Integer and Prime Field Arithmetic

October 17, 2022

Ahmet Can Mert T U
ahmet.mert@iaik.tugraz.at Grazme

mailto:Ahmet.mert@iaik.tugraz.at

Modular Reduction Algorithms

e Well-known modular reduction methods:
e Barrett reduction
« Montgomery reduction

* Reduction for special primes

Barrett Modular Reduction Algorithm

An algorithm for computing C = A - B(mod q) where A, B, and g are k-bit numbers

IMPLEMENTING THE
RIVEST SHAMIR AND ADLEMAN
PUBLIC KEY ENCRYPTION ALGORITHM
ON A
STANDARD DIGITAL SIGNAL PROCESSOR

Paul Barrett, MsSc (Oxon)
COMPUTER SECURITY LTD
August 1986

ABSTRACT

A description of the techniques employed at Oxford University te
obtain a high speed implementation of the RSA encryption algorithm on
an "off-the-shelf" digital signal processing chip. Using these
techniques a two and a half second (average) encrypt time (for 512 bit
exponent and modulus) was achieved on a first generation DSP (The
Texas Instruments TMS 32010) and times below one second are achievable
on second generation parts. Furthermore the techniques of algorithm
development employed lead to a provably correct implementation.

Barrett Modular Reduction Algorithm

e Reduction:a (modg), a<qg? 2Kl1<qg< 2k

Barrett Modular Reduction Algorithm

e Reduction:a (modg), a<qg? 2Kl1<qg< 2k

a (mod CI) =da - l O/C]J g (S = l/q) Division is expensive
a (mod CI) =da - l a-s J g Result will be exact with s having enough prec.

Barrett Modular Reduction Algorithm

e Reduction:a (modg), a<qg? 2Kl1<qg< 2k

a (mod CI) =da - l G/C]J g (S = 1/C]) Division is expensive
a (mod CI) =da - l a-s J g Result will be exact with s having enough prec.
s=1/q=m/2%¢ so m=2%/q Based on rounding 22¢/g, (m/22¢ > 1/q) could hold.

So, there's chance of underflow.

Barrett Modular Reduction Algorithm

e Reduction:a (modg), a<qg? 2Kl1<qg< 2k

a (mod CI) =da - l G/C]J g (S = 1/C]) Division is expensive
a (mod CI) =da - l a-s J g Result will be exact with s having enough prec.
s=1/q=m/2%¢ so m=2%/q Based on rounding 22¢/g, (m/22¢ > 1/q) could hold.

So, there's chance of underflow.

m=|2%/q |, so s=]|2%/q /2%

Barrett Modular Reduction Algorithm

e Reduction:a (modg), a<qg? 2Kl1<qg< 2k

a (mod CI) =da - l O/C]J g (S = l/q) Division is expensive
a (mod CI) =da - l a-s J g Result will be exact with s having enough prec.
s=1/q=m/2%¢ so m=2%/q Based on rounding 22¢/g, (m/22¢ > 1/q) could hold.

So, there's chance of underflow.
m=|2%/q|, so s=]|2%/q |/2%

a(modqg)=a-|a-s]|-qg
=a-la-(12%/q]/2%)]-q |x|=x-e, Ose<1

Barrett Modular Reduction Algorithm

e Reduction:a (modg), a<qg? 2Kl1<qg< 2k

a (mod CI) =da - l O/C]J g (S = l/q) Division is expensive
a (mod CI) =da - l a-s J g Result will be exact with s having enough prec.
s=1/q=m/2%¢ so m=2%/q Based on rounding 22¢/g, (m/22¢ > 1/q) could hold.

So, there's chance of underflow.
m=|2%/q|, so s=]|2%/q |/2%

a(modqg)=a-|a-s]|-qg
=a-la-(12%/q]/2%)]-q |x|=x-e, Ose<1

a(modgqg)=e,-(a/2%)-q—e,-q a (mod g) <2 - g (final subtraction is needed)

Barrett Modular Reduction Algorithm

« Takes D=A - Bas input and generates C =D (mod q)
« AB<qg D=A-B<g?
o 2kl<qg< 2K
* u=12%/q]

Input: D=A"-8B, g, u

Output: C=D (mod q)

1:s=(D - u) >> 2k

2:r=s5-q

3:u=D-r
4:if(u>g)thenC=u—-qgelseC=u
5:return C

Barrett Modular Reduction Algorithm

Try Barrett algorithm in sage.
* https://sagecell.sagemath.org/

print ("BR(D,q) : ",

k = 5

qg= 19

mu= 2~ (2*k) // g

D =120

u =D - ((D*mu) >> 2*k)*qg
u = u-gq if(u >= g) else u
print ("D mod g:", D%q)

u)

Run the code.

https://sagecell.sagemath.org/

Montgomery Modular Reduction Algorithm

MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 170
APRIL. 1985, PAGES 519-521

Modular Multiplication Without Trial Division
By Peter L. Montgomery

Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues)
modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so

this method is useful only if several computations are done modulo one N. The addition and
subtraction algorithms are unchanged.

Replaces division by g by cheaper division by power-of-2

Montgomery Modular Reduction Algorithm

Some integer Tin [0, g%-1] and g is an odd

R is a power-of-2 and just
larger than g i.e.,
] R/2<q<R

l

Resultis T*R" mod g

Montgomery Modular Reduction Algorithm

Some integer Tin [0, g%-1] and g is an odd

R is a power-of-2 and just
larger than gi.e.,

x R/2<qg<R

¢ @’ =-g"' mod R

m & ((T mod R)*q’') mod R)
is precomputed constant

Explanation(1):

This step is like performing a
‘division’ by -T/q in the mod R
domain.

l

Resultis T*R" mod g

Montgomery Modular Reduction Algorithm

Some integer Tin [0, g%-1] and g is an odd

R is a power-of-2 and just
larger than gi.e.,

x R/2<qg<R

«——— q' =-g!'modR

m & ((T mod R)*q') mod R)
is precomputed constant

t&< (T+m*q) /R

Explanation(2):

(T+ m*q) is divisible by g because

T+m*q=T+T*(-q')*g (mod R)
=0 (mod R).

l Hence, tis an integer = T/R.

Resultis T*R" mod g

Montgomery Modular Reduction Algorithm

Some integer Tin [0, g%-1] and g is an odd

R is a power-of-2 and just
larger than gi.e.,
: R/2<qg<R

R |
m & ((T mod R)*q') mod R f— CI =-g1modR
is precomputed constant
t& (T+m*qg) /R

If t > g then return (t-q)

Explanation(3):

As g and R are coprime, taking

t (mod q)=(T+m*q)*RI mod g
=T*R*mod g

Else return t

l

Resultis T*R" mod g

Montgomery Modular Reduction Algorithm: Classical Montgomery

* Try Montgomery algorithm in sage.
* https://sagecell.sagemath.org/

qg= 19
R = 275
g inv= -g~(-1) $ R

T = 129
u = (T + (T*g inv % R)*q)/R
u = u-gq if(u >= g) else u

print ("D mod g:", T%q)
print ("MR(D,q) :", u)
print ("u*R mod g:", u*R % Q)

Run the code.

https://sagecell.sagemath.org/
https://sagecell.sagemath.org/?z=eJxFjLsKwzAMRXeD_-ESMFhuTEmgQwru5LWLPyBTUwj0YbXV_9ei0CzS1dGRGAnDZE1pfZwP1nBNiDz7OBAcijXWZHXGSaO06DN2rQSuKlBg2pffRiJjvXrBKYEJy-29QPSsvtbHx3cZ9-cFfOx6ZMf05-fic8-kXDYqoWy-Dq49_QJQKClm&lang=sage&interacts=eJyLjgUAARUAuQ==

When to use Montgomery Reduction Algorithm?

Given T as input it produces T*R! mod g
- We need an additional multiplication by R to get T mod g.
- More expensive than Barrett reduction

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Let a and b are two integers modulo N.

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Let a and b are two integers modulo N.

Instead of multiplying a and b directly, first bring them to the ‘Montgomery domain’.

I——

a mod N A=a*RmodN
b modN B=b*Rmod N

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

I——

a mod N A=a*RmodN
b modN B=b*R mod N

Efficiency trick:

Now multiply them: C = A*B = (a*R)*(b*R) mod N.

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Montgomery domain
a modN A=a*Rmod N
b mod N B=b*R mod N

Now multiply them: C= A*B = (a*R)*(b*R) mod N.
Now perform Montgomery reduction. It produces
C*R1mod N =a*b*R mod N
=c*R mod N where c =a*b is the ‘normal domain’ multiplication.

Modular exponentiation in RSA

c=m¢modN

... here we do all operations in the mod N ring.

Efficiency trick:
Montgomery domain
a modN A=a*Rmod N
b modN B=b*R mod N

Now multiply them: C= A*B = (a*R)*(b*R) mod N.
Now perform Montgomery reduction. It produces
C*R1mod N =a*b*R mod N
here c = a*b is the ‘normal domain’ multiplication.

Note that the result the Montgomery domain representation of c.

Modular exponentiation in RSA

c=memodN

m

|

Domain
conversion

m*R mod N

v

Montgomery Domain

Perform all multiplications during
exponentiation in this domain.
Here, variables have the R factor.

| ¢c*Rmod N

Domain
conversion
| cmod N

Modular Reduction for Special Primes

* Barrett and Montgomery are generics algorithms
* Might not be optimum for numbers with special form

* Some cryptographic protocols use primes with special form:
 E.g.,,ECCuses2192-264-1
» E.g., ZKP applications use 264 —232 +1

* Mersenne primes: 2k—1
* Generalized Mersenne primes (Solinas primes): 2k—¢

Modular Reduction for Special Primes

* Modular reduction for g = 2k—¢

g =0(mod qg)
2k—c=0(mod q)
2= ¢ (mod q)

Modular Reduction for Special Primes

* Modular reduction for g = 2k—¢

g =0(mod qg)
2k—c=0(mod q)
2= ¢ (mod q)

* Perform A (mod g) for 2k-bit A

A=A, -2+ A, (mod g)
A=A,-c+A,(modgq) (

