
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2021/2022

Stefan Mangard, www.iaik.tugraz.at

Chapter 11: Building Faster Processors

Note on Material

The following parts of the slides of this chapter are based on material from Prof. Onur Mutlu, ETH Zurich:
• Multi-Cycle Execution
• Out-of-Order Execution
• Memory Hierarchy and Caches

Changes that have been made:
• Textual updates have been performed
• Material been combined from multiple slide decks
• Changes of the sequence and the amount of content has been done

Original source: https://safari.ethz.ch/digitaltechnik/spring2019/doku.php?id=schedule

The corresponding material is available under the following license: https://creativecommons.org/licenses/by-nc-sa/4.0/

2

Von Neumann Model

3

Processing Unit

Control Unit

Bus
System

Output
(Monitor, Printer,
Network, Disc, …)

Input
(Keyboard, Disc,

Network, …)

CPU
Memory

Register
File

Program
Counter

Instruction
Register

ALU

CPU + Memory + Bus

4
clk

program counter

instruction register

register
file

address
(32 wires,

where to read from
or where to store to)

data
output

(32 wires)

data
input

(32 wires)

write
(1 wire
0: read,
1: write)

control
logic

CPU’s Job: Fetch, Decode, and Execute

address

write

cpu_din

cpu_dout

clk

PC = 0x00;
while(1) {

IR = memory[PC];
PC= PC + 4;
if (IR == 0)

break;
else

execute instruction;
}

5

The Goal We Want to Achieve

6

Minimize latency, i.e.
minimize the time

between receiving an
address and providing

data

Maximize the number
of executed instructions

per time

MemoryCPU

Important Acceleration Techniques for
Processors

• Pipelining

• Out-of-Order Execution

• Superscalar CPUs

• Multiple CPUs

• Speculative Execution

7

Pipelining

• Idea:
• Divide the instruction processing into distinct “stages” of processing

• Process a different instruction in each stage
• Instructions consecutive in program order are processed in consecutive stages

8

combinational logic (T ps) BW=~(1/T)

BW=~(n/T)T/n ps T/n ps T/n ps…

The Example Discussed Earlier in the Lecture

5-stage pipeline:
• Instruction Fetch (IF)

• Instruction Decode (ID)

• Execution (EX)

• Memory Access (MEM)

• Write Back (WB)

9

MEM

EX

ID

IFInst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EXIF ID

IF ID

Inst0 ID

IFInst1

EX

ID

IFInst2

MEM

EX

ID

IFInst3

WB

WBMEM

EX

WB

steady state

(full pipeline)

Pipelining & Multi-Cycle Execution

Multi-Cycle Execution
• Not all instructions need the same amount of time for

“execution”

• Idea: Have multiple different functional units that take
different number of cycles
• Let independent instructions start execution on a different

functional unit before a previous long-latency instruction
finishes execution

F D

E

?

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

Issues in Pipelining: Multi-Cycle Execute

• Instructions can take different number of cycles in EXECUTE
stage
• Integer ADD versus FP MULtiply

• What is wrong with this picture in a Von Neumann architecture?
• If we complete ADD before FMUL, the sequential semantics of the ISA NOT

preserved!

F D E W

F D E WE E E E E E EFMUL R4 R1, R2

ADD R3 R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 R5, R6

ADD R7 R5, R6

F D E WE E E E E E E

Programmer Visible (Architectural) State

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

The Contract Between the Hardware and the
Software

• The software requires that
• Instructions that have been executed up to the PC (program counter) have

been executed in the given order

• Instructions beyond the current value of the PC do not affect the architectural
state of the processor

www.iaik.tugraz.at

14

Reorder Buffer (ROB)

• Idea: Complete instructions out-of-order, but reorder them before
making results visible to architectural state

• When instruction is decoded it reserves the next-sequential entry in
the ROB

• When instruction completes, it writes result into ROB entry

• When the oldest instruction in the ROB has completed without
exceptions, its result moved to register file or memory

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer
Instructions

Reorder Buffer

• Buffers information about all instructions that are decoded but not
yet retired/committed

• It needs to store all information that is required to:
• correctly reorder instructions back into the program order
• update the architectural state with the instruction’s result(s), if instruction can

retire without any issues
• handle an exception/interrupt precisely, if an exception/interrupt needs to be

handled before retiring the instruction

• Needs valid bits to keep track of readiness of the result(s) and find
out if the instruction has completed execution

Reorder Buffer: Independent Operations
• Result first written to ROB on instruction completion

• Result written to register file at commit time

• What if a later instruction needs a value in the reorder buffer?
• One option: stall the operation → stall the pipeline
• Better: Read the value from the reorder buffer.

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

Efficient Reorder Buffer Access

• Access register file first (check if the register is valid)
• If register not valid, register file stores the ID of the reorder

buffer entry that contains (or will contain) the value of the
register

• Mapping of the register to a ROB entry: Register file maps the
register to a reorder buffer entry if there is an in-flight
instruction writing to the register

• Access reorder buffer next

Out-of-Order Execution

An In-order Pipeline

• Dispatch: Act of sending an instruction to a functional unit

• Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?
• What do the following two pieces of code have in

common?

• Answer: First ADD stalls the whole pipeline!
• The MUL and the LD instruction take many cycles to execute

• ADD cannot dispatch because its source registers unavailable

• Later independent instructions cannot get executed

MUL R3 R1, R2

ADD R3 R3, R1

ADD R4 R6, R7

MUL R5 R6, R8

ADD R7 R9, R9

LD R3 R1 (0)

ADD R3 R3, R1

ADD R4 R6, R7

MUL R5 R6, R8

ADD R7 R9, R9

Preventing Dispatch Stalls

• Problem: in-order dispatch (scheduling, or execution)

• Solution: out-of-order dispatch (scheduling, or
execution)

• Basic idea: “fire” an instruction when its inputs are
ready

Out-of-order Execution (Dynamic Scheduling)

• Idea: Move the dependent instructions out of the way of
independent ones (such that independent ones can execute)
• Rest areas for dependent instructions: Reservation stations

• Monitor the source “values” of each instruction in the
resting area

• When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction
• Instructions dispatched in dataflow (not control-flow) order

• Benefit:
• Latency tolerance: Allows independent instructions to execute and

complete in the presence of a long-latency operation

In-order vs. Out-of-order Dispatch
• In order dispatch + precise exceptions:

• Out-of-order dispatch + precise exceptions:

• 16 vs. 12 cycles

F D WE E E E R

F D E R W

F

MUL R3 R1, R2

ADD R3 R3, R1

ADD R1 R6, R7

MUL R5 R6, R8

ADD R7 R3, R5
D E R W

F D E R W

F D E R W

F D WE E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Superscalar CPUs

• Basic Idea
• Add hardware to be able to handle multiple instructions in each pipeline

stage (e.g. fetch two instructions at the same time, execute two instructions
at the same time, …)

• The width can be varied for each stage

25

Amit6, original version (File:Superscalarpipeline.png) by User:Poil [CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)]

Multiple CPUs

• Basic Idea
• Put multiple CPU cores on one chip

• Typical setup is symmetric: all CPUs are equal

• All are connected to a shared memory

• Important Topics
• Scheduling of processes on the different CPUs

• Arbitration of shared resources

• Security

26

CPU 1 CPU 2 CPU n

RAM

System Bus

….

I/O and other
peripherals

Example: Google Pixel 6

• Octa-core, (2x2.8 GHz Cortex-X1 & 2x2.25 GHz Cortex-A76 & 4x1.8
GHz Cortex-A55)

• Each of the cores has a superscalar pipeline

• Example: Cortex-X1
• Fetches 5 instructions per cycle

• 15 execution ports with a pipeline depth of 13 stages

27

What About the Memory?

• We build CPUs that can execute more and more instructions per time
and we instantiate more and more CPUs?

Is the memory fast enough to deliver all the instructions and data to
the CPUs?

28

Slow Memory Accesses

• In general memory accesses are slow

• In the worst case a single access can take the same time as hundreds
instructions on the CPU

• Caches (later in this lecture) are a technique to decrease the access
time to memory.

• However, slow accesses happen → In order to not lose performance,
CPUs use speculative execution

29

Speculative Execution / Branch Prediction

• Motivation
• If there is a conditional branch and it is not clear if the branch will be taken or not, the CPU

can’t fetch any more instructions

• Basic Idea
• Instead of waiting for a branch condition (e.g. because it depends on a memory access),

speculate on the outcome and continue execution storing the results in the reorder buffer

• Trash the result in case the speculation was incorrect, make the execution architecturally
visible, if it was correct

• Implementations
• Significant effort is spent by CPUs on learning to predict the branches correctly in an

executed program
• Branch prediction on is done based on execution history: if a branch was taken before, it is likely to be

taken again (think of loops!)

30

Side Effects of Speculation

• Side Effects
• Speculative execution does cause side effects on current CPUs; e.g. instructions that

are executed speculatively and trashed affect the timing of actual instructions that
are executed later on

• Timing differences can be exploited in order to make trashed results visible

• More on this
• https://spectreattack.com
• Bachelor course “Information Security”
• Master course “Side-Channel Security”

• Our institute was part of the team finding these completely new attacks
and of many follow-up works

31

https://spectreattack.com/

Memory Hierarchy and Caches

32https://creativecommons.org/licenses/by-nc-sa/4.0/

Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

33

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger → Takes longer to determine the location

• Faster is more expensive
• Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster

technology

The Problem
• Bigger is slower

• SRAM, 512 Bytes, sub-nanosec
• SRAM, KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)
• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte
• These sample values (circa ~2011) scale with time

• Other technologies have their place as well
• Flash memory, MRAM, RRAM, …

Why Memory Hierarchy?

• We want both fast and large

• But we cannot achieve both with a single level of
memory

• Idea: Have multiple levels of storage (progressively
bigger and slower as the levels are farther from the
processor) and ensure most of the data the processor
needs is kept in the fast(er) level(s)

The Memory Hierarchy

fast
small

big but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

p
er

 p
er

 b
yt

e

Memory Hierarchy

• Fundamental tradeoff
• Fast memory: small

• Large memory: slow

• Goal: Best trade-off for
latency, cost, size, bandwidth

CPU

Main

Memory

(DRAM)RF

Cache

Hard Disk

Challenge: What to place where?

How do you best predict which
data you need next in order to

place it into the fastest memory?

Locality
• One’s recent past is a very good predictor of his/her

near future.

• Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon
• since you are here today, there is a good chance you will be

here again and again regularly

• Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)
• every time I find you in this room, you are probably sitting

close to the same people

Memory Locality
• A “typical” program has a lot of locality in memory

references
• typical programs are composed of “loops”

• Temporal: A program tends to reference the same
memory location many times and all within a small
window of time

• Spatial: A program tends to reference a cluster of
memory locations at a time
• most notable examples:

• 1. instruction memory references
• 2. array/data structure references

Caching Basics: Exploit Temporal Locality

• Idea: Store recently accessed data in automatically
managed fast memory (called cache)

• Anticipation: the data will be accessed again soon

• Temporal locality principle
• Recently accessed data will be again accessed in the near

future

Caching Basics: Exploit Spatial Locality

• Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory
• Logically divide memory into equal size blocks

• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
• Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal

The Bookshelf Analogy
• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in storage

• Recently-used books tend to stay on desk
• Comp Arch books, books for classes you are currently taking
• Until the desk gets full

• Adjacent books in the shelf needed around the same
time
• If I have organized/categorized my books well in the shelf

Caching in a Pipelined Design
• The cache needs to be tightly integrated into the

pipeline
• Ideally, access in 1-cycle so that load-dependent operations do

not stall

• High frequency pipeline → Cannot make the cache large
• But, we want a large cache AND a pipelined design

• Idea: Cache hierarchy

CPU

Main

Memory

(DRAM)
RF

Level1

Cache

Level 2

Cache

A Note on Manual vs. Automatic Management

• Manual: Programmer manages data movement across
levels
-- too painful for programmers on substantial programs

• still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)

• Automatic: Hardware manages data movement across
levels, transparently to the programmer
++ programmer’s life is easier

• the average programmer doesn’t need to know about it
• You don’t need to know how big the cache is and how it works to write a

“correct” program! (What if you want a “fast” program?)

A Modern Memory Hierarchy
Register File

32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

Hierarchical Latency Analysis
• For a given memory hierarchy level i it has a technology-intrinsic access

time of ti, The perceived access time Ti is longer than ti

• Except for the outer-most hierarchy, when looking for a given address
there is

• a chance (hit-rate hi) you “hit” and access time is ti

• a chance (miss-rate mi) you “miss” and access time ti +Ti+1

• hi + mi = 1

• Thus

Ti = hi·ti + mi·(ti + Ti+1)

Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate and miss-rate

47

Hierarchy Design Considerations

• Recursive latency equation

Ti = ti + mi ·Ti+1

• The goal: achieve desired T1 within allowed cost

• Ti ti is desirable

• Keep mi low
• increasing capacity Ci lowers mi, but beware of increasing ti

• lower mi by smarter cache management (replacement → anticipate what
you don’t need, prefetching → anticipate what you will need)

• Keep Ti+1 low
• faster lower hierarchies, but beware of increasing cost
• introduce intermediate hierarchies as a compromise

48

Caches

Cache

• Generically, any structure that “memorizes” frequently
used results to avoid repeating the long-latency
operations required to reproduce the results from
scratch, e.g. a web cache

• Most commonly in the processor design context: an
automatically-managed memory structure based on
SRAM
• memorize in SRAM the most frequently accessed DRAM

memory locations to avoid repeatedly paying for the DRAM
access latency

Caching Basics
◼Block (line): Unit of storage in the cache
❑Memory is logically divided into cache blocks that map to locations in

the cache

◼On a reference:
❑HIT: If in cache, use cached data instead of accessing memory
❑MISS: If not in cache, bring block into cache

◼Maybe have to kick something else out to do it

◼Some important cache design decisions
❑Placement: where and how to place/find a block in cache?
❑Replacement: what data to remove to make room in cache?
❑Granularity of management: large or small blocks? Subblocks?
❑Write policy: what do we do about writes?
❑Instructions/data: do we treat them separately?

Cache Abstraction and Metrics

• Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

• Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

Address
Tag Store

(is the address

in the cache?

+ bookkeeping)

Data Store

(stores

memory

blocks)

Hit/miss? Data

A Basic Hardware Cache Design

• We will start with a basic hardware cache design

• Then, we will examine a multitude of ideas to make it
better

Blocks and Addressing the Cache

◼Memory is logically divided into fixed-size blocks

◼Each block maps to a location in the cache, determined by the
index bits in the address
❑used to index into the tag and data stores

◼Cache access:
1) index into the tag and data stores with index bits in address
2) check valid bit in tag store
3) compare tag bits in address with the stored tag in tag store

◼If a block is in the cache (cache hit), the stored tag should be
valid and match the tag of the block

8-bit address

tag index byte in block

3 bits3 bits2b

Direct-Mapped Cache: Placement and Access

• Assume byte-addressable memory:
256 bytes, 8-byte blocks → 32 blocks

• Assume cache: 64 bytes, 8 blocks
• Direct-mapped: A block can go to only one location

• Addresses with same index contend for the same location
• Cause conflict misses

55

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Block: 00000
Block: 00001
Block: 00010
Block: 00011
Block: 00100
Block: 00101

Block: 00110
Block: 00111
Block: 01000
Block: 01001
Block: 01010
Block: 01011
Block: 01100
Block: 01101

Block: 01110
Block: 01111
Block: 10000
Block: 10001
Block: 10010
Block: 10011
Block: 10100
Block: 10101

Block: 10110
Block: 10111
Block: 11000
Block: 11001
Block: 11010
Block: 11011
Block: 11100
Block: 11101

Block: 11110
Block: 11111

Main memory

Direct-Mapped Caches
• Direct-mapped cache: Two blocks in memory that map

to the same index in the cache cannot be present in the
cache at the same time
• One index → one entry

• Can lead to 0% hit rate if more than one block accessed
in an interleaved manner map to the same index
• Assume addresses A and B have the same index bits but

different tag bits

• A, B, A, B, A, B, A, B, … → conflict in the cache index

• All accesses are conflict misses

• Addresses 0 and 8 always conflict in direct mapped cache

• Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity

Tag store Data store

V tag

=?

V tag

=?

Address

tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

+ Accommodates conflicts better (fewer conflict misses)

-- More complex, slower access, larger tag store

SET

Hit?

Higher Associativity
• 4-way

+ Likelihood of conflict misses even lower
-- More tag comparators and wider data mux; larger tags

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?

Full Associativity
• Fully associative cache

• A block can be placed in any cache location

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity (and Tradeoffs)
• Degree of associativity: How many blocks can map to the

same index (or set)?

• Higher associativity
++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)

-- More expensive hardware (more comparators)

• Diminishing returns from higher associativity

associativity

hit rate

Issues in Set-Associative Caches
• Think of each block in a set having a “priority”

• Indicating how important it is to keep the block in the cache

• Key issue: How do you determine/adjust block priorities?

• There are three key decisions in a set:
• Insertion, promotion, eviction (replacement)

• Insertion: What happens to priorities on a cache fill?
• Where to insert the incoming block, whether or not to insert the block

• Promotion: What happens to priorities on a cache hit?
• Whether and how to change block priority

• Eviction/replacement: What happens to priorities on a
cache miss?
• Which block to evict and how to adjust priorities

Eviction/Replacement Policy

• Which block in the set to replace on a cache miss?
• Any invalid block first

• If all are valid, consult the replacement policy
• Random

• FIFO

• Least recently used (how to implement?)

• Not most recently used

• Least frequently used?

• Hybrid replacement policies

• Optimal replacement policy?

Implementing LRU
• Idea: Evict the least recently accessed block

• Problem: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:
• What do you need to implement LRU perfectly?

• Question: 4-way set associative cache:
• What do you need to implement LRU perfectly?

Approximations of LRU

• Most modern processors do not implement “true LRU”
(also called “perfect LRU”) in highly-associative caches

• Why?
• True LRU is complex

• LRU is an approximation to predict locality anyway (i.e., not
the best possible cache management policy)

• Example:
• Not MRU (not most recently used)

Cache Replacement Policy: LRU or Random

• LRU vs. Random: Which one is better?
• Example: 4-way cache, cyclic references to A, B, C, D, E

• 0% hit rate with LRU policy

• Set thrashing: When the “program working set” in a set
is larger than set associativity
• Random replacement policy is better when thrashing occurs

• In practice:
• Depends on workload

• Average hit rate of LRU and Random are similar

Handling Write Opertions

Recall: Cache Structure

Address
Tag Store

(is the address

in the cache?

+ bookkeeping)

Data Store

(stores

memory

blocks)

Hit/miss? Data

What’s In A Tag Store Entry?

• Valid bit

• Tag

• Replacement policy bits

• Dirty bit?
• Write back vs. write through caches

Handling Writes (I)
◼ When do we write the modified data in a cache to the next level?

• Write through: At the time the write happens

• Write back: When the block is evicted

• Write-back
+ Can combine multiple writes to the same block before eviction

• Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
+ Simpler

+ All levels are up to date

-- More bandwidth intensive; no combining of writes

Handling Writes (II)
• Do we allocate a cache block on a write miss?

• Allocate on write miss: Yes
• No-allocate on write miss: No

• Allocate on write miss
+ Can combine writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires transfer of the whole cache block

• No-allocate
+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)

Instruction vs. Data Caches
• Separate or Unified?

• Pros and Cons of Unified:
+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., separate I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

• First level caches are almost always split

• Higher level caches are almost always unified

Multi-level Caching in a Pipelined Design
• First-level caches (instruction and data)

• Decisions very much affected by cycle time

• Small, lower associativity; latency is critical

• Tag store and data store accessed in parallel

• Second-level caches
• Decisions need to balance hit rate and access latency

• Usually large and highly associative; latency not as important

• Tag store and data store accessed serially

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

74

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

75

Addresses for memory accesses:
Hex Binary
0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

76

Addresses for memory accesses:
Hex Binary
0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Offset

Block indexTag

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

77

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Cache Miss.
The block is
copied from
memory into

the data
cache. The tag

memory
stores 00 at
index 110.

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

78

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

We access
the same
block as

before→
Cache Hit

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

79

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000 M
0x39 00 111 001

0x36 00 110 110
0x37 00 110 111
0x38 00 111 000
0x39 00 111 001

Access to a
new block →

cache miss

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64 bytes, and a block
size of 8 byte

• Assume array is stored on the stack at memory location 0x36; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array[4] = {1, 2, 3, 4};

int sum = 0;

int prod = 1;

for(int i = 0; i < 4; ++i)

sum = sum + array[i];

for(int i = 0; i < 4; ++i)

prod = prod * array[i];

80

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x37 00 110 111 H
0x38 00 111 000 M
0x39 00 111 001 H

0x36 00 110 110 H
0x37 00 110 111 H
0x38 00 111 000 H
0x39 00 111 001 H

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at
memory location 0x70; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];

81

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at
memory location 0x70; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];

82

Addresses for memory accesses:
Hex Binary
0x36 00 110 110
0x70 01 110 000
0x37 00 110 111
0x71 01 110 001
0x38 00 111 000
0x72 01 110 010
0x39 00 111 001
0x73 01 110 011

Example: Cache Access Patterns of C Code

• Assume a 256 bytes of main memory, a directly mapped data cache with 64
bytes, and a block size of 8 byte

• Assume array1 is stored at memory location 0x36; array2 is stored at
memory location 0x70; all other variables are in registers;

• Assume an empty stack the beginning of the execution

char array1[4] = {1, 2, 3, 4};
char array2[4] = {1, 2, 3, 4};
int sum_prod = 0;

for(int i = 0; i < 4; ++i)
sum_prod = sum_prod + array1[i] * array2[i];

83

Addresses for memory accesses:
Hex Binary
0x36 00 110 110 M
0x70 01 110 000 M
0x37 00 110 111 M
0x71 01 110 001 M
0x38 00 111 000 M
0x72 01 110 010 H
0x39 00 111 001 H
0x73 01 110 011 H

