

2
n

-2
x2

n
-2

+
 …

 +
 c

0



What is the complexity of Discrete Fourier Transform (DFT) ?



What is the complexity of Discrete Fourier Transform (DFT) ?

Answer: O(n2)

Fast Fourier Transform (FFT) computes it ‘fast’ in O(n log n)  



Fast Fourier Transform (FFT)

With these special points, we can reuse intermediate values to do 
fewer computation in total.

The n-point FFT evaluates a(x) = an-1xn-1 + … + a1x + a0

at n special points:  x = ωk = e–i2πk/n for k = 0, …, n-1 where ω = e–i2π/n  is 
the nth primitive root of 1 i.e., ωn = 1. 

n n

n



Fast Fourier Transform (FFT)

The n-point FFT evaluates a(x) = an-1xn-1 + … + a1x + a0

at n special points:  x = ωk = e–i2πk/n for k = 0, …, n-1 where ω = e–i2π/n  is 
the nth primitive root of 1. 

n n

Interesting mathematical property FFT uses:

ωn/2    = -1n



Fast Fourier Transform (FFT)

The n-point FFT evaluates a(x) = an-1xn-1 + … + a1x + a0

at n special points:  x = ωk = e–i2πk/n for k = 0, …, n-1 where ω = e–i2π/n  is 
the nth primitive root of 1. 

n n

Interesting mathematical property FFT uses:

ωn/2    = -1n

We can rewrite 
a(x) = an-1xn-1 + … + a1x + a0

= (… +a4x4 + a2x2 +a0) + (… +a5x4 + a3x2 +a1)x
= aeven(x2) + xaodd(x2)



Fast Fourier Transform (FFT)

Interesting mathematical property FFT uses:

ωn/2    = -1n

We can rewrite 
a(x) = an-1xn-1 + … + a1x + a0

= (… +a4x4 + a2x2 +a0) + (… +a5x4 + a3x2 +a1)x
= aeven(x2) + xaodd(x2)

Based on the above, 

yk = a(ωk) = aeven(ω2k) + ωk aodd(ω2k) 

yk+n/2 = a(ωk+n/2) = aeven(ω2k+n) + ωk+n/2 aodd(ω2k+n)
= aeven(ω2k)  - ωk aodd(ω2k) 

and 



Fast Fourier Transform (FFT)

Interesting mathematical property FFT uses:

ωn/2    = -1n

We can rewrite 
a(x) = an-1xn-1 + … + a1x + a0

= (… +a4x4 + a2x2 +a0) + (… +a5x4 + a3x2 +a1)x
= aeven(x2) + xaodd(x2)

Based on the above, 

yk = a(ωk) = aeven(ω2k) + ωk aodd(ω2k) 

yk+n/2 = a(ωk+n/2) = aeven(ω2k+n) + ωk+n/2 aodd(ω2k+n)
= aeven(ω2k)  - ωk aodd(ω2k) 

and 

FFT reuses them



Complexity of FFT
Uses divide and conquer approach

a(x)

aeven(x) aodd(x)

aeven(x) aodd(x) aeven(x) aodd(x)

PolSize = n

PolSize = n/2

PolSize = n/4

Each level in the tree has O(n) cost. There are log(n) levels.
Total cost = O(n log n)



FFT to Number Theoretic Transform (NTT)

• FFT involves arithmetic of real numbers

• Number Theoretic Transform (NTT) 

→ Only integer arithmetic modulo q

It evaluates at powers of e–i2π/n where e–i2π/n is the complex nth

primitive root of the unity.

NTT replaces e–i2π/n by an nth primitive root of the unity modulo q
where q is a prime satisfying q ≡ 1 mod n and n is a power-of-2.



An optimization in NTT: Negative-wrapped convolution

Polynomial multiplication in 
Rq = ℤq[x]/<f(x)> where q is 
a prime satisfying 
q ≡ 1 (mod n) is as follows:



An optimization in NTT: Negative-wrapped convolution

Polynomial multiplication in 
Rq = ℤq[x]/<f(x)> where q is 
a prime satisfying 
q ≡ 1 (mod n) is as follows:

Polynomial multiplication in 
Rq = ℤq[x]/<f(x)> where q is 
a prime satisfying 
q ≡ 1 (mod 2n), and 
f(x) = xn + 1 is as follows:

Negative-wrapped convolution



https://electricdusk.com/ntt.html

Explaining NTT using the Chinese Remainder Theorem (CRT)

(Optional study material. Not essential for this course) 

https://electricdusk.com/ntt.html


Python code of NTT-based multiplication is available on the course page.



Forward NTT Pseudocode
fntt(B[ ] of size N):

t = N
m = 1
while(m<N):

t = int(t/2)
for i in range(m):

j1 = 2*i*t
j2 = j1 + t - 1
psi_pow = int_bitreverse(m+i)  # Bits in the reverse order

W = psi_table[psi_pow]

for j in range(j1,j2+1): # Cooley-Tukey butterfly operation
U = B[j]
V = (B[j+t]*W) % q
B[j] = (U+V) % q
B[j+t] = (U-V) % q

m = 2*m
return B



Butterfly circuit for forward NTT

ω

B[j] B[j+t]

B[j+t]

+ -

B[j] B[j]

Butterfly Core



B[0]

B[1]

B[2]

B[3]

B[n-1]

B[n-2]

Simplified NTT loops

Loop m {

Loop i {

Loop j {

Butterfly(B[j],B[j+t]);

}

}

}

NTT and Memory access

Butterfly() reads two coefficients from memory.

Butterfly() writes two coefficients to memory.



B[0]

B[1]

B[2]

B[3]

B[n-1]

B[n-2]

NTT in HW

Butterfly Core for forward NTT

Control 
Unit (CU)

BRAM address ROM
ω

BROM address



Inverse NTT Pseudocode
intt(B[ ] of size N):

t = N
m = 1
while(m>1):

j1 = 0
h = int(m/2)
for i in range(h):

j2 = j1 + t - 1
psi_pow = int_bitreverse(h+i,l)
W = psi_inv_table[psi_pow]

for j in range(j1,j2+1):
# Gentleman-Sande butterfly operation
U = B[j]
V = B[j+t]
B[j] = (U+V) % q
B[j+t] = (U-V)*W % q

j1 = j1 + 2*t
t = 2*t
m = int(m/2)
……

return B

Draw the block diagram for 
Gentleman-Sandy butterfly core? 



B[0]

B[1]

B[2]

B[3]

B[n-1]

B[n-2]

Simplified NTT loops

Loop m {

Loop i {

Loop j {

Butterfly(B[j],B[j+m/2]);

}

}

}

NTT and Memory access

Butterfly() reads two coefficients from memory.

Butterfly() writes two coefficients to memory.



B[0]

B[1]

B[2]

B[3]

B[n-1]

B[n-2]

NTT in HW (example of forward NTT)

Butterfly Core for forward NTT

Control 
Unit (CU)

BRAM address ROM
ω

BROM address



Karatsuba multiplier in HW?

• Karatsuba uses divide-and-conquer recursively.
• Recursion is easy to implement in SW → Call the function recursively.
• Full recursion is ‘difficult’ to implement in HW  (*my* personal opinion)

But, a few levels of recursions is easy to implement.  (see next slide)



E.g., 1 level of Karatsuba then Schoolbook

Some ideas:
1. Use HW/SW co-design approach. Perform splitting and joining in SW 

and compute the Schoolbook multiplications in HW. 
→ Easy to implement. But many rounds of HW <--> SW communications.

2. Do everything in HW. →More efficient.



HW/SW co-design of the Karatsuba method

KS256( )

KS128( ) KS128( ) KS128( )

KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( )

1. SW: Since recursion is challenging to implement in HW, perform all the 
recursive function calls in SW.

2. HW: When the recursion tree reaches a ‘threshold’, perform the actual 
schoolbook multiplications in HW. 

3. SW: Read the partial results from HW and combine them in SW.



HW/SW co-design of the Karatsuba method: example

KS256( )

KS128( ) KS128( ) KS128( )

KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( ) KS64( )

Schoolbook32 () in HW

Tree in Software

HW-SW communication


