Verilog HDL Review

October 10, 2022
Ahmet Can Mert

ahmet.mert@iaik.tugraz.at

mailto:Ahmet.mert@iaik.tugraz.at

Hardware Description Language (HDL): Overview of a Digital System

e Datapath
* Performs data processing
e Control Unit (Finite State Machine)
* Generates control signals to control the datapath

e Testbench
* Used to verify the functional correctness of the design (for simulation)

Status | Test

] Input
| .
Cont.ro Datapath |
SIS Control ; Test

Output

Testbench

Hardware Description Language (HDL): Definition

* |tis NOT a programming language.

* |tisused to describe any digital circuit.
* i.e., you can describe circuit elements and connections between them.

 Many languages available for RTL Modeling: VHDL, Verilog, SystemVerilog
* Verilogis simple and similarto C
* Verilog has more than half of the world digital design market
* Many free resources are available:
e http://www.asic-world.com/verilog/veritut.html|
* https://www.chipverify.com/verilog/

http://www.asic-world.com/verilog/veritut.html
https://www.chipverify.com/verilog/

Hardware Description Language (HDL): Logic and Memory

* Register Transfer Level: An abstract level used to describe the operation of
synchronous digital circuits.
e Logic Functions (computation)
* Anycombinatorial computation
 Memory (update)
* Flip-Flop: edge s.el.nsitive Logic M%”Fnory
e Latch: level sensitive (WE WILL NOT USE)

R3 R2 R1

Logic
Function
1

Logic
Function
2

Verilog Operators

e Logical, arithmetic and conditional operators

Syntax Operation Syntax Operation Syntax Operation

~ Bit-wise negation + Addition == Equality

& AND - Subtraction = Inequality

& NAND * Multiplication < Less than

| OR / Division <= Less than or equal
~ | NOR % Modulo > Greater than

n XOR << Left shift >= Greater than or
~~ or ~* | XNOR >> Right shift equal

i.e., i.e., i.e.,

c = ~a; c =a + b; c = (a ? 1 0;
c =a & b; c =a > 2;

Verilog Operators

e QOperator precedence is important.

\Verilog Operator| Name \Funcl.ional Gmup\
[1 bit-select or part-select
() parenthesis
! logical negation logical
~ negation bit-wise
& reduction AND reduction
| reduction OR reduction
~& reduction NAND reduction
~ reduction NOR reduction
A reduction XOR reduction
~hor A~ reduction XNOR reduction
+ unary (sign) plus arithmetic
- unary (sign) minus arithmetic
{} concatenation concatenation
{{1} replication replication
* multiply arithmetic
divide arithmetic
% modulus arithmetic
+ binary plus arithmetic
- binary minus arithmetic
<< shift left shift
>> shift right shift
> fel than relational
»= greater than or equal to relational
< less than relational
<= less than or equal to relational
== logical equality equality
I= logical inequality equality
case equality equality
! case inequality equality
& bit-wise AND bit-wise
A bit-wise XOR bit-wise
A~ r A bit-wise XNOR bit-wise
| bit-wise OR bit-wise
&& logical AND logical
Il logical OR logical
7 conditional conditional

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

Verilog Operators

Operator precedence is important.

\Verilog Operator| Name \Funcl.ional Gmup\
[1 bit-select or part-select
() parenthesis
! logical negation logical
~ negation bit-wise
& reduction AND reduction
| reduction OR reduction
~& reduction NAND reduction
~ reduction NOR reduction
A reduction XOR reduction
~hor A~ reduction XNOR reduction
+ unary (sign) plus arithmetic
- unary (sign) minus arithmetic
{} concatenation concatenation
{{1} replication replication
* multiply arithmetic
! divide arithmetic
% modulus arithmetic
+ binary plus arithmetic
- binary minus arithmetic
<< shift left shift
>> shift right shift
> fel than relational
»= greater than or equal to relational
< less than relational
<= less than or equal to relational
== logical equality equality
= logical inequality equality
case equality equality
1= case inequality equality
& bit-wise AND bit-wise
A bit-wise XOR bit-wise
A~ r A bit-wise XNOR bit-wise
| bit-wise OR bit-wise
&& logical AND logical
Il logical OR logical
7 conditional conditional

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

Verilog Operators

Operator precedence is important.

\Verilog Operator| Name \Funcljonal Gmup\
[1 bit-select or part-select
() parenthesis
! logical negation logical
~ negation bit-wise
reduction AND reduction
| reduction OR reduction
~& reduction NAND reduction
~ reduction NOR reduction
A reduction XOR reduction
~hor A~ reduction XNOR reduction
+ unary (sign) plus arithmetic
- unary (sign) minus arithmetic
{} concatenation concatenation
{{1} replication replication
* multiply arithmetic
! divide arithmetic
% modulus arithmetic
+ binary plus arithmetic
- binary minus arithmetic
<< shift left shift
>> shift right shift
> fel than relational
»= greater than or equal to relational
< less than relational
<= less than or equal to relational
== logical equality equality
= logical inequality equality
case equality equality
1= case inequality equality
& bit-wise AND bit-wise
A bit-wise XOR bit-wise
A~ r A bit-wise XNOR bit-wise
| bit-wise OR bit-wise
&& logical AND logical
Il logical OR logical
7 conditional conditional

* Table from: https://class.ece.uw.edu/cadta/verilog/operators.html

Verilog Operators - Example

e Using + operator to design an adder
e 4-bit inputs and 5-bit output

A+ B

Carry Sum

e { } operatorisused toconcatenatesignals
e Carry is1-bit
* Sumis 4-bit

{Carry,Sum} = A + B;

* {{}} operatorisused to repeata signal
 RepeatingCarry[0] bitfour times

{Carry[0] ,Carry[0] ,Carry[0] ,Carry[0]} --> {4{Carry[0]}}

Language Element - Literals

* Literalsare constant numbers (in binary, octal, decimal and hexadecimal).
* Literalsas represented as:
<size>'<signed><radix>value

Language Element - Literals

* Literalsare constant numbers (in binary, octal, decimal and hexadecimal).
* Literalsas represented as:
<size>'<signed><radix>value

* eg.,A = 167d12987;
106 indicatesthe bit size of the signal
* dindicatesdecimal representationis used.
* DborB->binary
e o orO->octal
e dorD->decimal
* horH->hexadecimal
* No s after ‘shows it is unsigned
* eg,B = 20;
* If bit size, sign and radix are not specified, default representation is 32-bit
unsigned decimal

Language Element - Literals

* Literalsare constant numbers (in binary, octal, decimal and hexadecimal).
* Literalsas represented as:
<size>'<signed><radix>value

* eg.,A = 167d12987;
106 indicatesthe bit size of the signal
* dindicatesdecimal representationis used.
* DborB->binary
e o orO->octal
e dorD->decimal
* horH->hexadecimal
* No s after ‘shows it is unsigned
* eg,B = 20;
* If bit size, sign and radix are not specified, default representation is 32-bit
unsigned decimal.

Language Elements — Data Types

* Busdefinition
* n-bit datatype declaration
* reg [n-1:0] a;
* wire [n-1:0] a;
* Part selection:

reg [31:0] a,b;
wire [16:0] sum;
assign sum = a[l5:0]+ b[1l5:0];

Language Elements — Data Types

* Busdefinition
* n-bit datatype declaration
* reg [n-1:0] a;
* wire [n-1:0] a;
* Part selection:

reg [31:0] a,b;
wire [16:0] sum;
assign sum = a[l5:0]+ b[1l5:0];

* \Verilogis case-sensitive
* reg [3:0] Rega, Regh;

* Net/Variablenames cannot start with a number
* reg [3:0] 2num; X
* reg [3:0] num2;

Language Elements — Module and ports

* Verilog module declaration starts with module and ends with endmodule.

module module name (<port list>);

// Module content

endmodule

* Moduleports (by default, ports are considered as type wire):
* Input
* output
* 1nout

Language Elements — Module and ports

e Example:

module add unit (a,b,c); module add unit (input [3:0] a,b,
output[4:0] c);
input [3:0] a,b;
output[4:0] c; assign c = a+tb;

assign c = a+tb; endmodule

endmodule

Language Elements — Statements

* Statementsare used to drive nets
* There are two different methods to define Statements:
assign
Combinational (Blocking: =)
always
Combinational (Blocking: =)
Sequential (Non-blocking: <=)

Language Elements — assign Statement

* Itisusedtodrive output and wire types. Itis used to define combinational circuit parts.

* Orderof assign statementsis not important.
 When a variableat the RHS of assign statement changes, LHS is re-evaluated.

Language Elements — assign Statement

* Itisusedtodrive output and wire types. Itis used to define combinational circuit parts.
* Orderof assign statementsis not important.
 When a variableat the RHS of assign statement changes, LHS is re-evaluated.

module Module 1 (A, B, C, D, E);

input [3:0] A, B, C;
output[1l1:0] D, E;

wire [4:0] tl1, t2, t3;

assign tl = A + B;

assign t2 = A - B;

assign t3 = (C << 1);
assign D = (tl * t2) + t3;
assign E = A * C;

endmodule

Language Elements — assign Statement

* Itisusedtodrive output and wire types. Itis used to define combinational circuit parts.
* Orderof assign statementsis not important.
 When a variableat the RHS of assign statement changes, LHS is re-evaluated.

module Module 1 (A, B, C, D, E);

 When A changes, the new
valuesof t1, t2 and E are
computed concurrently

input [3:0] A, B, C;
output[1l1:0] D, E;

wire [4:0] tl1, t2, t3;

assign tl = A + B;

assign t2 = A - B;

assign t3 = (C << 1);
assign D = (tl * t2) + t3;
assign E = A * C;

endmodule

Language Elements — assign Statement

* Itisusedtodrive output and wire types. Itis used to define combinational circuit parts.
* Orderof assign statementsis not important.
 When a variableat the RHS of assign statement changes, LHS is re-evaluated.

module Module 1 (A, B, C, D, E);

 When A changes, the new
valuesof t1, t2 and E are
computed concurrently

input [3:0] A, B, C;
output[1l1:0] D, E;

wire [4:0] tl1, t2, t3;
e Sincetl and t2 are

] tl = A + B; '
assign updated, D isre-evaluated

assign t2 = A - B;

assign t3 = (C << 1);
assign D = (1 * t2) + t3;
assign E = A * C;

endmodule

Language Elements — assign Statement

* Itisusedtodrive output and wire types. Itis used to define combinational circuit parts.
* Orderof assign statementsis not important.
 When a variableat the RHS of assign statement changes, LHS is re-evaluated.

module Module 1 (A, B, C, D, E);

 When A changes, the new
valuesof t1, t2 and E are
computed concurrently

input [3:0] A, B, C;
output[1l1:0] D, E;

wire [4:0] tl1, t2, t3;
e Sincetl and t2 are

] tl = A + B; '
assign updated, D isre-evaluated

assign t2 = A - B;
assign t3 = (C << 1);
assign D = (tl * t2) + t3; e D doesnotupdateanynet

assign E = A * C;

endmodule

Language Elements — assign Statement

* No combinatorial loops

wire [7:0] b; b
assign b = b + 1;

« No combinatorial loops between signals in a clock cycle

Language Elements — a1ways Statement

* Itisusedtodrive reg types. It is used to define both combinational and sequential parts.

* Asensitivity list is defined for each always block.
It has signals that trigger the execution of the logic defined in always block

* Syntax:
always @ (sensitivity list)
begin

<your logic>
end

Clock-sensitive synchronous design Combinational design

always @ (*)
begin
<your logic>

always @ (posedge clk)
begin
<your logic>

end

end

Language Elements - Conditional Assignments

Three ways to do conditional assignment.

Methodl: if/else if/else

always @ (*)
begin
1f (S==1"b0)
Y = I0;
else
Y = I1;

end

Method2: case/endcase

always @ (%)

begin
case (S)
1"b0: Y = I0;
1’bl: Y = I1;
endcase

end

Method3:

always @ (*)
begin

Y =(S)
end

? Il

I0;

Language Elements - Conditional Assignments

Three ways to do conditional assignment.

Methodl: if/else if/else

always @ (*)
begin
1f(S==1"Db0)
Y = I0;
else
Y = I1;

end

For combinational circuits,

never use incomplete
conditional assignments!

Method2: case/endcase

always @ (%)
begin
case (S)
1"b0: Y = I0;
1’bl: Y = I1;
endcase

end

Method3:

begin
Y =(S)
end

always @ (*)

2 I1 : I0;

A Sample Design: Full Adder

* modulel/endmodule is used to define the design

 Aunique name must be given to each design in a project

module Full Adder

endmodule

A Sample Design: Full Adder

« All I/Os must be defined in argument list. Order of the list is not important
 The polarity of the ports (input or output) must be defined at the beginning.

module Full Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;
output Sum, Carry;

79)

5

endmodule

A Sample Design: Full Adder

* There may be some interconnections between gates

e @Gates are connected with nets which are defined as wire

module Full Adder (A,

input A, B, Cin;
output Sum, Carry;

wire wl, w2, w3;

endmodule

B,

Cin,

Sum,

Carry) ;

AND2

A Sample Design: Full Adder

» After the module is created and all I/Os and nets are defined, the interconnections may be
defined.

module Full Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;
output Sum, Carry;

wire wl, w2, w3;

assign wl = A & B;
assign w2 A & Cin;
assign w3 = B & Cin;

endmodule

A Sample Design: Full Adder

» After the module is created and all I/Os and nets are defined, the interconnections may be
defined.

module Full Adder (A, B, Cin, Sum, Carry);

input A, B, Cin;
output Sum, Carry;

wire wl, w2, w3;

assign wl = A & B;

assign w2 = A & Cinj;

assign w3 = B & Cinj;

assign Carry = wl | w2| w3;
assign Sum = A 4 B * Cin;

AND2

endmodule

A Sample Design: Full Adder

 Allinterconnectionsdo not have to be defined seperately.
* //(line comment) or /* */ (block comment) may be used to add comments.

module Full Adder (A, B, Cin, Sum,

input A, B, Cin; //inputs
output Sum, Carry; /*outputs*/

assign Sum = A ~ B * Cin;

endmodule

Carry) ;

assign Carry = (A & B)| (A & Cin)| (B & Cin);

A Sample Design: 3-bit Ripple Carry Adder

* Hierarchical Design
— A module may be used as a sub-module of another module.

 RdlAder RulAdder FulAdder
ZZ ALl ng'. ZZ"' LA L ;ZSun'q.. ZZ.AZZ PR Sdrri~
B B IR T I PR

CLUSESRERRER RN N o o

St cany

A Sample Design: 3-bit Ripple Carry Adder

* Hierarchical Design

— A module may be used as a sub-module of another module.

. RdiAdder - FulAdder FulAdder

DA A e T m s A AT T sk T um A (A A T i e T em g

Co LG Gl e

ol BCarry Ca"y..-

EEELURROERRERERRE

module RCA3 (A, B, Cin, S, Carry);
input [2:0] A, B;
input Cin;
output [2:0] S;
output Carry;
wire C 0, C 1;

Full Adder FAO (A[

Full Adder FAl (.A

Full Adder FAZ2 (.S
endmodule

B[0], Cin, S[0], C_0);

11),
21), .B(B[2]), .Cin(C 1), .Carry(Carry), .A(A[Z]

.B(B[1]), .Cin(C 0), .S(s[1l]), .Carry(C 1));

)

) ;

A Sample Design: 3-bit Ripple Carry Adder

* Modulelnstantiation
— Firstly, the name of module, which is instantiated, is specified.
— Then, a unigue name is given to each module.

Full Adder FAO (<ports>);

A Sample Design: 3-bit Ripple Carry Adder

* Modulelnstantiation
— Firstly, the name of module, which is instantiated, is specified.
— Then, a unigue name is given to each module.

Full Adder FAO (<ports>);

— Finally, I/O connections of the module are defined. There are two methods:

A Sample Design: 3-bit Ripple Carry Adder

* Modulelnstantiation
— Firstly, the name of module, which is instantiated, is specified.
— Then, a unigue name is given to each module.

Full Adder FAO (<ports>);

— Finally, I/O connections of the module are defined. There are two methods:

* Method1: Signal names are written inside the parenthesis. Signals have to be
written in the same order of submoduleargument list.

Full Adder FAO (A[O], B[O], Cin, S[0], C _0);

A Sample Design: 3-bit Ripple Carry Adder

* Modulelnstantiation
— Firstly, the name of module, which is instantiated, is specified.
— Then, a unigue name is given to each module.

Full Adder FAO (<ports>);

— Finally, I/O connections of the module are defined. There are two methods:

* Method1: Signal names are written inside the parenthesis. Signals have to be
written in the same order of submodule port list.

Full Adder FAO (A[O], B[O], Cin, S[0], C _0);

* Method2: Signalsand ports are connected explicitly. Order of the signals is not
importantin this method.

Full Adder FAO (.A(A[O]), .B(B[O]), .Cin(Cin), .S(S[0]),
.Carry(C _0));

Language Element — Generate Block

* Agenerate block is used to instantiatea module multiple times
* It must be coded ina module

genvar 1i;

generate
for (i=0,; i<N; 1i=i+1)
begin
<module instantiation>
end

endgenerate

Language Element — Generate Block

 C

for(int i=0,; i<4; 1i++) {
s = Full Adder(..);

}

* Verilog

genvar 1i;
generate
for (i=0; i<4; i=i+1) begin
Full Adder fa(..);
end
endgenerate

Language Element — Generate Block

* Example:4-bit Carry Save Adder

X[0] Y[O] ZJO] X[1] Y[1] ZJ1] X[2] Y[2] Z[2] X[3] Y[3] ZJ3]
S

S[0] CI[O0] S[1] CI[1] S[2] C[2] S[3] CI[3]

Language Element — Generate Block

* Example:4-bit Carry Save Adder

module CSA4 (X, Y, Z, P);
input [3:0] X, Y, Z;
output[5:0] P
wire [3:0] C, S;

.
14

genvar i;
generate
for (i=0; i<4; i=i+l) begin
Full Adder fa(X[i], Y[i], Z[i], SI[i], CI[i]):
end
endgenerate

assign P = S + (C << 1);
endmodule

X[0] Y[0] ZJO] X[1] Y[1] ZJ1] X[2] Y[2] z[2] X[3] Y[3] Z[3]
S

s[o] C[o] S[1] C[1] S[2] C[2] S[3] C[3]

Language Element — Parameter

* Parameters are constants that allowa module to be re-used with different specifications

parameter PARAMETER NAME = <value>;

Language Element — Parameter

* Parameters are constants that allowa module to be re-used with different specifications

parameter PARAMETER NAME = <value>;

 Example:

parameter N = §8;

wire [N-1:0] a,b;
wire [N:0] c;

assign c = atb;

Language Element — Parameter

 Example: Parameterized module

module CSA # (parameter N=4) (X, Y, Z, P);
input [N-1:0] X, Y, Z;
output [N+1:0] P;
wire [N-1:0] C, S;

genvar i;
generate
for (i=0; i<N; i=i+l) begin
Full Adder fa(X[i], Y[i], Z[i], SI[i], CI[i]):
end
endgenerate

assign P = S + (C << 1);
endmodule

Language Element — Parameter

 Example: Parameterized module

module CSA # (parameter N=4) (X, Y, Z, P);
input [N-1:0] X, Y, Z;
output [N+1:0] P;
wire [N-1:0] C, S;

genvar i;
generate
for (i=0; i<N; i=i+l) begin
Full Adder fa(X[i], Y[i], Z[i], SI[i], CI[i]):
end
endgenerate

assign P = S + (C << 1);
endmodule

 How to instantiatea parameterized module?

CSA #(.N(8)) unit(X,Y,Z,P);

Combinational Design vs Sequential Design

* Combinational design
* Logic computation
e Sequential design
* Logic computation + Memory element

Combinatorial Sequential

wire b,c: Flip flop
reg a;

always @(posedge clk)
a <= btc,

1
1
1
i
Example1: :
. 1
wire a,b,c; !
assign a = b+c; '
:

1

1

1

1

1

1

Example2:
wire b,c;

reg a, !)
always @(*) Not a flip
a <= btc; flop!

Sequential Design

* Sequential circuits have memory elements and logic computation
* Flip-flops + Combinatorial part

Large
Computation

Sequential Design

* Sequential circuits have memory elements and logic computation
* Flip-flops + Combinatorial part

Large
Computation

* Flip-flop outputs change (updated) at only edge of trigger signal
e Clock

- — {HeHHSHHS

* Positive clock edge (posedge) 2
* Negative clock edge (negedge) J

Sequential Design

* Sequential circuits have memory elements and logic computation
* Flip-flops + Combinatorial part

Large
Computation

* Flip-flop outputs change (updated) at only edge of trigger signal
e Clock

- — {KsHHeHHE-

* Positive clock edge (posedge) 2
J

* Negative clock edge (negedge)
* Reset (optional)

 Dependent to clock (synchronous)

* Independent from clock (asynchronous)

Sequential Design — Flip-Flops

* Resultis only available after clock’s posedge/negedge transition

always @ (posedge CLK) CLK J—l_l—l__l_l—l_
begin
r <= r in; r-in _(- <
d
en . 4‘ 1 0

Sequential Design — Flip-Flops

* Resultis only available after clock’s posedge/negedge transition

always @ (posedge CLK) CLK _J_I_I_L__I_I_L_
begin)
r <= r in; r-in _4 - <
d
en . —————* 1 0
D flip-flop with synchronous reset D flip-flop with asynchronousreset
always @ (posedge CLK) always @ (posedge CLK or posedge RST)
begin begin
if (RST) if (RST)
r <= 0; r <= 0;
else else
r <= r_in; r <= r in;
end end

Sequential Design — Reset

* Some sequential elements require a reset signal to initialize the circuit with a
known state/value

mymod

clk —
out
>
rst — V
<<1 — +1

Sequential Design — Reset

* Some sequential elements require a reset signal to initialize the circuit with a
known state/value

module mymod (clk, rst, in, out);
input clk, rst;
input [7:0] in;
output [7:0] out;

reg([7:0] wv; mymod
clk —
out
E—
rst — \
<<1 — +1
in A
—>

endmodule

Sequential Design — Reset

* Some sequential elements require a reset signal to initialize the circuit with a
known state/value

module mymod (clk, rst, in, out);
input clk, rst;
input [7:0] in;
output [7:0] out;

reg([7:0] wv; ——
always @ (posedge clk) clk — {9
I out
begin
i rst — V —
if (rst) oy s
v <= 1in; .
In
else — /\

v <= (v<<1) + 1;
end

assign out = v;

endmodule

Control Unit (FSM) with Datapath

* Basicidea: Control Unit and datapath existas separate circuits.

e Control Unit:

e Controlsthe data flow

* An easy way to make a control unit: Finite State Machine (FSM)
* Datapath:

* Performs data processing operations

/ command

Design with FSM and Datapath Example — A pattern detection circuit

e A patterndetection circuit
e Acircuit takes 1-bit input and outputs "1" when the last 3-bits that it takes are "110".
Otherwise, it outputs "0".

1/0 1/0 1/0

0/1

Design with FSM and Datapath Example — A pattern detection circuit

module PD(input clk, reset, bit i,
output bit o) ;

reg [1:0] next state;
reg [1:0] curr state;
reg bit o;

parameter ST 0 = 2'dO,
parameter ST 1
parameter ST 11 = 2'd2;

Il
N
(o}
'_\

//State register
always@ (posedge clk)
begin
if (reset)
curr state <= ST 0;
else
curr state <= next state;
end

Design with FSM and Datapath Example — A pattern detection circuit

//Next state logic
always@(*) begin
case (curr_ state)

ST 0 : next state = (bit 1 == 1) 2?2 ST 1 : ST 0O;
ST 1 : next state = (bit i == 1) ? ST 11 : ST O;
ST 11: next state = (bit i == 1) ? ST 11 : ST O0;
default: next state = ST O;

end

// output logic
always(@(posedge clk) begin

if (reset)
bit o <= 0;
else
bit o <= (curr state == ST 11 && bit i == 0) 2 1 : 0;

end

endmodule

Verilog Testbench

e Used to simulatedesign and test its functional correctness.
* Simulationis much faster than testing/debugging on actual hardware.

Top

| example1

—{
4%
2]
~
o
®
= |
Q
==

Verilog Testbench

 How to generate a testbench for your combinatorial design module?

Create a new module for testbench (tb)

Create a reg for each input of your designin tb
Createa wire for each output of your design in tb
Create clock (if your design has a clock)

Instantiate your designin tb

Connect regs and wires to yourdesignintb
Give inputsto your input

Observe/verify outputs

O NOUEWNPRE

* Let’slookat the pattern detector example.

module PD(input clk, reset, bit i,
output bit o);

Verilog Testbench — Steps for writing testbench

1. Create a new module for testbench (tb)

"timescale 1lns/lps

module PD tb();

endmodule

Verilog Testbench — Steps for writing testbench

2. Create a reg for each input of your design in tb

"timescale 1lns/lps
module PD tb();

reg clk, reset, bit i;

endmodule

Verilog Testbench — Steps for writing testbench

3. Create a wire for each output of yourdesign in tb

"timescale 1lns/lps
module PD tb();

reg clk, reset, bit i;
wire bit o;

endmodule

Verilog Testbench — Steps for writing testbench

4. Createa clock

"timescale 1lns/lps
module PD tb();

reg clk, reset, bit i;
wire bit o;

always #5 clk = ~clk;

endmodule

Verilog Testbench — Steps for writing testbench

5+6. Instantiateyour design in tb + Connect regs and wires to your designintb

"timescale 1lns/lps
module PD tb();

reg clk, reset, bit i;
wire bit o;

always #5 clk = ~clk;

PD dut(clk,reset,bit i,bit o0);

endmodule

Verilog Testbench — Steps for writing testbench

7+8. Give inputs to your design and observe outputs

"timescale 1lns/lps

initial begin

module PD tb(); // initialize all to O
clk=0; reset=1l; bit i=0;
reg clk, reset, bit 1i; #20; // wait for 20 ns
wire bit o; reset=0;
B #10; // wait for 10 ns
always #5 clk = ~clk; bit i=1; #20;

bit i=0; #20;
PD dut (clk, reset,bit 1,bit 0); end

endmodule

Verilog Testbench — Steps for writing testbench

7+8. Give inputs to your design and observe outputs

"timescale 1lns/lps

module PD tb();

0.000 7]

@ ns 20 ns

PD dut (clk, reset,bit 1,bit 0);

initial begin
// initialize all to O
clk=0; reset=1l; bit i=0;
#20; // wait for 20 ns
reset=0;
#10; // wait for 10 ns
bit i=1; #20;
bit i=0; #20;

end

endmodule

Common Mistakes/Bad Practices — Latches

* Latches easily cause timing problems:
* |Insimulation:latches give correct results.,
* On hardware: they almost always cause wrong results.
* The tool throws warning when detecting latches in your design.

Example 1:
Latches i Not Solved!
i
reg b; i reg b;
always @(*) E always @(*)
begin E begin
if (condition) ! if (condition)
b <= b _in1; : b <= b _in1;
end; i else
| b <= b;
1

end;

Common Mistakes/Bad Practices — Latches

* Latches easily cause timing problems:
* |Insimulation:latches give correct results.,
* On hardware: they almost always cause wrong results.
* The tool throws warning when detecting latches in your design.

Example 1:
Latches E Solved
i
reg b; i reg b;
always @(*) i always @(*)
begin i begin
if (condition) E if (condition)
b <= b_in1; i b <= b_in1;
end; i else
i b <= 0;
]

end;

Common Mistakes/Bad Practices — Latches

* Latches easily cause timing problems:
* |Insimulation:latches give correct results.,
* On hardware: they almost always cause wrong results.
* The tool throws warning when detecting latches in your design.

Example 2:

Latches Fixed
reg a; ves de
always @(*) always @(")
begin begin

case (condition)
0: a <= a_in;
default: a <= 0;
endcase;
end;

case (condition)
O: a <= a_in;
endcase;
end;

Common Mistakes/Bad Practices — Multi-driven Nets

e Multi-driven nets

reg state;

reg [7:0] a,b; Tlp MUItlpIe a|WayS blOCkS
always @(posedge clk) Slmp|IerS yOUI' deS|gn

begin
if (state==0)
a <= 1;
else Be careful!
a <= 2; h
end;
end

Never assign the same “reg”
Shh ey in two different always blocks.

if (state==0)

b <= 1;

Why? Always blocks run in
a<=1; h

end:; parallel.

end;

Common Mistakes/Bad Practices — Combinatorial Loops

 Combinatorial loops

wire [7:0] b: b ><
assignb=Db + 1;

« No combinatorial loops between signals in a clock cycle

Common Mistakes/Bad Practices — Mixed Control Unit and Datapath

* Never use the same alwaysblock for control unit and datapath

BAD

reg state;
reg [7:0] R1, R2;

always @ (posedge clk) begin
state <= state ©~ 1;
if (state==0)
R1 <= R2 + 1;
else
Rl <= R2 << 2;
end

* Advantages:
e Easierto maintainandread code
e Likely tolead to better critical path
* Easierfor tool to synthesize

reg state;
regl[7:0] r;

always @ (*) begin
if (state==0)
R1 <= R2 + 1;
else
Rl <= R2 << 2;
end

always @ (posedge clk)
begin

state <= state * 1;
end;

