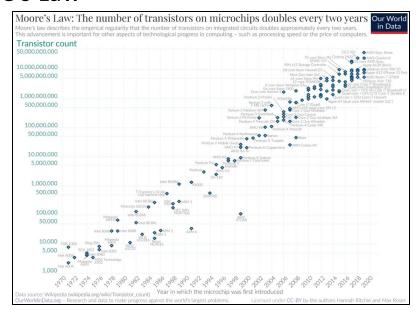


FPGA: Definition

- FPGA: Field Programmable Gate Arrays
 - An array of logic cells with programmable control signals and a programmable routing grid
 - It can be configured/programmed to perform any digital circuits
 - Microcontroller
 - Video processor
 - Crypto miner
 - How to configure?
 - Define its behavior using Hardware Description Languages
 - Compile and download it to FPGA


FPGA: Definition

- FPGA: Field Programmable Gate Arrays
 - Configurable Logic Blocks (CLBs)
 - Programmable Interconnects
 - Programmable I/O blocks
 - Other functional blocks: DSPs, Block RAMs, Ultra RAMs, ...

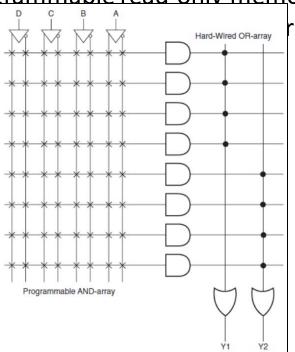
- Some major inventions that led to FPGAs
 - 1957 PROM (programmable read-only memory)
 - 1960 MOSFETs (metal–oxide–semiconductor field-effect transistor)
 - 1965 Moore's Law

- Some major inventions that led to FPGAs
 - 1957 PROM (programmable read-only memory)
 - 1960 MOSFETs (metal–oxide–semiconductor field-effect transistor)
 - 1965 Moore's Law

- Some major inventions that led to FPGAs
 - 1957 PROM (programmable read-only memory)
 - 1960 MOSFETs (metal–oxide–semiconductor field-effect transistor)
 - 1965 Moore's Law
 - 1970 EPROM
 - 1975 PLA (Programmable Logic Array)
 - 1977 PAL (Programmable Array Logic)

Some major inventions that led to FPGAs

1957 – PROM (programmable read-only memory)


1960 – MOSFETs (n

1965 – Moore's Lav

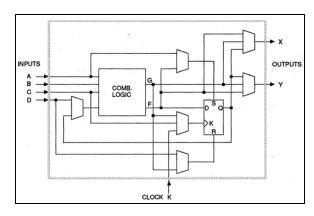
1970 – EPROM

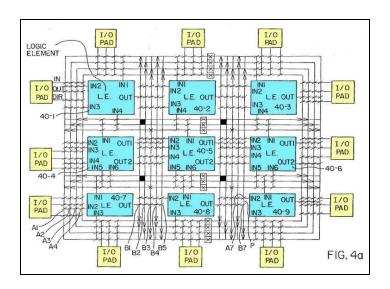
1975 – PLA (Progra

• 1977 – PAL (Program

r field-effect transistor)

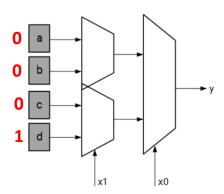
- Some major inventions that led to FPGAs
 - 1957 PROM (programmable read-only memory)
 - 1960 MOSFETs (metal–oxide–semiconductor field-effect transistor)
 - 1965 Moore's Law
 - 1970 EPROM
 - 1975 PLA (Programmable Logic Array)
 - 1977 PAL (Programmable Array Logic)
 - 1977 EEPROM
 - 1981 Flash Memory
 - 1985 FPGA (Field Programmable Gate Arrays)


- First FPGA: XC2064
 - In 1980s, engineers were trying to get the most out of each transistor
 - Ross Freeman came up with a different approach:
 - "A chip packed with transistors that formed loosely organized logic blocks with connections that could be configured and reconfigured with software."
 - A big problem: Sometimes, some of transistors will not be used!

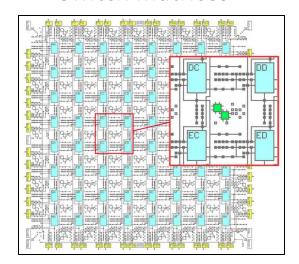

Ross Freeman: "Moore's Law would eventually make transistors so cheap that no one would care."

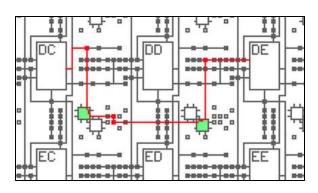
Ross Freeman Xilinx Co-founder

- First FPGA: XC2064
 - 8x8 grid of CLBs (Image from the Patent is a simplified 3x3 version)
 - Each CLB has 4 inputs and 2 outputs
 - Comb. Logic (Lookup Table LUT)
 - D-FF
 - Multiplexers (MUX)



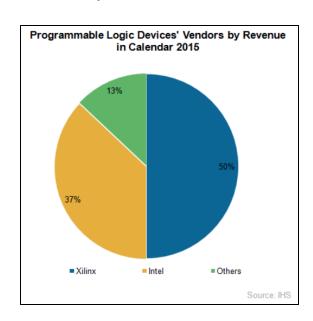
FPGA connections from Xilinx FPGA Patent


- First FPGA: XC2064
 - Lookup Table LUT
 - Inside logic block, FPGAs do not have gates. Instead, they have lookup tables with reconfigurable outputs.
 - These lookup tables are used to implement truth table of an expression.
 - It is capable of implementing any logic function of N Boolean variables.
 - In modern XIIinx FPGAs, N is generally 6.


- First FPGA: XC2064
 - Lookup Table LUT
 - Inside logic block, FPGAs do not have gates. Instead, they have lookup tables with reconfigurable outputs.
 - These lookup tables are used to implement truth table of an expression.
 - It is capable of implementing any logic function of N Boolean variables.
 - In modern XIIinx FPGAs, N is generally 6.
 - Example: AND gate with *N*=2

х0	x1	У
0	0	0
0	1	0
1	0	0
1	1	1

- First FPGA: XC2064
 - The interconnects
 - There are several horizontal and vertical line segments.
 - Interconnect points allow connections to be made between a horizontal line and a vertical line, allowing arbitrary paths to be created.
 - Switch matrices

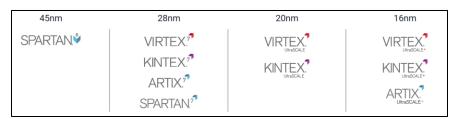


FPGA: Modern FPGAs

- Modern FPGAs have ...
 - More CLBs
 - Larger LUTs (6-input LUTs)
 - Custom building blocks (DSPs, BRAMs, Advanced I/O, ...)
- Major FPGA Vendors
 - Xilinx (acquired by AMD for 49B\$ in 2022)
 - Altera (acquired by Intel for 15B\$ in 2015)
 - Others (Lattice semiconductor etc.)

FPGA: Modern FPGAs

Example: Xilinx FPGA portfolio



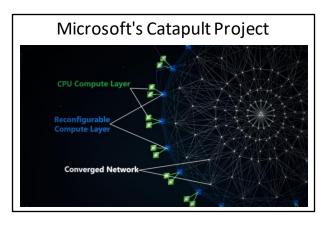
Virtex Ultrascale+ FPGA Product Table:

	Foundation							58G PAM4		
Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU19P	VU23P	VU27P	VU29P
System Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	8,938	2,252	2,835	3,780
CLB Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	8,172	2,059	2,592	3,456
CLB LUTs (K)	394	601	788	1,182	1,296	1,728	4,086	1,030	1,296	1,728
Max. Dist. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	58.4	14.2	36.2	48.3
Total Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	75.9	74.3	70.9	94.5
UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	90.0	99.0	270.0	360.0
DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	3,840	1,320	9,216	12,288
Peak INT8 DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	10.4	4.1	28.7	38.3
PCIe® Gen3 x16	2	4	4	6	3	4	0	0	1	1
PCIe Gen3 x16/Gen4 x8 / CCIX ⁽¹⁾	-	-	_	-	-	-	8	4	-	_
150G Interlaken	3	4	6	9	6	8	0	0	8	8
100G Ethernet w/ KR4 RS-FEC	3	4	6	9	9	12	0	2	15	15
Max. Single-Ended HP I/Os	520	832	832	832	624	832	1,976	572	676	676
Max. Single-Ended HD I/Os	0	0	0	0	0	0	96	72	0	0
GTY 32.75Gb/s Transceivers	40	80	80	120	96	128	80	34	32	32
GTM 58Gb/s PAM4 Transceivers	_	-	_	_	_	-	_	4	48	48
100G / 50G KP4 FEC	-	-	-	-	-	-	-	2/4	24 / 48	24 / 48
Extended ⁽²⁾	-1 -2 -2L -3	-1 -2	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L -3					
Industrial	-1 -2	-1-2	-1 -2	-1 -2	-1 -2	-1 -2	-	-1, -2	-1 -2	-1 -2

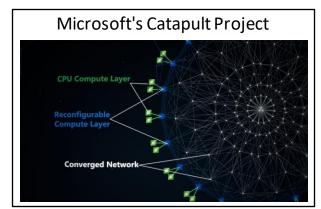
FPGA: Modern FPGAs

Example: Xilinx FPGA portfolio

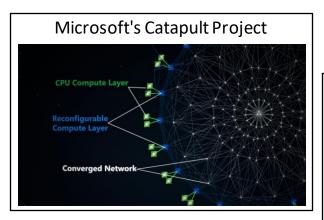
Virtex Ultrascale+ FPGA Product Table:

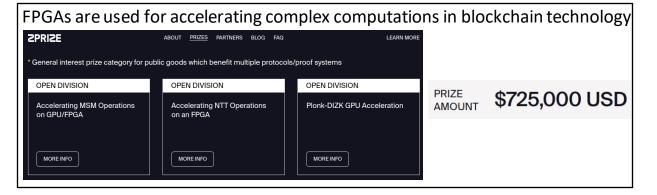

Device Name	Foundation								58G PAM4	
	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU19P	VU23P	VU27P	VU29P
System Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	8,938	2,252	2,835	3,780
CLB Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	8,172	2,059	2,592	3,456
CLB LUTs (K)	394	601	788	1,182	1,296	1,728	4,086	1,030	1,296	1,728
Max. Dist. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	58.4	14.2	36.2	48.3
Total Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	75.9	74.3	70.9	94.5
UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	90.0	99.0	270.0	360.0
DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	3,840	1,320	9,216	12,288
Peak INT8 DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	10.4	4.1	28.7	38.3
PCIe® Gen3 x16	2	4	4	6	3	4	0	0	1	1
PCIe Gen3 x16/Gen4 x8 / CCIX ⁽¹⁾	_	-	-	_	-	-	8	4	-	_
150G Interlaken	3	4	6	9	6	8	0	0	8	8
100G Ethernet w/ KR4 RS-FEC	3	4	6	9	9	12	0	2	15	15
Max. Single-Ended HP I/Os	520	832	832	832	624	832	1,976	572	676	676
Max. Single-Ended HD I/Os	0	0	0	0	0	0	96	72	0	0
GTY 32.75Gb/s Transceivers	40	80	80	120	96	128	80	34	32	32
TM 58Gb/s PAM4 Transceivers	_	_	_	-	_	-	_	4	48	48
100G / 50G KP4 FEC	-	-	-	-	-	-	-	2/4	24 / 48	24 / 48
Extended ⁽²⁾	-1 -2 -2L -3	-1 -2	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -2L					
Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	_	-1, -2	-1 -2	-1 -2

- FPGAs are now everywhere
 - IoT to Data Centers


- FPGAs are now everywhere
 - IoT to Data Centers

- FPGAs are now everywhere
 - IoT to Data Centers





- FPGAs are now everywhere
 - IoT to Data Centers

- Growing market
 - 2022:8B\$ market
 - 2027: 15B\$ market (estimated)
 - Job market is not saturated
- Many research direction
 - Acceleration of computation-intensive tasks
 - Machine Learning, DNN
 - Cryptography
 - Video Processing
 - FPGA security
 - High level synthesis

FPGA: Where are FPGAs used?

- FPGAs could be ...
 - A target platform
 - A prototype platform for ASIC or SoC

FPGA: Where are FPGAs used?

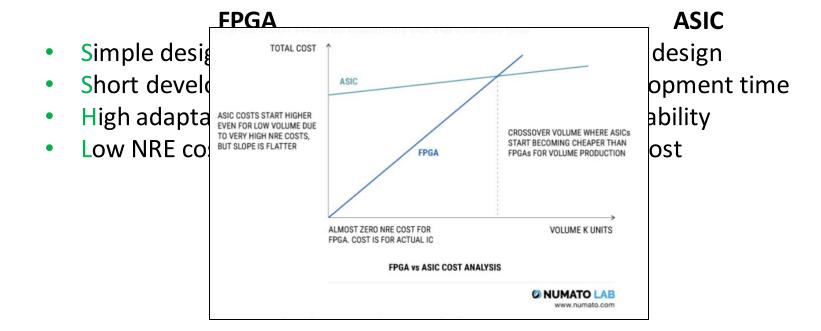
- FPGAs could be ...
 - A target platform
 - A prototype platform for ASIC or SoC
- FPGAs are used in a variety of applications
 - Machine Learning, Al
 - Cybersecurity
 - Video Processing
 - Automotive
 - Space Technology
 - Finance

FPGA: Advantages and Disadvantages

Advantages

- Programmability
- Fast design time (time to market)
- Low design cost
- Suitable for automation
- Parallel processing
- Prototyping
- System on chip

Disadvantages

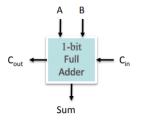

- Low performance
- Large area (due to reconfigurability)
- High power consumption

FPGA

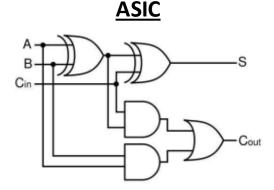
- Simple design cycle
- Short development time
- High adaptability
- Low NRE cost

ASIC

- Difficult to design
- Long development time
- Low adaptability
- High NRE cost

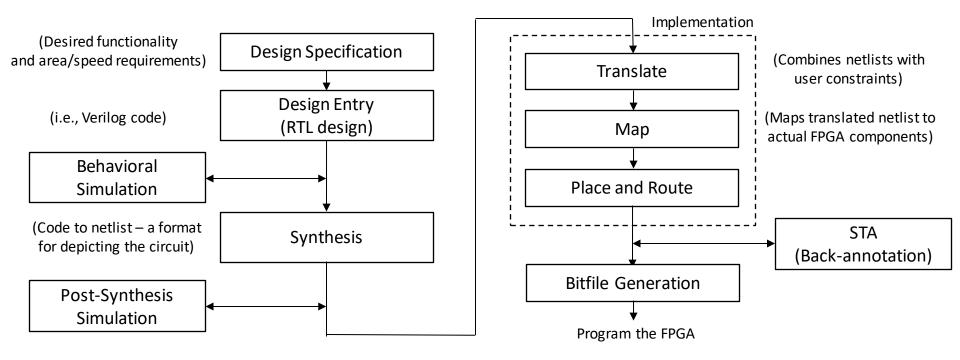

FPGA

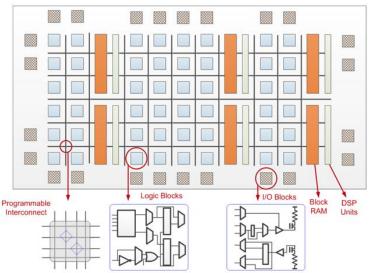
- Simple design cycle
- Short development time
- High adaptability
- Low NRE cost
- Low performance
- Large area
- High power consumption


ASIC

- Difficult to design
- Long development time
- Low adaptability
- High NRE cost
- High performance
- Low area
- Low power consumption

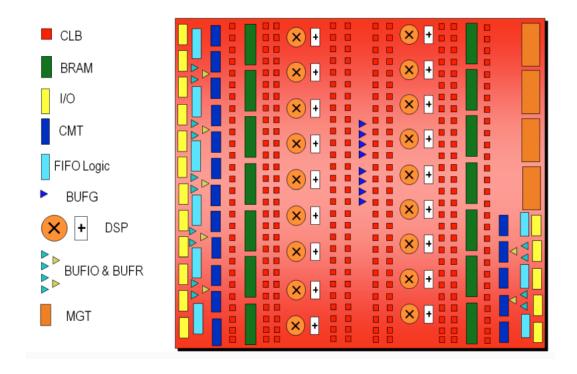
- In ASIC, an expression is implemented using gates (AND, OR, etc.) while FPGAs map the expression into lookup tables
 - Example: Full Adder


S = A XOR B XOR Cin Cout = (A AND B) OR (A XOR B AND)

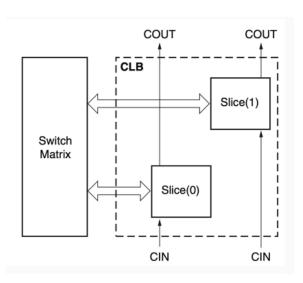

FPGA with 4-input LUTs?

FPGA: Design Flow

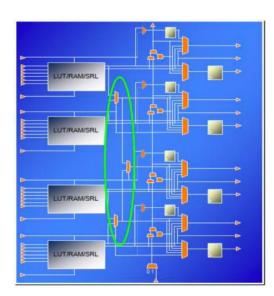
Design specification to FPGA programming

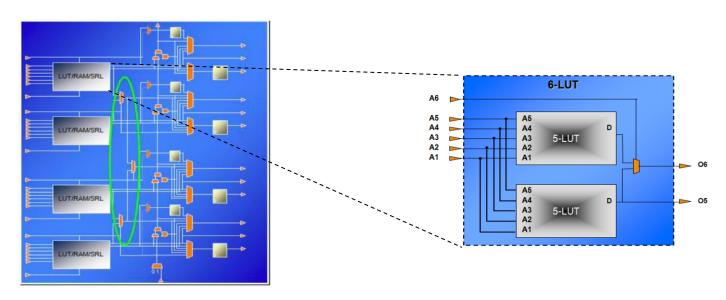


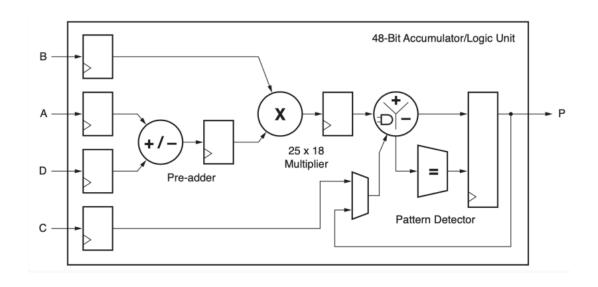
- FPGA: Field Programmable Gate Arrays
 - Configurable Logic Blocks (CLBs)
 - Programmable Interconnects
 - Programmable I/O blocks
 - Other functional blocks: DSPs, Block RAMs, Ultra RAMs, ...

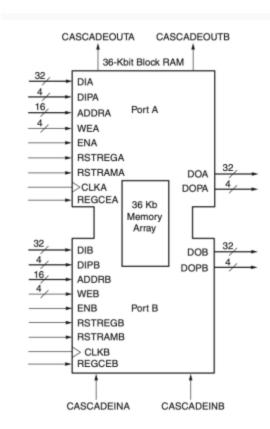


- Building blocks of different vendors and FPGA series can show differences, here we take Xilinx 7-series FPGAs as example.
 - Main building blocks
 - CLB, Slice, LUT
 - Interconnects
 - Custom blocks
 - DSP
 - Block RAM, Ultra RAM
 - CPU core
 - Soft and hard cores


- 7-series overview (Artix-7)
 - Modern FPGAs have diverse resources


- Configurable Logic Block (CLB)
 - Has 2 slices
 - SLICEM (LUT can be used for logic and memory)
 - SLICEL (LUT can be used only for logic)
 - Connected to interconnect through switch matrix


- CLB Slices
 - Four 6-input LUTs
 - D-FFs
 - Multiplexers


- CLB Slices
 - Four 6-input LUTs
 - D-FFs
 - Multiplexers

- DSP Slice
 - Full-custom and low power DSP units
 - Reconfigurable: P = (A±D) x B + C

- Block RAM (BRAM)
 - For storing large data
 - Configurable (2 x 18Kb or 1 x 36 Kb)
 - Two read/write ports
- Block ROM (BROM)
- Advanced FPGAs have Ultra RAM (URAM)
 - 288 Kb

- FPGA boards might be coupled with processors
 - Xilinx PYNQ-Z2 has an ARM Cortex
- It is also possible to instantiate "soft" processor in FPGAs
 - Xilinx's Microblaze soft processor core
- HW/SW co-design