

Integer and Prime Field Arithmetic

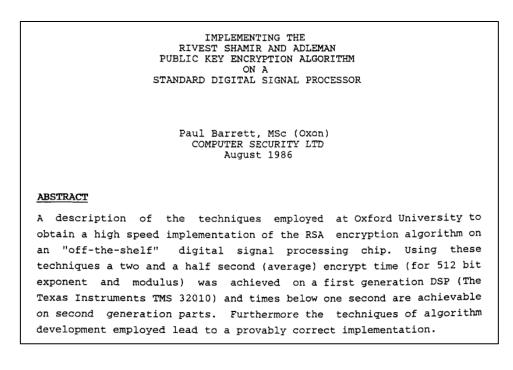
October 17, 2022 Ahmet Can Mert <u>ahmet.mert@iaik.tugraz.at</u>

-

Modular Reduction Algorithms

- Well-known modular reduction methods:
 - Barrett reduction
 - Montgomery reduction
- Reduction for special primes

• An algorithm for computing $C = A \cdot B \pmod{q}$ where A, B, and q are k-bit numbers



• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

• Reduction: $a \pmod{q}$, $a < q^2$, $2^{k-1} < q < 2^k$

 $a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$ $a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$

(s = 1/q) Division is expensive

Result will be exact with s having enough prec.

• Reduction: *a* (mod *q*), $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$
$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$

 $s = 1/q = m/2^{2k}$, so $m = 2^{2k}/q$

(s = 1/q) Division is expensive Result will be exact with s having enough prec.

> Based on rounding $2^{2k}/q$, $(m/2^{2k} > 1/q)$ could hold. So, there's chance of underflow.

• Reduction: *a* (mod *q*), $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$
$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$

$$s = 1/q = m/2^{2k}$$
, so $m = 2^{2k}/q$

(s = 1/q) Division is expensive Result will be exact with s having enough prec.

> Based on rounding $2^{2k}/q$, $(m/2^{2k} > 1/q)$ could hold. So, there's chance of underflow.

m = $\lfloor 2^{2k}/q \rfloor$, so $s = \lfloor 2^{2k}/q \rfloor/2^{2k}$

• Reduction: *a* (mod *q*), $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$
$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$

$$s = 1/q = m/2^{2k}$$
, so $m = 2^{2k}/q$

(s = 1/q) Division is expensive Result will be exact with s having enough prec.

> Based on rounding $2^{2k}/q$, $(m/2^{2k} > 1/q)$ could hold. So, there's chance of underflow.

m = $\lfloor 2^{2k}/q \rfloor$, so $s = \lfloor 2^{2k}/q \rfloor/2^{2k}$

$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$
$$= a - \lfloor a \cdot (\lfloor 2^{2k}/q \rfloor/2^{2k}) \rfloor \cdot q \qquad \lfloor x \rfloor = x - e, \ 0 \le e < 1$$

• Reduction: *a* (mod *q*), $a < q^2$, $2^{k-1} < q < 2^k$

$$a \pmod{q} = a - \lfloor a/q \rfloor \cdot q$$
$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$

$$s = 1/q = m/2^{2k}$$
, so $m = 2^{2k}/q$

m = $\lfloor 2^{2k}/q \rfloor$, so $s = \lfloor 2^{2k}/q \rfloor/2^{2k}$

$$a \pmod{q} = a - \lfloor a \cdot s \rfloor \cdot q$$
$$= a - \lfloor a \cdot (\lfloor 2^{2k}/q \rfloor/2^{2k}) \rfloor \cdot q$$

 $a \pmod{q} = e_1 \cdot (a/2^{2k}) \cdot q - e_2 \cdot q$

...

(s = 1/q) Division is expensive Result will be exact with s having enough prec.

> Based on rounding $2^{2k}/q$, $(m/2^{2k} > 1/q)$ could hold. So, there's chance of underflow.

 $[x] = x - e, \quad 0 \le e < 1$

 $a \pmod{q} < 2 \cdot q$ (final subtraction is needed)

- Takes $D = A \cdot B$ as input and generates $C = D \pmod{q}$
 - $A, B < q, D = A \cdot B < q^2$
 - $2^{k-1} < q < 2^k$
 - $\mu = \lfloor 2^{2k}/q \rfloor$

Input: $D = A \cdot B$, q, μ **Output:** $C = D \pmod{q}$ **1:** $s = (D \cdot \mu) >> 2k$ **2:** $r = s \cdot q$ **3:** u = D - r **4:** if $(u \ge q)$ then C = u - q else C = u**5:** return C

- Try Barrett algorithm in sage.
 - <u>https://sagecell.sagemath.org/</u>

k = 5a = 19mu= 2^(2*k) // q D = 120u = D - ((D*mu) >> 2*k)*qu = u-q if $(u \ge q)$ else u print("D mod q:", D%q) print("BR(D,q):", u)

Run the code.

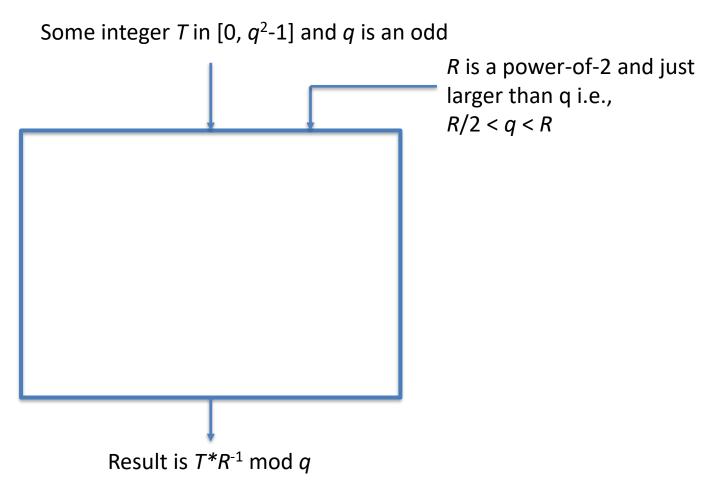
MATHEMATICS OF COMPUTATION VOLUME 44, NUMBER 170 APRII. 1985, PAGES 519–521

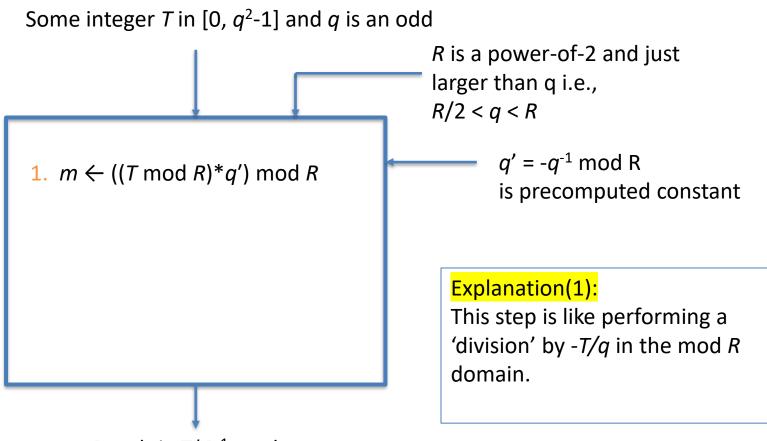
Modular Multiplication Without Trial Division

By Peter L. Montgomery

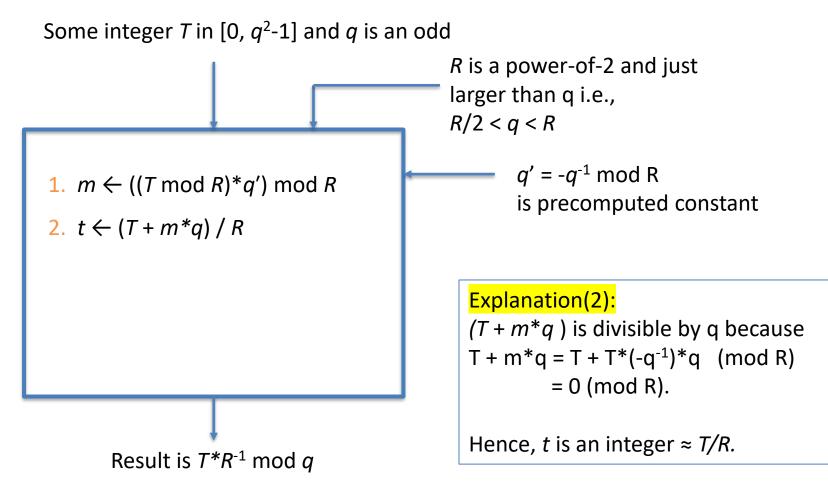
Abstract. Let N > 1. We present a method for multiplying two integers (called *N*-residues) modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one N. The addition and subtraction algorithms are unchanged.

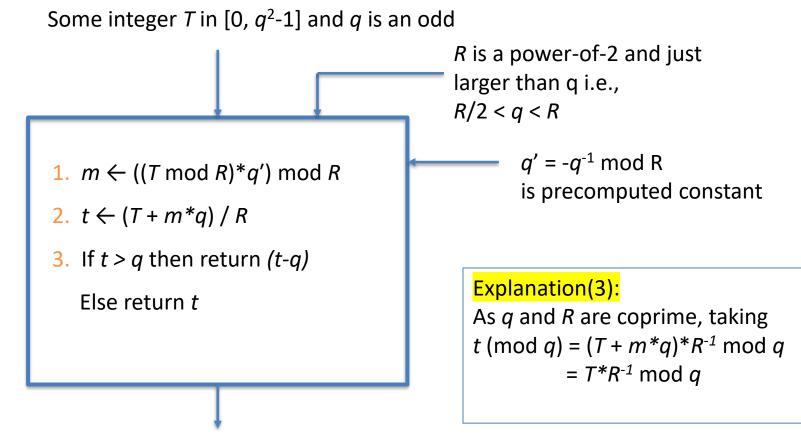
Replaces division by q by cheaper division by power-of-2





Result is $T^*R^{-1} \mod q$





Result is $T^*R^{-1} \mod q$

Montgomery Modular Reduction Algorithm: Classical Montgomery

- Try Montgomery algorithm in sage.
 - <u>https://sagecell.sagemath.org/</u>

q = 19 $R = 2^{5}$ q inv= -q^(-1) % R T = 129u = (T + (T*q inv % R)*q)/Ru = u-q if $(u \ge q)$ else u print("D mod q:", T%q) print("MR(D,q):", u) print("u*R mod q:", u*R % q)

Run the code.

When to use Montgomery Reduction Algorithm?

Given T as input it produces $T^*R^{-1} \mod q$

- \rightarrow We need an *additional* multiplication by *R* to get *T* mod *q*.
- \rightarrow More expensive than Barrett reduction

$c = m^e \mod N$

... here we do all operations in the mod *N* ring.

Efficiency trick:

Let *a* and *b* are two integers modulo *N*.

$c = m^e \mod N$

... here we do all operations in the mod N ring.

Efficiency trick:

Let *a* and *b* are two integers modulo *N*.

Instead of multiplying *a* and *b* directly, first bring them to the 'Montgomery domain'.

Normal domain	Montgomery domain
a mod N	$A = a^*R \mod N$
b mod N	$B = b^*R \mod N$

$c = m^e \mod N$

... here we do all operations in the mod N ring.

Efficiency trick:		
	Normal domain	Montgomery domain
	a mod N	$A = a^*R \mod N$
	b mod N	$B = b^*R \mod N$

Now multiply them: $C = A^*B = (a^*R)^*(b^*R) \mod N$.

$c = m^e \mod N$

... here we do all operations in the mod N ring.

Efficiency trick:		
	Normal domain	Montgomery domain
	a mod N	$A = a^*R \mod N$
	b mod N	$B = b^*R \mod N$

Now multiply them: $C = A^*B = (a^*R)^*(b^*R) \mod N$. Now perform Montgomery reduction. It produces $C^*R^{-1} \mod N = a^*b^*R \mod N$ $= c^*R \mod N$ where $c = a^*b$ is the 'normal domain' multiplication.

$c = m^e \mod N$

... here we do all operations in the mod N ring.

Efficiency trick:		
	Normal domain	Montgomery domain
	a mod N	$A = a^*R \mod N$
	b mod N	$B = b^*R \mod N$

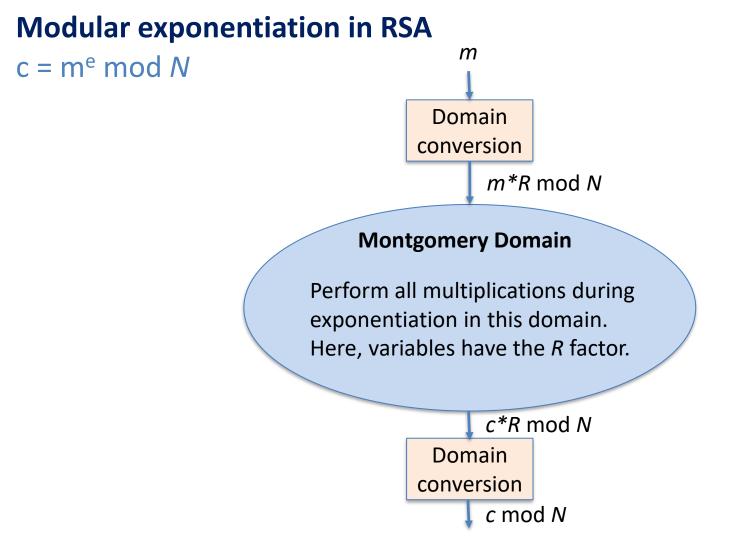
Now multiply them: $C = A^*B = (a^*R)^*(b^*R) \mod N$.

Now perform Montgomery reduction. It produces

 $C^*R^{-1} \mod N = a^*b^*R \mod N$

 $\in c^*R \mod N$ where $c = a^*b$ is the 'normal domain' multiplication.

Note that the result the Montgomery domain representation of *c*.



Modular Reduction for Special Primes

- Barrett and Montgomery are generics algorithms
 - Might not be optimum for numbers with special form
- Some cryptographic protocols use primes with special form:
 - E.g., ECC uses $2^{192} 2^{64} 1$
 - E.g., ZKP applications use $2^{64} 2^{32} + 1$
- Mersenne primes: $2^k 1$
- Generalized Mersenne primes (Solinas primes): $2^k c$

Modular Reduction for Special Primes

• Modular reduction for $q = 2^k - c$

 $q = 0 \pmod{q}$ $2^{k} - c = 0 \pmod{q}$ $2^{k} = c \pmod{q}$

Modular Reduction for Special Primes

• Modular reduction for $q = 2^k - c$

 $q = 0 \pmod{q}$ $2^{k} - c = 0 \pmod{q}$ $2^{k} = c \pmod{q}$

• Perform A (mod q) for 2k-bit A

$$A = A_1 \cdot 2^k + A_0 \pmod{q}$$

$$A = A_1 \cdot c + A_0 \pmod{q} \quad (\text{using } 2^k = c \pmod{q})$$

...