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Modular Reduction Algorithms

• Well-known modular reduction methods:
• Barrett reduction
• Montgomery reduction

• Reduction for special primes



Barrett Modular Reduction Algorithm

• An algorithm for computing C = A · B (mod q) where A, B, and q are k-bit numbers
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Barrett Modular Reduction Algorithm

• Reduction: a (mod q), a < q2, 2k-1 < q < 2k

a (mod q) = a - ⌊ a/q ⌋ · q (s = 1/q) Division is expensive

a (mod q) = a - ⌊ a · s ⌋ · q Result will be exact with s having enough prec.

s = 1/q = m/22k, so m = 22k/q Based on rounding 22k/q, (m/22k > 1/q) could hold.

So, there's chance of underflow.

m = ⌊ 22k/q ⌋, so s = ⌊ 22k/q ⌋/22k

a (mod q) = a - ⌊ a · s ⌋ · q
= a - ⌊ a · (⌊ 22k/q ⌋/22k) ⌋ · q ⌊ x ⌋ = x – e, 0 ≤ e < 1

...

a (mod q) = e1 · (a/22k) · q – e2 · q a (mod q) < 2 · q (final subtraction is needed)



Barrett Modular Reduction Algorithm

• Takes D = A · B as input and generates C = D (mod q)
• A, B < q, D = A · B < q2

• 2k-1 < q < 2k

• µ = ⌊ 22k/q ⌋

Input: D = A · B, q, µ
Output: C = D (mod q)
1: s = (D · µ) >> 2k
2: r = s · q
3: u = D - r
4: if (u ≥ q) then C = u – q else C = u
5: return C



Barrett Modular Reduction Algorithm

• Try Barrett algorithm in sage.
• https://sagecell.sagemath.org/

Run the code.

k = 5

q = 19

mu= 2^(2*k) // q

D = 120

u = D - ((D*mu) >> 2*k)*q

u = u-q if(u >= q) else u

print("D mod q:", D%q)

print("BR(D,q):", u)

https://sagecell.sagemath.org/


Montgomery Modular Reduction Algorithm

Replaces division by q by cheaper division by power-of-2
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Some integer T in [0, q2-1] and q is an odd

Result is T*R-1 mod q

R is a power-of-2 and just
larger than q i.e.,
R/2 < q < R

1. m ← ((T mod R)*q′) mod R

2. t ← (T + m*q) / R

q’ = -q-1 mod R 
is precomputed constant
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(T + m*q ) is divisible by q because 
T + m*q = T + T*(-q-1)*q   (mod R)

= 0 (mod R).

Hence, t is an integer ≈ T/R.



Montgomery Modular Reduction Algorithm

Some integer T in [0, q2-1] and q is an odd

Result is T*R-1 mod q

R is a power-of-2 and just
larger than q i.e.,
R/2 < q < R

1. m ← ((T mod R)*q′) mod R

2. t ← (T + m*q) / R

3. If t > q then return (t-q)

Else return t 

q’ = -q-1 mod R 
is precomputed constant

Explanation(3):
As q and R are coprime, taking
t (mod q) = (T + m*q)*R-1 mod q

= T*R-1 mod q



Montgomery Modular Reduction Algorithm: Classical Montgomery

• Try Montgomery algorithm in sage.
• https://sagecell.sagemath.org/

Run the code.

q = 19

R = 2^5

q_inv= -q^(-1) % R

T = 129

u = (T + (T*q_inv % R)*q)/R

u = u-q if(u >= q) else u

print("D mod q:", T%q)

print("MR(D,q):", u)

print("u*R mod q:", u*R % q)

https://sagecell.sagemath.org/
https://sagecell.sagemath.org/?z=eJxFjLsKwzAMRXeD_-ESMFhuTEmgQwru5LWLPyBTUwj0YbXV_9ei0CzS1dGRGAnDZE1pfZwP1nBNiDz7OBAcijXWZHXGSaO06DN2rQSuKlBg2pffRiJjvXrBKYEJy-29QPSsvtbHx3cZ9-cFfOx6ZMf05-fic8-kXDYqoWy-Dq49_QJQKClm&lang=sage&interacts=eJyLjgUAARUAuQ==


When to use Montgomery Reduction Algorithm?

Given T as input it produces T*R-1 mod q
→ We need an additional multiplication by R to get T mod q.
→ More expensive than Barrett reduction
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Modular exponentiation in RSA

c = me mod N

Efficiency trick:

Now multiply them: C = A*B = (a*R)*(b*R) mod N.
Now perform Montgomery reduction. It produces 

C*R-1 mod N = a*b*R mod N
= c*R mod N  where c = a*b is the ‘normal domain’ multiplication.

… here we do all operations in the mod N ring.

Normal domain Montgomery domain

a  mod N A = a*R mod N

b  mod N B = b*R mod N

Note that the result the Montgomery domain representation of c. 



Modular exponentiation in RSA
c = me mod N

Montgomery Domain

m

Domain 
conversion

m*R mod N

Domain 
conversion

c*R mod N

c mod N

Perform all multiplications during 
exponentiation in this domain.
Here, variables have the R factor.



Modular Reduction for Special Primes

• Barrett and Montgomery are generics algorithms
• Might not be optimum for numbers with special form

• Some cryptographic protocols use primes with special form:
• E.g., ECC uses 2192 – 264 – 1
• E.g., ZKP applications use 264 – 232 + 1

• Mersenne primes: 2k – 1
• Generalized Mersenne primes (Solinas primes): 2k – c
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Modular Reduction for Special Primes

• Modular reduction for q = 2k – c

q = 0 (mod q)
2k – c = 0 (mod q)
2k = c (mod q)

• Perform A (mod q) for 2k-bit A

A = A1 · 2k + A0 (mod q)
A = A1 · c + A0 (mod q) (using 2k = c (mod q))
...


