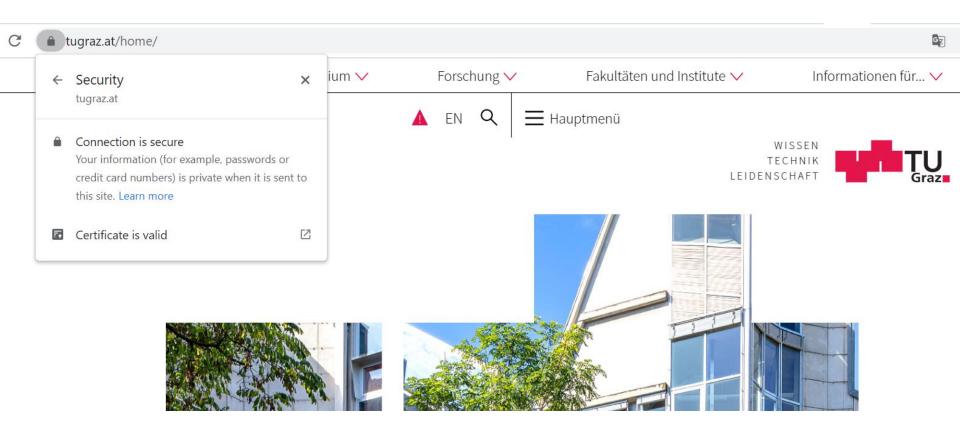
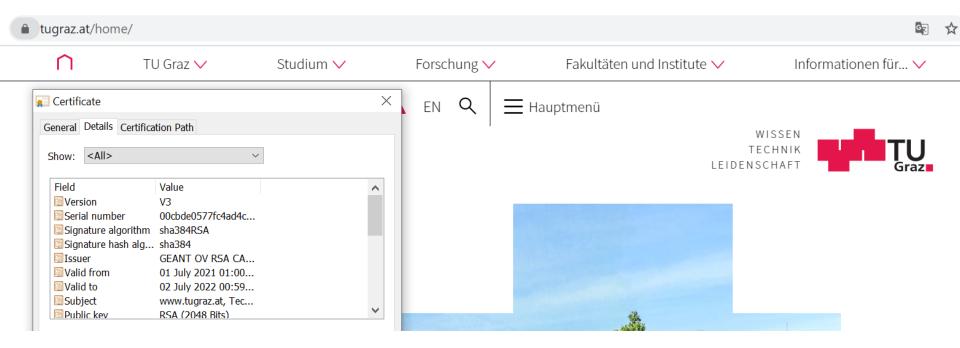
Hardware Implementation of Public-Key Cryptography

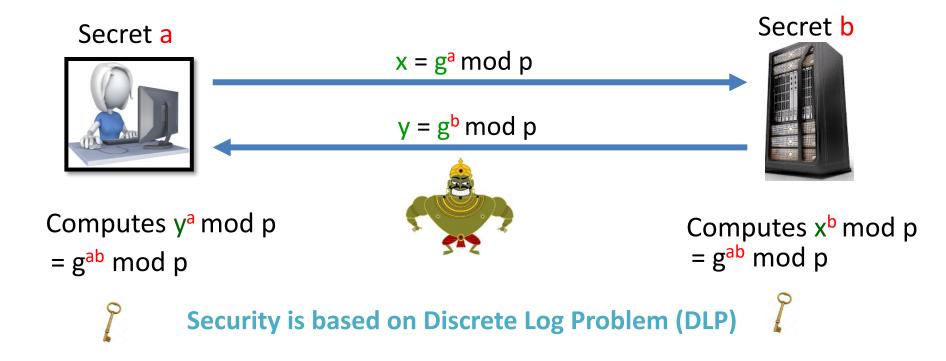
Cryptography on Hardware Platform Sujoy Sinha Roy <u>sujoy.sinharoy@iaik.tugraz.at</u>





Diffie-Hellman Key Agreement

Public info: Prime p and base g



Discrete Logarithm Problem

Given x, g and p, compute the secret a such that

 $x = g^a \mod p$

Latest record (Dec 2019) is 795-bit [BGGHTZ'19] Using Intel Xeon Gold with 6130 CPUs.

Contemporary Cryptographic Primitives (examples)

Public-key Cryptography

• RSA

Symmetric-key Cryptography

• AES

• Elliptic Curve

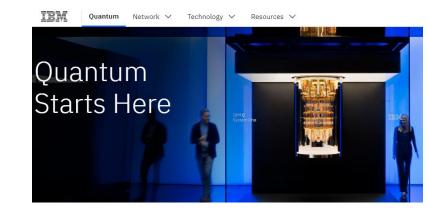
• SHA-2 or SHA-3

BBC O Sign in 🔺 News Sport Weather iPlayer So

NSA 'developing code-cracking quantum computer'

③ 3 January 2014

🔗 🔰 🗹 < Share



e to search

) may

Death of public key cryptography???

The latest news from Gc

both display "quantum primacy" over classical computers

BY CHARLES Q. CHOI | 06 NOV 2021 | 2 MIN READ | 🗍

Quantum Supremacy Using a Programmable Superconducting Processor

Wednesday, October 23, 2019

Posted by John Martinis, Chief Scientist Quantum Hardware and Sergio Boixo, Chief Scientist Quantum Computing Theory, Google AI Quantum

Post Quantum Public Key Cryptography

Based on mathematical problems that are presumed to be unsolvable by quantum computers.

Туре	Encryption/Key Exchange	Signature
Lattice-based	Kyber, Saber, NTRU, Frodo, NTRU-Prime	Dilithium, Falcon
Code-based	Classis McEliece, BIKE, HQC	-NA-
Multivariate-based	-NA-	Rainbow, GeMMS
Hash-based	-NA-	XMSS, SPHINCS+
Isogeny-based	SIKE	CSI-FiSh

Lattice-based Cryptography – The LWE problem

Given two linear equations with unknown x and y

1(

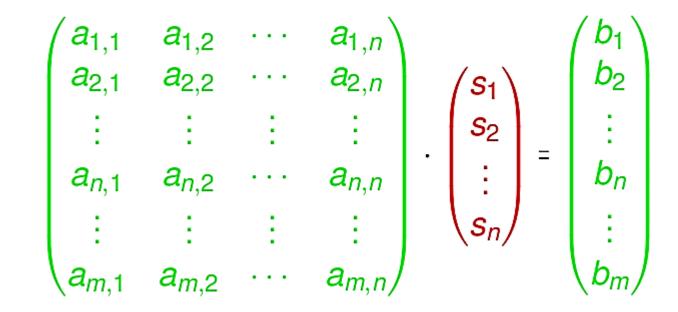
$$3x + 4y = 26$$

$$2x + 3y = 19$$
 or
$$\begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 26 \\ 19 \end{pmatrix}$$

Find x and y.

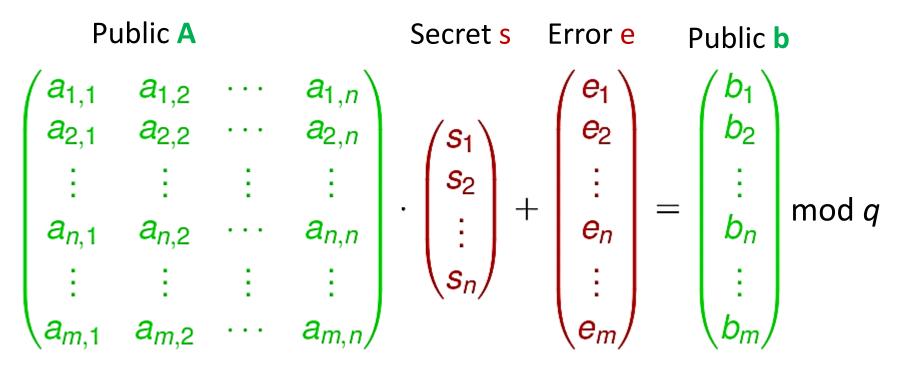
Solving System of Linear Equations

For an unknown vector **s** of size n



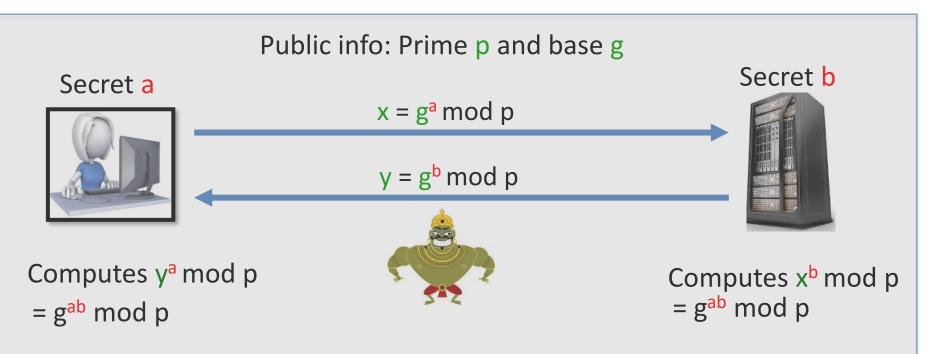
Gaussian elimination solves **s** when *the* number of equations $m \ge n$

Solving System of Linear Equations after *Error* is added



Learning With Errors (LWE) problem: Given $(A, b) \rightarrow$ computationally infeasible to solve *s*

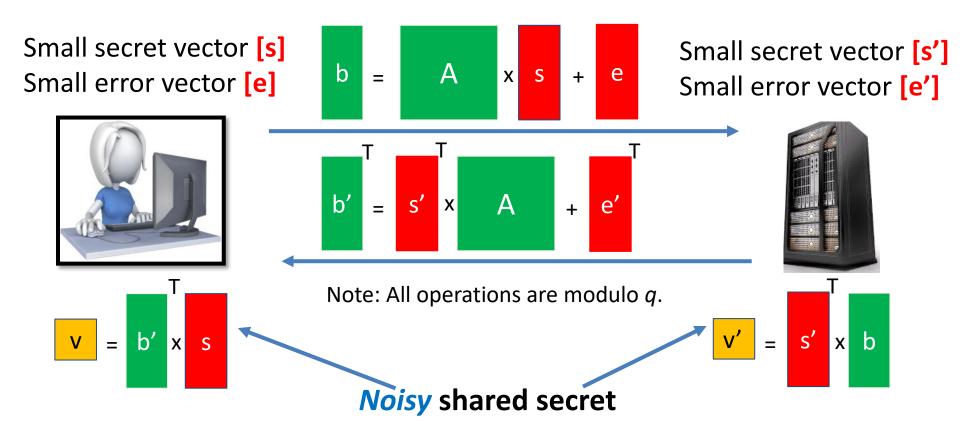
Classical → Post-Quantum Diffie-Hellman key agreement



Can we get a key agreement protocol based on the LWE problem?

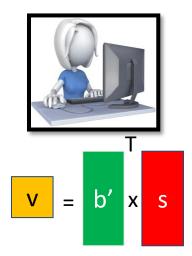
LWE-based Diffie-Hellman Key-Exchange

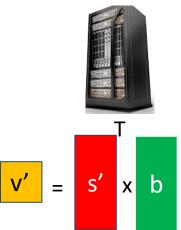
Public uniformly random matrix A



LWE-based Diffie-Hellman Key-Exchange (2)

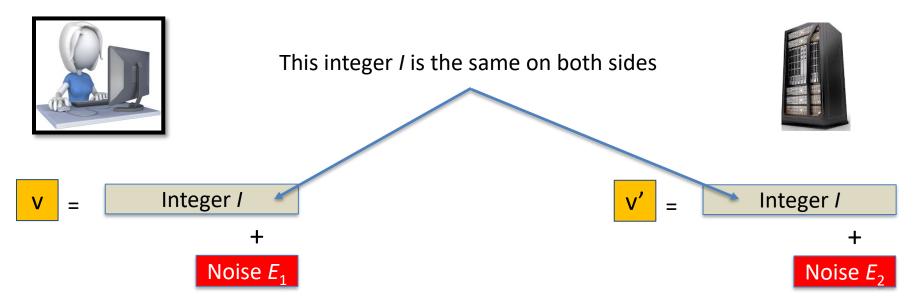
What to do with the two 'noisy' integers?





LWE-based Diffie-Hellman Key-Exchange (2)

What to do with the two 'noisy' integers?



 E_1 and E_2 are quite small noise elements.

Most significant bit of v and v' are equal with high probability \rightarrow You get one key bit.

Ring-LWE problem

Given

 $a(x)*s(x) + e(x) = b(x) \pmod{q} \pmod{f(x)}$

in a polynomial ring $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$ where a(x): uniformly random public polynomial s(x): small secret polynomial e(x): small error polynomial b(x): output polynomial,

Ring-LWE problem: Given $(a(x), b(x)) \rightarrow$ computationally infeasible to solve s(x)

Ring-LWE-based Diffie-Hellman Key-Exchange

Public polynomial a(x)

Small secret poly s(x) Small error poly e(x)

 $b(x) = a(x) \cdot s(x) + e(x)$

Small secret poly s'(x) Small error poly e'(x)

$$b'(x) = a(x) \cdot s'(x) + e'(x)$$

 $\frac{v(x)}{a(x)} = b'(x) \cdot s(x)$ $= a(x) \cdot s(x) \cdot s'(x) + e'(x) \cdot s(x)$

Decoding v(x) gives n bits.

 $\frac{v'(x)}{a(x)} = b(x) \cdot s'(x)$ $= a(x) \cdot s(x) \cdot s'(x) + e(x) \cdot s'(x)$

Decoding v'(x) gives n bits.

This course: Hardware implementation of Ring-LWE encryption

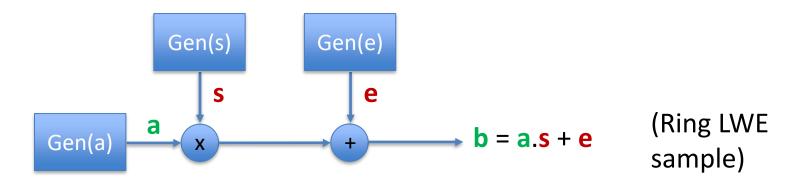
Ring-LWE (i.e., polynomials) is significantly more efficient than matrix LWE

Assignment 1: We implement ring-LWE public-key encryption (PKE)

Ring LWE-based Public-Key Encryption (PKE)

Generation:

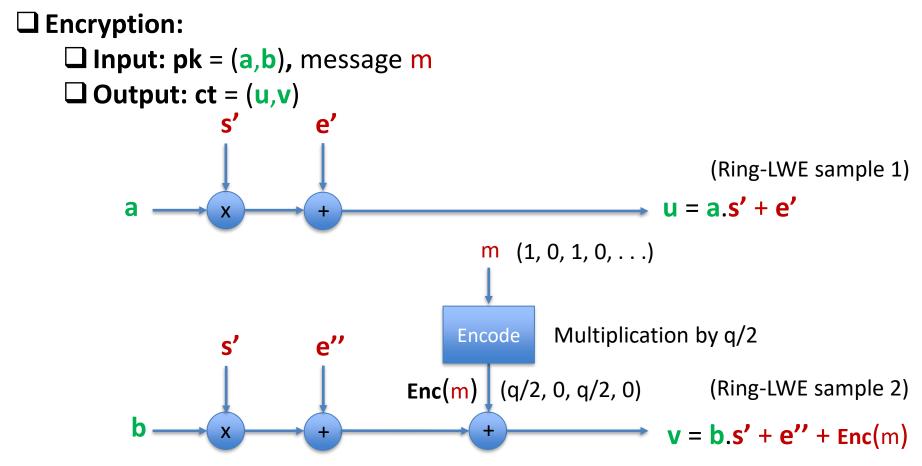
Output: public key (pk), secret key (sk)



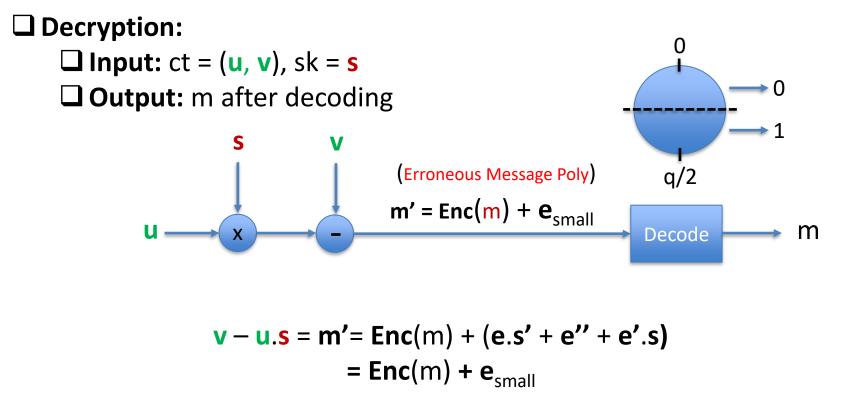
Arithmetic operations are performed in a polynomial ring R_q **Public Key (pk):** (a,b) **Secret Key (sk):** (s)

V. Lyubashevsky, C. Peikert, and O. Regev. "On Ideal Lattices and Learning with Errors Over Rings". IACR ePrint 2012/230.

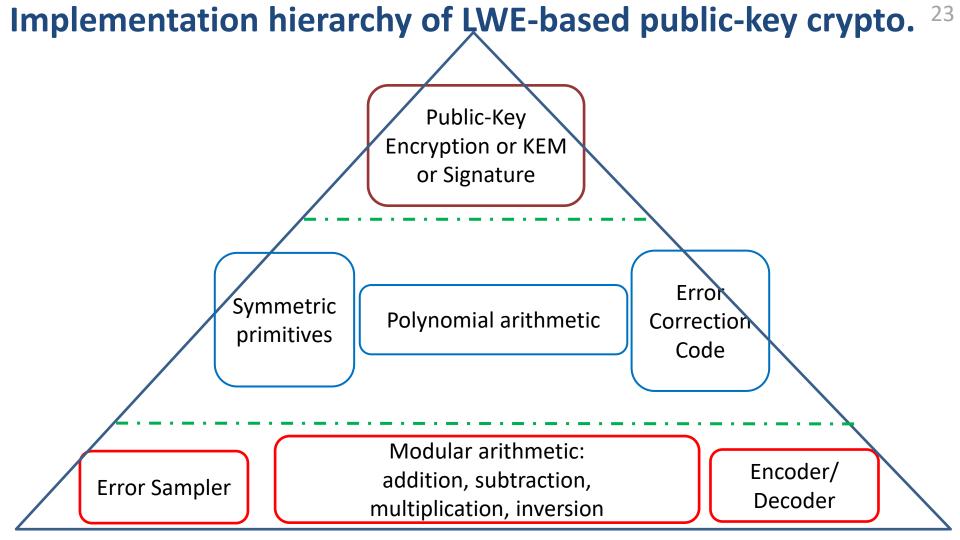
Ring LWE-based Public-Key Encryption (PKE)



Ring LWE-based Public-Key Encryption (PKE)



Select most significant bit of each coefficient as the message bits



Mathematical background on Polynomial Arithmetic

Polynomial addition modulo q

Two polynomials are added coefficient-wise modulo q.

Example:

+
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

+ $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$

Polynomial addition modulo q

Two polynomials are added coefficient-wise modulo q.

Example:

+
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

b(x) = $3x^3 + 2x^2 + 5x + 2 \pmod{7}$

$$c(x) = 1x^3 + 6x^2 + 0x + 1 \pmod{7}$$

*
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

 $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$

*
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

 $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$
 $3x^3 + 1x^2 + 4x + 5$

*
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

 $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$
 $3x^3 + 1x^2 + 4x + 5$
 $4x^4 + 6x^3 + 3x^2 + 2x$

*
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

* $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$
 $3x^3 + 1x^2 + 4x + 5$
 $4x^4 + 6x^3 + 3x^2 + 2x$
 $3x^5 + 1x^4 + 4x^3 + 5x^2$

*
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

 $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$
 $3x^3 + 1x^2 + 4x + 5$
 $4x^4 + 6x^3 + 3x^2 + 2x$
 $3x^5 + 1x^4 + 4x^3 + 5x^2$
 $1x^5 + 5x^5 + 6x^4 + 4x^3$

Usual way: Multiply each term in one polynomial by each term in the other polynomial and then sum them following the standard way.

*
$$a(x) = 5x^3 + 4x^2 + 2x + 6 \pmod{7}$$

* $b(x) = 3x^3 + 2x^2 + 5x + 2 \pmod{7}$
 $3x^3 + 1x^2 + 4x + 5$
 $4x^4 + 6x^3 + 3x^2 + 2x$ Coefficient-wise
 $3x^5 + 1x^4 + 4x^3 + 5x^2$ addition mod 7
 $1x^5 + 5x^5 + 6x^4 + 4x^3$

 $c(x) = 1x^{6} + 1x^{5} + 4x^{4} + 3x^{3} + 2x^{2} + 6x + 5 \pmod{7}$

Let's say, we want to modulo reduce this polynomial

 $c(x) = 1x^{6} + 1x^{5} + 4x^{4} + 3x^{3} + 2x^{2} + 6x + 5 \pmod{7}$

by the following polynomial

 $f(x) = x^4 + 1 \pmod{7}$.

Let's say, we want to modulo reduce this polynomial

 $c(x) = 1x^{6} + 1x^{5} + 4x^{4} + 3x^{3} + 2x^{2} + 6x + 5 \pmod{7}$

by the following polynomial

 $f(x) = x^4 + 1 \pmod{7}$.

Any term in c(x) with degree \geq deg(f) will get reduced by f(x) using the congruence relation:

 $x^4 = -1 \pmod{7}$

Let's say, we want to modulo reduce this polynomial

$$c(x) = 1x^{6} + 1x^{5} + 4x^{4} + 3x^{3} + 2x^{2} + 6x + 5 \pmod{7}$$

by the following polynomial

 $f(x) = x^4 + 1 \pmod{7}$.

Any term in c(x) with degree \geq deg(f) will get reduced by f(x) using the congruence relation:

$$x^4 = -1 \pmod{7}$$

Example:

$$4x^4 = 4 \cdot (-1) \pmod{7}$$

= 3 (mod 7)

Let's say, we want to modulo reduce this polynomial

$$c(x) = 1x^{6} + 1x^{5} + 4x^{4} + 3x^{3} + 2x^{2} + 6x + 5 \pmod{7}$$

by the following polynomial

 $f(x) = x^4 + 1 \pmod{7}$.

Any term in c(x) with degree \geq deg(f) will get reduced by f(x) using the congruence relation:

 $x^4 = -1 \pmod{7}$

Similarly, $1x^5 = 6x \pmod{7}$ and $1x^6 = 6x^2 \pmod{7}$

Modular reduction of a polynomial by a polynomial

by the following polynomial

 $f(x) = x^4 + 1 \pmod{7}$.

After reduction by f(x) $6x^2 + 6x + 3$

Hence, c(x) mod $f(x) = (6x^2 + 6x + 3) + (3x^3 + 2x^2 + 6x + 5)$ = $3x^3 + 1x^2 + 5x + 1 \pmod{7} \pmod{f}$

[Definition] Polynomial ring $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$

- The polynomial ring has its irreducible polynomial *f*(*x*) of degree *n*.
 → Hence all ring-elements are polynomials of degree *n*-1.
- Closed under polynomial addition and multiplication. \rightarrow For two polynomials a(x) and $b(x) \in R_q$

$$c(x) = a(x) + b(x) \pmod{q} \pmod{f} \in R_q$$

and

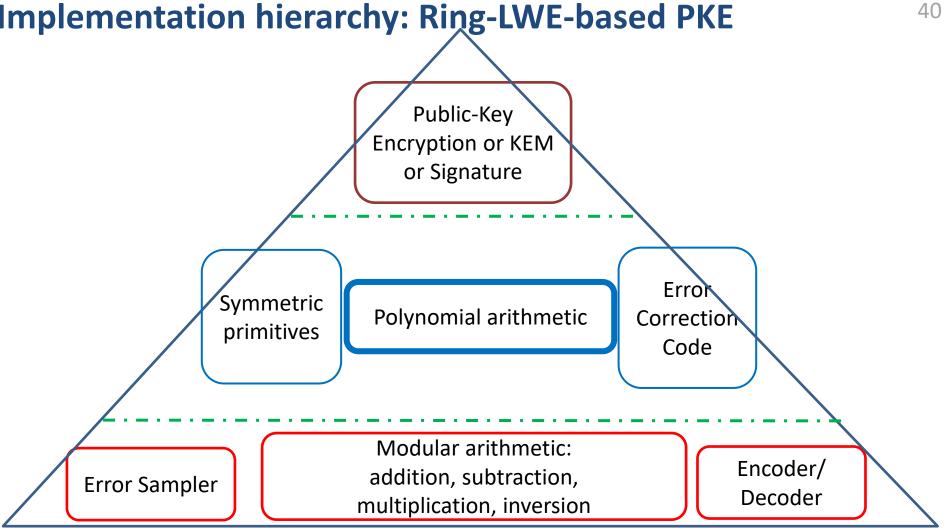
$$c(x) = a(x) * b(x) \pmod{q} \pmod{f} \in R_q$$

- Identity element under the addition rule is the 0-polynomial.
- Identity element under the multiplication rule is the 1-polynomial
- Multiplicative inverse of a polynomial may not exist.

From now on we assume all multiplications are in $R_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$

→ This simplifies modular reduction by $f(x) = x^n + 1$ → and makes an implementation more efficient

Implementation hierarchy: Ring-LWE-based PKE



41

How to multiply two polynomials?

We can use the following algorithms and also combinations of them

- Schoolbook multiplication: $O(n^2)$
- Karatsuba multiplication: $O(n^{1.585})$
- Fast Fourier Transform (FFT) multiplication: *O*(*n log n*)

Schoolbook method of polynomial multiplication

$$\begin{array}{c} * \\ * \\ a(x) = 5x^{3} + 4x^{2} + 2x + 6 \pmod{7} \\ b(x) = 3x^{3} + 2x^{2} + 5x + 2 \pmod{7} \\ 3x^{3} + 1x^{2} + 4x + 5 \\ 4x^{4} + 6x^{3} + 3x^{2} + 2x \\ 3x^{5} + 1x^{4} + 4x^{3} + 5x^{2} \\ 1x^{5} + 5x^{5} + 6x^{4} + 4x^{3} \end{array}$$

 $c(x) = 1x^{6} + 1x^{5} + 4x^{4} + 3x^{3} + 2x^{2} + 6x + 5 \pmod{7}$

We learnt this method during algebra classes in school.

- + Simple structure makes it easy to implement.
- Time complexity is $O(n^2)$, which is the worst of all three algorithms.

GP/Pari code for Schoolbook polynomial multiplication (1)

```
N = 2^8; /* Polynomial degree */
q = 7681; /* Coefficient modulus */
firr = Mod(1, q)*x^N + Mod(1, q); /* Irreducible polynomial modulus */
schoolbook(a, b) = {
  /* Schoolbook polynomial multiplication c = a*b has two nested loops */
  c = 0;
    for(i=0, N-1,
      for(j=0, N-1,
        mval = polcoeff(b, j)*polcoeff(a,i) % g;
        c = c + mval*x^{(j+i)};
  c = c\%firr;
  return (c);
}
```

https://pari.math.u-bordeaux.fr/gp.html

GP/Pari code for Schoolbook polynomial multiplication (2)

test() = {

/* Formation of random polynomial a(x) with coefficients mod q */a = 0;

```
for(i=0, N-1, a = a + random(q)*x^i);
```

```
/* Formation of random polynomial b(x) with coefficients mod q */
b = 0;
for(i=0, N-1, b = b + random(q)*x^i);
```

```
c= schoolbook(a, b);
```

```
/* Native polynomial multiplication d = a*b. */
d = a*b % firr;
```

test<mark>()</mark>;

https://pari.math.u-bordeaux.fr/gp.html

E.g., polynomial degree N = 256 and $f(x) = x^{256} + 1$.

Algorithm: Schoolbook algorithm

 $acc(x) \leftarrow 0$

for *i* = 0; *i* < 256; *i*++ do

for
$$j = 0$$
; $j < 256$; $j + do$
 $\lfloor acc[j] = acc[j] + b[j] \cdot a[i]$
 $b = b \cdot x \mod \langle x^{256} + 1 \rangle$

return acc

How will you implement the algo as an architecture in HW?

E.g., polynomial degree N = 256 and $f(x) = x^{256} + 1$.

Algorithm: Schoolbook algorithm

 $acc(x) \leftarrow 0$

for *i* = 0; *i* < 256; *i*++ do

for
$$j = 0$$
; $j < 256$; $j + do$
 $\lfloor acc[j] = acc[j] + b[j] \cdot a[i]$
 $b = b \cdot x \mod \langle x^{256} + 1 \rangle$

return acc

How will you implement the algo as an architecture in HW?

• What are the fundamental elementary operations?

E.g., polynomial degree N = 256 and $f(x) = x^{256} + 1$.

Algorithm: Schoolbook algorithm

 $acc(x) \leftarrow 0$

for *i* = 0; *i* < 256; *i*++ **do**

for
$$j = 0$$
; $j < 256$; $j + do$
 $\lfloor acc[j] = acc[j] + b[j] \cdot a[i]$
 $b = b \cdot x \mod \langle x^{256} + 1 \rangle$

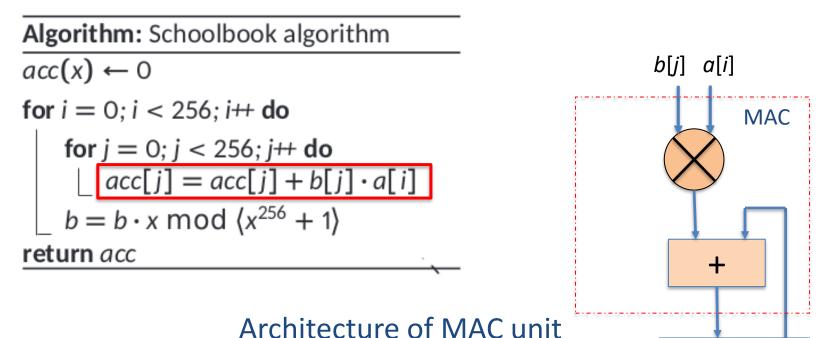
Multiply and Accumulate (MAC)

return acc

How will you implement the algo as an architecture in HW?

- What are the fundamental elementary operations?
- Draw an architecture for MAC

E.g., polynomial degree N = 256 and $f(x) = x^{256} + 1$.



acc[j]

E.g., polynomial degree N = 256 and $f(x) = x^{256} + 1$.

Algorithm: Schoolbook algorithm

 $acc(x) \leftarrow 0$

for *i* = 0; *i* < 256; *i*++ **do**

for
$$j = 0$$
; $j < 256$; $j + do$
 $\lfloor acc[j] = acc[j] + b[j] \cdot a[i]$
 $b = b \cdot x \mod \langle x^{256} + 1 \rangle$

return acc

How to implement this step?

E.g., polynomial degree N = 256 and $f(x) = x^{256} + 1$.

Algorithm: Schoolbook algorithm

 $acc(x) \leftarrow 0$

for *i* **=** 0; *i* **<** 256; *i*++ **do**

for
$$j = 0; j < 256; j ++ do$$

 $\lfloor acc[j] = acc[j] + b[j] \cdot a[i]$
 $b = b \cdot x \mod \langle x^{256} + 1 \rangle$

return acc

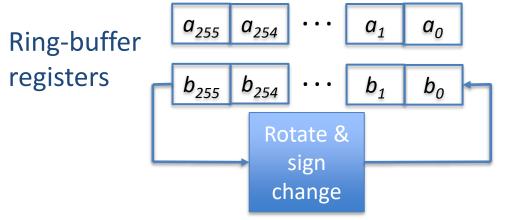
How to implement this step?

With mod $f(x) = x^n + 1$, we have $x^n \equiv -1$, hence multiplying

 $b(\mathbf{x}) = b_{n-1}x^{n-1} + \dots + b_0 \pmod{f(x)} \text{ by } x \text{ gives}$ $x \cdot b(\mathbf{x}) = b_{n-2}x^{n-1} + \dots + b_0x - b_{n-1} \pmod{f(x)} \rightarrow \text{Rotation with sign change.}$

 ACC_1

 acc_0

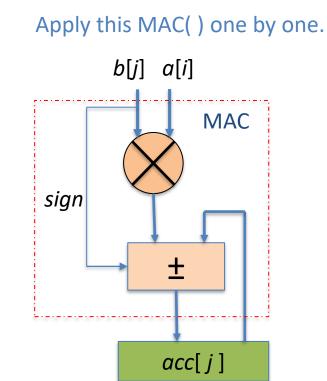


Note: This is just an idea. This may **not** be an optimized architecture!

асс₂₅₄

. . .

асс₂₅₅



Karatsuba method of polynomial multiplication

In 1960, during a seminar at Moscow State University, Kolmogorov conjectured that multiplying two integers have $O(n^2)$ complexity.

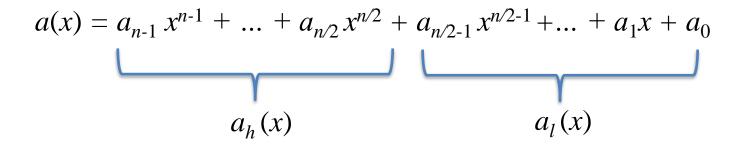
Andrey Kolmogorov (1903-1987)

Karatsuba, then a 23 years old student, attended the seminar and within a week came up with a divide-and-conquer method for multiplying two integers with $O(n^{\log_2 3})$ complexity.

Anatoly Karatsuba (1937-2008) The method was published in the Proceedings of the USSR Academy of Sciences in 1962.

Karatsuba method of polynomial multiplication (1)

Split each operand into two halve-size polynomials:



Hence, we can write:

$$a(x) = a_h(x) x^{n/2} + a_l(x) = a_h x^{n/2} + a_l$$

Karatsuba method of polynomial multiplication (2)

After splitting we have:

$$a(x) = a_h x^{n/2} + a_l$$
$$b(x) = b_h x^{n/2} + b_l$$

Naïve method: We can compute the result using the Schoolbook method

$$a(x) * b(x) = a_h b_h x^n + (a_h b_l + a_l b_h) x^{n/2} + a_l b_l$$

It performs 4 multiplication and has a quadratic complexity.

Karatsuba showed how to compute this using 3 multiplications.

Karatsuba method of polynomial multiplication (3)

After splitting we have:

$$a(x) = a_h x^{n/2} + a_l$$
$$b(x) = b_h x^{n/2} + b_l$$

Karatsuba method:

$$a(x) * b(x) = a_h b_h x^n + (a_h b_l + a_l b_h) x^{n/2} + a_l b_l$$

It computes $(a_h b_l + a_l b_h)$ term by performing only one multiplication as:

$$(a_h b_l + a_l b_h) = (a_h + a_l) \cdot (b_h + b_l) - a_h b_h - a_l b_l$$

These two produces are reused from the above.

Karatsuba method of polynomial multiplication (3)

After splitting we have:

$$a(x) = a_h x^{n/2} + a_l$$
$$b(x) = b_h x^{n/2} + b_l$$

Karatsuba method:

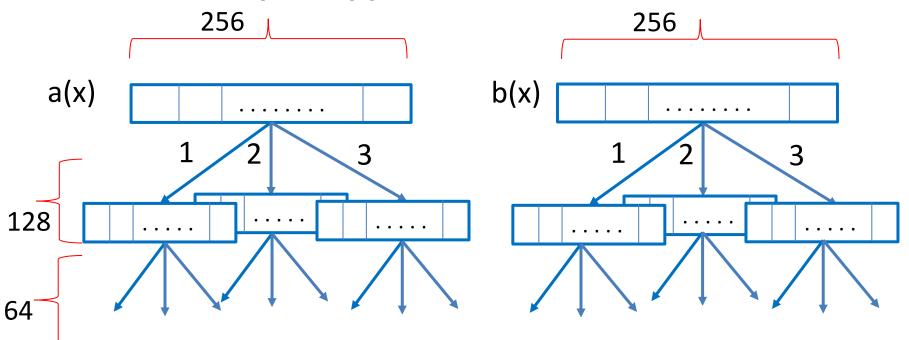
$$a(x) * b(x) = a_h b_h x^n + (a_h b_l + a_l b_h) x^{n/2} + a_l b_l$$

It computes $(a_h b_l + a_l b_h)$ term by performing only one multiplication as:

$$(a_h b_l + a_l b_h) = (a_h + a_l) \cdot (b_h + b_l) - a_h b_h - a_l b_l$$

Hence, the three multiplications are: $a_h b_h$, $a_l b_l$, and $(a_h + a_l) \cdot (b_h + b_l)$.

Divide-and-Conquer approach: Karatsuba tree



- Recursively apply divide-and-conquer strategy
- When the polynomials are of sufficiently-small size, multiply them
- And return to the higher levels

Complexity of Karatsuba polynomial multiplication

Let, T_n be the time for multiplication two *n*-coefficient polynomials.

$$\Gamma_{n} = 3T_{n/2}
 = 3^{2} T_{n/4}
 = 3^{3} T_{n/8}
 = ...
 = 3^{\log_{2} n} T_{1}$$

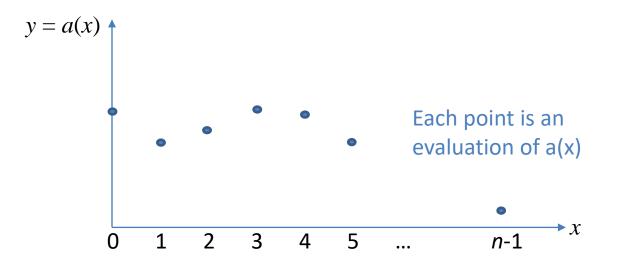
Hence, the complexity = $O(3^{\log_2 n}) = O(n^{\log_2 3}) \approx O(n^{1.585})$

The idea of FFT

Representation: Polynomial ↔ Point values

Given a polynomial a(x) we can easily compute its evaluations at *n* points

$$a(x) = a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$



Representation: Polynomial ↔ Point values

Given *n* distinct evaluation points $y_0, y_1, ..., y_{n-1}$ can we get a(x)?

a(x) = ? $y = a(x) \uparrow$ Each point is an evaluation of a(x) $\rightarrow \chi$ 2 3 4 5 ... *n*-1 0 1

What we have as $y_0, y_1, \ldots, y_{n-1}$ are:

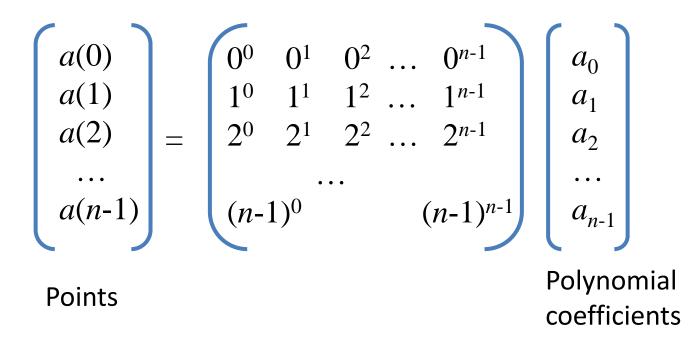
. . .

$$y_0 = a(0) = a_{n-1} 0^{n-1} + \dots + a_2 0^2 + a_1 0 + a_0$$
$$y_1 = a(1) = a_{n-1} 1^{n-1} + \dots + a_2 1^2 + a_1 1 + a_0$$

$$y_{n-1} = a(n-1) = a_{n-1} (n-1)^{n-1} + \dots + a_2(n-1)^2 + a_1(n-1) + a_0$$

Polynomial \rightarrow Point values

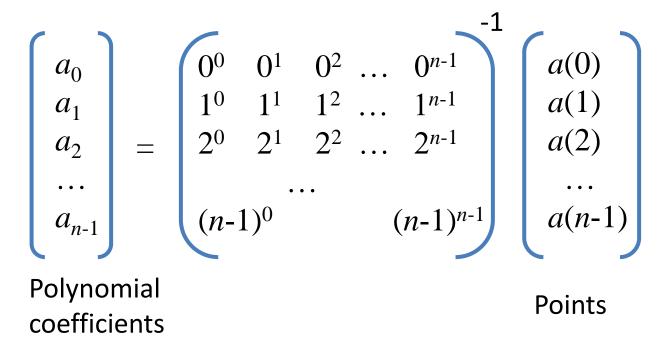
This is forward Discrete Fourier Transform (DFT).



Given a polynomial, calculating the *n* distinct points is called 'evaluation'.

Point values \rightarrow Polynomial

This is *Inverse* Discrete Fourier Transform (IDFT).



Given n distinct points, calculating the polynomial is called 'interpolation'.

Rules: Polynomial ↔ Point values

- 1. Interpolation will succeed in obtaining a(x) only if there are n n distinct evaluations $y_0, ..., y_{n-1}$.
- 2. You can choose any values for x as long as you get n distinct y_i .

Application of DFT in polynomial multiplication

$$a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

$$b(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}$$
×

$$c(x) = a(x)*b(x) = c_0 + c_1x + \dots + c_{n-1}x^{n-1} + \dots + c_{2n-2}x^{2n-2}$$

Polynomial c(x) has degree 2n-2.

 \rightarrow Therefore c(x) can be represented as 2*n*-1 discrete points.

Application of DFT in polynomial multiplication

$$a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

$$b(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}$$

$$c(x) = a(x) * b(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + \dots + c_{2n-2} x^{2n-2}$$
We do 2n-1 evaluations.

$$c(0) = a(0) * b(0)$$

 $c(1) = a(1) * b(1)$

... c(2n-2) = a(2n-2) * b(2n-2)

Application of DFT in polynomial multiplication

$$a(x) = a_{0} + a_{1}x + \dots + a_{n-1}x^{n-1}$$

$$b(x) = b_{0} + b_{1}x + \dots + b_{n-1}x^{n-1}$$

$$c(x) = a(x)*b(x) = c_{0} + c_{1}x + \dots + c_{n-1}x^{n-1} + \dots + c_{2n-2}x^{2n-2}$$

$$We \text{ do } 2n-1 \text{ evaluations.}$$

$$c(0) = a(0) * b(0)$$

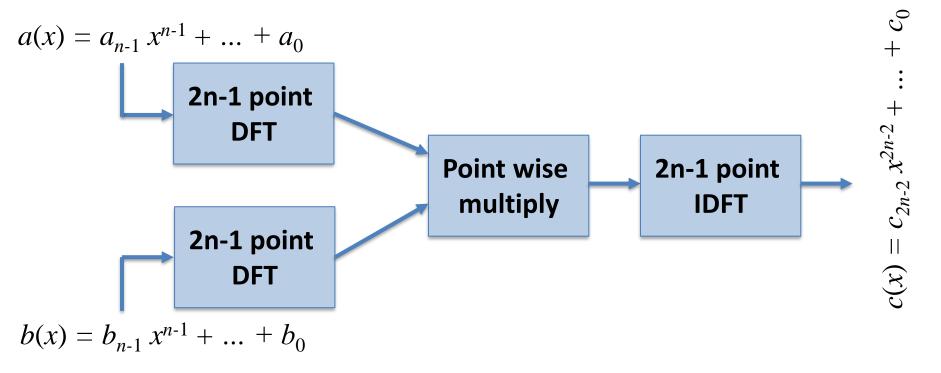
$$c(1) = a(1) * b(0)$$

$$d(1) * b(1)$$

$$c(2n-2) = a(2n-2) * b(2n-2)$$

$$DFT(a) \qquad DFT(b)$$

Summary: DFT-base polynomial multiplication



What is the complexity of Discrete Fourier Transform (DFT) ?

What is the complexity of Discrete Fourier Transform (DFT) ? Answer: O(n²)

Fast Fourier Transform (FFT) computes it 'fast' in O(n log n)

Fast Fourier Transform (FFT)

The *n*-point FFT evaluates $a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$

at *n* special points: $x = \omega_n^k = e^{-i2\pi k/n}$ for k = 0, ..., n-1 where $\omega_n = e^{-i2\pi/n}$ is the *n*th primitive root of 1 i.e., $\omega_n^n = 1$.

With these special points, we can **reuse intermediate values** to do fewer computation in total.

The *n*-point FFT evaluates $a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$

at *n* special points: $x = \omega_n^k = e^{-i2\pi k/n}$ for k = 0, ..., n-1 where $\omega_n = e^{-i2\pi/n}$ is the *n*th primitive root of 1.

Interesting mathematical property FFT uses:

$$\omega_n^{n/2} = -1$$

The *n*-point FFT evaluates $a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$

at *n* special points: $x = \omega_n^k = e^{-i2\pi k/n}$ for k = 0, ..., n-1 where $\omega_n = e^{-i2\pi/n}$ is the *n*th primitive root of 1.

Interesting mathematical property FFT uses:

$$\omega_n^{n/2} = -1$$

We can rewrite

$$a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

= (... + a_4x^4 + a_2x^2 + a_0) + (... + a_5x^4 + a_3x^2 + a_1)x^2
= $a_{\text{even}}(x^2) + xa_{\text{odd}}(x^2)$

Interesting mathematical property FFT uses:

$$\omega_n^{n/2} = -1$$

We can rewrite

$$a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

 $= (\dots + a_4x^4 + a_2x^2 + a_0) + (\dots + a_5x^4 + a_3x^2 + a_1)x$
 $= a_{even}(x^2) + xa_{odd}(x^2)$

Based on the above,

$$y_k = a(\omega^k) = a_{even}(\omega^{2k}) + \omega^k a_{odd}(\omega^{2k})$$

and $y_{k+n/2} = a(\omega^{k+n/2}) = a_{even}(\omega^{2k+n}) + \omega^{k+n/2} a_{odd}(\omega^{2k+n})$ = $a_{even}(\omega^{2k}) - \omega^k a_{odd}(\omega^{2k})$

Interesting mathematical property FFT uses:

$$\omega_n^{n/2} = -1$$

We can rewrite

$$a(x) = a_{n-1}x^{n-1} + ... + a_1x + a_0$$

 $= (... + a_4x^4 + a_2x^2 + a_0) + (... + a_5x^4 + a_3x^2 + a_1)x$
 $= a_{even}(x^2) + xa_{odd}(x^2)$

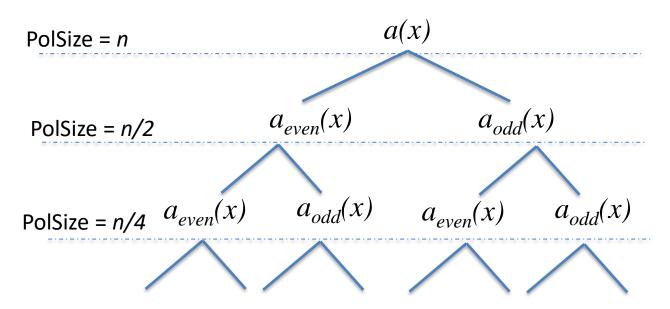
Based on the above,

$$y_k = a(\omega^k) = a_{even}(\omega^{2k}) + \omega^k a_{odd}(\omega^{2k})$$

and
 $y_{k+n/2} = a(\omega^{k+n/2}) = a_{even}(\omega^{2k+n}) + \omega^{k+n/2} a_{odd}(\omega^{2k+n})$
 $= a_{even}(\omega^{2k}) - \omega^k a_{odd}(\omega^{2k})$

Complexity of FFT

Uses divide and conquer approach



Each level in the tree has O(n) cost. There are log(n) levels. Total cost = O(n log n)

FFT to Number Theoretic Transform (NTT)

• FFT involves arithmetic of real numbers

It evaluates at powers of $e^{-i2\pi/n}$ where $e^{-i2\pi/n}$ is the complex n^{th} primitive root of the unity.

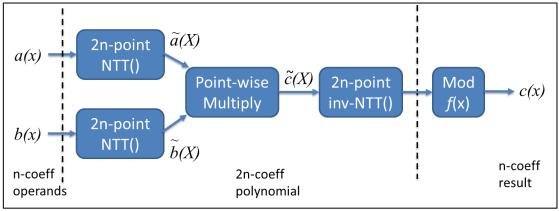
• Number Theoretic Transform (NTT)

NTT replaces $e^{-i2\pi/n}$ by an n^{th} primitive root of the unity modulo q where q is a prime satisfying $q \equiv 1 \mod n$ and n is a power-of-2.

 \rightarrow Only *integer arithmetic* modulo *q*

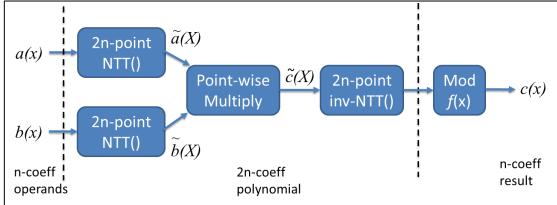
An optimization in NTT: Negative-wrapped convolution

Polynomial multiplication in $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$ where q is a prime satisfying $q \equiv 1 \pmod{n}$ is as follows:

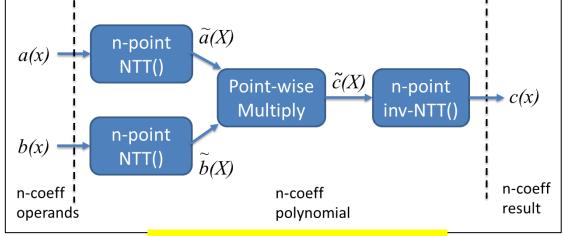


An optimization in NTT: Negative-wrapped convolution

Polynomial multiplication in $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$ where q is a prime satisfying $q \equiv 1 \pmod{n}$ is as follows:



Polynomial multiplication in $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$ where q is a prime satisfying $q \equiv 1 \pmod{2n}$, and $f(x) = x^n + 1$ is as follows:



Negative-wrapped convolution

Explaining NTT using the Chinese Remainder Theorem (CRT)

https://electricdusk.com/ntt.html

(Optional study material. Not essential for this course)

Python code of NTT-based multiplication is available on the course page.

Forward NTT Pseudocode

```
fntt(B[ ] of size N):
  t = N
  m = 1
  while(m<N):</pre>
     t = int(t/2)
     for i in range(m):
           j1 = 2*i*t
           j2 = j1 + t - 1
           psi pow = int bitreverse(m+i) # Bits in the reverse order
           W = psi table[psi pow]
           for j in range(j1,j2+1):
                                           # Cooley-Tukey butterfly operation
                 U = B[j]
                 V = (B[j+t]*W) % q
                 B[i] = (U+V) \% q
                 B[j+t] = (U-V) \% q
     m = 2*m
return B
```

Butterfly circuit for forward NTT

Cooley-Tukey butterfly operation

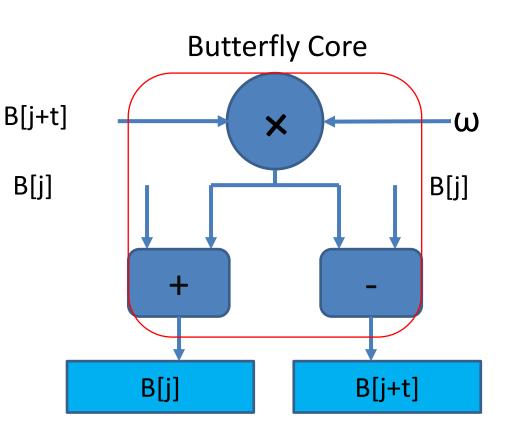
```
for j in range(j1,j2+1):

U = B[j]

V = (B[j+t]*W) % q

B[j] = (U+V) % q

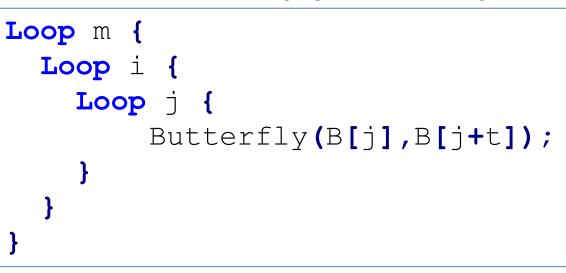
B[j+t] = (U-V) % q
```



NTT and Memory access

Simplified NTT loops

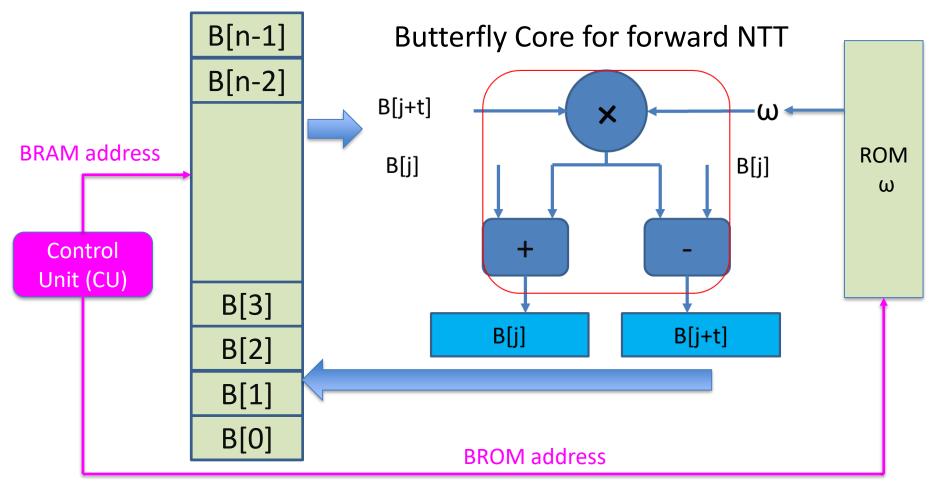
B[n-1] B[n-2] B[3] **B**[2] **B**[1] **B**[0]



Butterfly() reads two coefficients from memory.

Butterfly() writes two coefficients to memory.

NTT in HW



Inverse NTT Pseudocode

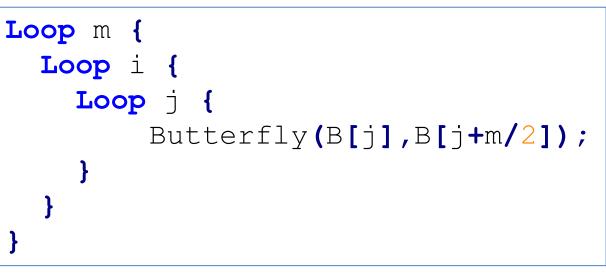
```
intt(B[ ] of size N):
  t = N
   m = 1
   while(m>1):
       j1 = 0
       h = int(m/2)
       for i in range(h):
         j2 = j1 + t - 1
         psi_pow = int_bitreverse(h+i,l)
         W = psi inv table [psi pow]
         for j in range(j1,j2+1):
            # Gentleman-Sande butterfly operation
            U = B[j]
            V = B[j+t]
            B[j] = (U+V) \% q
            B[j+t] = (U-V)*W % q
         j1 = j1 + 2*t
       t = 2*t
       m = int(m/2)
       .....
   return B
```

Draw the block diagram for Gentleman-Sandy butterfly core?

NTT and Memory access

Simplified NTT loops

B[n-1] B[n-2] B[3] **B**[2] **B**[1]

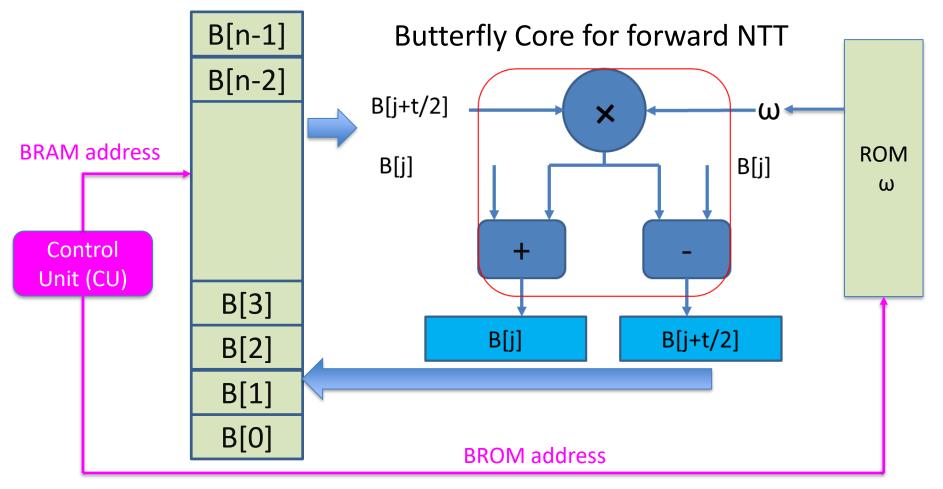


B[0]

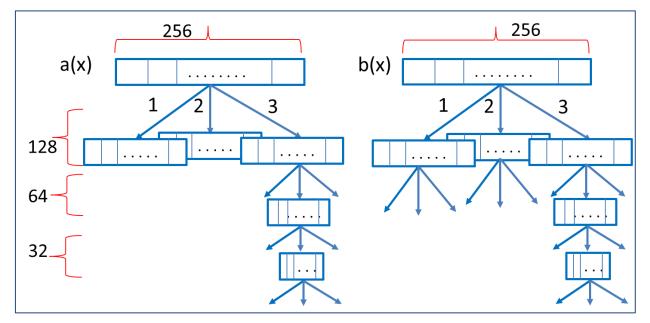
Butterfly() reads two coefficients from memory.

Butterfly() writes two coefficients to memory.

NTT in HW (example of forward NTT)

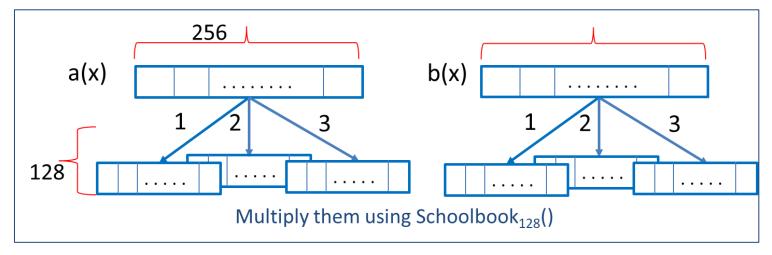


Karatsuba multiplier in HW?



- Karatsuba uses divide-and-conquer recursively.
- Recursion is easy to implement in SW \rightarrow Call the function recursively.
- Full recursion is 'difficult' to implement in HW (*my* personal opinion)
 But, a few levels of recursions is easy to implement. (see next slide)

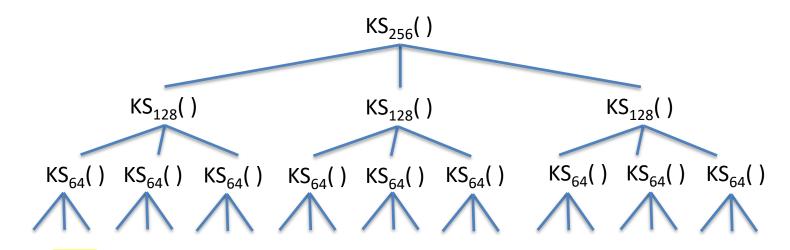
E.g., 1 level of Karatsuba then Schoolbook



Some ideas:

- 1. Use HW/SW co-design approach. Perform splitting and joining in SW and compute the Schoolbook multiplications in HW.
 - \rightarrow Easy to implement. But many rounds of HW <--> SW communications.
- 2. Do everything in HW. \rightarrow More efficient.

HW/SW co-design of the Karatsuba method



- 1. Since recursion is challenging to implement in HW, perform all the recursive function calls in SW.
- 2. HW: When the recursion tree reaches a 'threshold', perform the actual schoolbook multiplications in HW.
- 3. SW: Read the partial results from HW and combine them in SW.

HW/SW co-design of the Karatsuba method: example

